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Abstract. Discretionary Access Control (DAC) systems provide powerful mech-
anisms for resource management based on the selective distribution of capabili-
ties to selected classes of principals. We study a type-based theory of DAC mod-
els for concurrent and distributed systems represented as terms of Cardelli, Ghelli
and Gordon’s pi calculus with groups [3]. In our theory, groups play the rôle of
principals, and the structure of types allows fine-grained mechanisms to be spec-
ified to govern the transmission of names, to bound the (iterated) re-transmission
of capabilities, to predicate their use on the inability to pass them to third parties,
. . . and more. The type system relies on subtyping to help achieve a selective
distribution of capabilities, based on the groups in control of the communication
channels. Type preservation provides the basis for a safety theorem stating that in
well-typed processes all names flow according to the delivery policies specified
by their types, and are received at the intended sites with the intended capabilities.

1 Introduction

Type systems have been applied widely in process calculi to provide static guarantees
for a variety of safety and security properties, including policies for access control [6,
4], non-interference [12, 17, 10], secrecy [1, 3]. In this paper we focus on access control
in distributed systems based on Discretionary Access Control (DAC) models [13, 18],
i.e. resource management systems that support fine-grained policies for the distribution
of capabilities to selected classes of users. To motivate, we start with a well-known
example from Pierce and Sangiorgi’s seminal paper on types for the pi calculus [16]:

S= !s(x).print〈x〉 C = s〈 j1〉.s〈 j2〉. . . .

S is a print spooler serving print requests from a channel s; C is a client sending jobs
j1, j2, . . . to the spooler. Given this specification, one may wish to show that each of
the jobs sent by C is eventually received and printed. While such guarantees can been
made for the system S | C, they may hardly be enforced in more general situations. A
misbehaved client C′ may participate to the protocol, as in S |C | C ′, to steal C’s jobs:
C′ = s(x).s(y). . . . . The capability-based type system developed in [16] prevents this
unwanted behavior by requiring that all clients be only granted write capabilities on the
channel s, and by reserving read capabilities on s to the spooler:

(!d : ((T )rw)rw)(!s : (T )rw)( d〈s〉 | d〈s〉 | d(x : (T )r).S | d(y : (T )w).C )
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The types (T )!, with ! ∈ {r,w, rw}, indicate the types of channels carrying values of
type T with the associated capabilities for reading, writing, or both. By delivering the
channel s at different types we can thus enforce an access control policy stating that
only the spooler can read jobs.

Notice, however, that the ability of that type system to control the behavior of the
system is still rather limited. Indeed, if we want to prevent client jobs from being read by
any process other than the spooler S, we need to disallow situations like the following:

!s(x).log〈x〉.print〈x〉 | s〈 j1〉.s〈 j2〉 | log(y).SPY

where the spooler forwards each of the jobs it receives to process SPY . The capability-
based access control from [16] is of little help here, unless one resorts to a more complex
encoding of the system or imposes overly restrictive conditions (e.g. prevent the server
from writing on all public channels).

A similar problem arises in the following variation of the protocol, in which clients
request an ack message to be notified that their jobs have been printed.

S= (!print) (!s(x).print〈x〉 | !print(x).(P | ack〈x〉)) C= s〈 j1〉.ack(x).s〈 j2〉.ack(y)

As in the previous case, the capability-based type system will fail to detect violations of
the intended protocol due to malicious (or erroneous) servers that discard jobs by, say,
running the process s(x).ack〈x〉.

To counter these problems, we propose a novel typing discipline in which we com-
plement the capability-based control system of [16] with a richer class of types that
convey information needed to describe, and prescribe, the ways that values may be ex-
changedwithin the different system components. The new types have the formG[T ‖"],
where G identifies the authority in control of the values of that type, T describes the
structure of those values, and " is a delivery policy governing the circulation of such
values along the channels of the system. To illustrate, the typing

j : Job[ file desc ‖ Spool → Print → Client ]

construes j as a file descriptor to be first delivered to the spooler, then passed on to the
printer, and only then re-transmitted back to clients for notification. Equivalently, the
delivery policy associated with the type of jobs states that (i) no notification should be
given to clients for jobs that have not previously been sent to a printer, and that (ii) no
job with such type should be received by the printer unless it has first been delivered to
the spooler. Similarly, the typing

s : Spool[ (Job[file desc ‖ Print → Client])rw ‖ − ]

defines s as a (full-fledged) channel, in control of the spooler, and carrying file de-
scriptors which may be passed on to a client only after having been transmitted to the
printer (in addition, the type states that s itself should not be re-transmitted). Given
the two type assumptions for j and s, our type system will guarantee that transmit-
ting j over s is a well-defined, and legal, operation. Remarkably, this requires a non-
standard typing of the output prefix, one that guarantees that j is received by s at the
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type J = Job[file desc ‖ Print → Client], so that j may only be further re-directed to a
printer, as expected.

The type system allows for a wide range of delivery policies to be specified, from
policies that support delivery chains of unbounded depth, by resorting to recursively de-
fined types, to policies based on multiple, possibly branching, delivery chains along al-
ternative paths, as in G[T ‖ G1 → · · ·→ Gn ; G′

1 → (G′
2 → G′

3 ; G′
4 → (G′

5 ; G′
6)) ]. To

illustrate, in our printer example, the initial typing for the channel s should be defined
as follows (with J as given above):

s : Spool[(J)rw ‖ Spooler@(J)r; Client@(J)w].

This typing guarantees that s is received at the expected types, namely with read and
write capabilities at the spooler and client sites respectively. Relying on similar typ-
ing disciplines, one may guarantee that client jobs remain confined within the printer
authority, and thus ensure they are not logged and/or leaked to any spy process.

Furthermore, the capability-based access control from [16], based on subtyping, is
still available in our system to selectively advertise values at different types depending
on the different principals at which they are delivered, as in

G[T ‖ G1@T1 → · · ·→ Gn@Tn ; G′
1@T

′
1 → (G′

2@T
′
2 → G′

3@T
′
3 ; G′

4@T
′
4) ].

Remarkably, the types at the intermediate delivery steps may be different, as long as
they are all super-types of the type decided at the originating site.

In the rest of the paper we formalize the approach we have outlined in a typed ex-
tension of the pi calculus with groups of [3]. We inherit the syntax of the calculus from
[3], and introduce a novel operational semantics to express the flow of names during the
computation.We also extend the structure of types to capture the access control policies
of interest, and we devise a novel typing system for the analysis and the static detec-
tion of violations of such policies. The resulting typing discipline is rather flexible and
expressive, as we show by providing several examples of powerful discretionary access
control policies formalized in our system. A type preservation theorem, proved for the
system, allows us to derive a strong safety result stating that all well-typed processes
comply with the discretionary access control policies governing the use of resources.

Plan of the paper. §2 reviews the pi calculus with groups from [3], introduces the
‘flow’ semantics and our new classes of types and illustrates their use with a number
of examples. §3 describes the typing system. §4 reports on the properties of the type
system, on the relationships with the system in [3]. §5 concludes with final remarks and
a discussion of related work.

2 The Typed Calculus

The syntax of processes is the same as in the pi calculus with groups [3] (#G for short)
summarized below.We presuppose countable sets of names n,m, ..., and variables x,y,z,
reserving a,b,c to range over both sets. We also presuppose a countable set of group
namesG1,G2, . . . containing the distinguished groupDefault. The notions of free names
for a process P, noted fn(P), and free groups in a type T , noted fg(T ) are just as in #G.
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P,Q ::= 0 | c(x̃ : $̃).P | c〈ã〉.P | (!n : $)P | (!G)P | P|Q | !P

The novelty with respect to #G is in the structure of types. As in that case, our types
are built around group names, but they have a richer structure. Specifically, we inter-
pret groups as representing the authorities (principals) in control of the resources. In
addition, drawing inspiration from [15], we structure types so as to convey information
on how such resources should be propagated to other principals. The syntax of types is
given by the following productions:

Structural Types T ::= B | ($1, . . . ,$n)! (! ∈ {r,w, rw},$i closed)
Resource Types $ ::= X | µX .G[T ‖ "{X}] | G[T ‖ "]

Delivery Policies " ::= [Gi → $i]i∈I (Gi = G j ⇒ i= j)

A structural type conveys structural information on the values with that type, i.e. whether
they are basic values, of typeB, or communication channels: as in other systems, a chan-
nel type specifies the types $i of the values transmitted over the channel together with
the capabilities ! associated with the channel 1

A resource type is built around a structural type and it additionally specifies the
group, or authority, that is in control of the values with that type, together with a set of
delivery constraints. A delivery policy, in turn, specifies which other authorities, if any,
may legally be granted access to the resource and the extent of the associated access
rights (i.e. the capabilities delivered to such authorities). In addition, a delivery policy
may impose bounds on the iterated re-distribution of capabilities, and or predicate the
delivery of values to the inability to pass them to third parties.

Resource types are recursive, to make it possible to express policies that allow the
re-transmission of value to an unbounded depth/distance. Instead, for conceptual sim-
plicity (only), we disallow direct recursion on structural types. We assume type equality
up to (i) renaming of bound type variables, (ii) permutation of delivery constraints in-
side delivery policies (e.g.G[T ‖ [G1→ $1; G2→ $2] = G[T ‖ [G2→ $2; G1→ $1]), and
(iii) unfolding of recursive types (i.e. µX .G[T ‖ "{X}] = G[T ‖ "{µX .G[T ‖ "{X}]}]).
We introduce a number of conventions to ease the notation. We write G[T ] for the type
G[T ‖ [ ]], whose delivery policy is empty, and introduce the following simplified syntax
for (finite-depth) delivery chains:

G[T ‖ G1@T1 → G2@T2 → · · ·→ Gn@Tn]
! G[T ‖ [G1 → G[T1 ‖ [G2 → G[T2 ‖ [. . . [Gn → G[Tn]] . . . ]]]]]]

G[T ‖ G1 → G2 → · · ·→ Gn] ! G[T ‖ G1@T → G2@T → · · ·→ Gn@T ]

2.1 Operational Semantics

The intention of the type system is to control the flow of names, so as to provide static
guarantees against any leakage of names to unintended users and/or at unintended types.
1 In principle, capabilities may be defined to control the access and use of values of any type.
We restrict to channel capabilities for presentation purposes only.
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Expressing flows is subtle, however, because different occurrences of the same name
may flow along different paths during the computation. To illustrate, consider a type
$ = G[B ‖ G1 → G2;G3] describing values of basic type B to be delivered either to G 1

and then on to G2, or to G3 (always at the structural type B). Assume, further, that we
are given the following two processes where n1:G1[. . . ],n2:G2[. . . ],n3:G3[. . . ] and m:$:

P! n1〈m〉 | n3〈m〉 | n1(x).n3(y).n2〈x〉, Q! n1〈m〉 | n3〈m〉 | n1(x).n3(y).n2〈y〉

Then, P should be judged safe, as both copies of m flow along legal paths, while Q
should be deemed unsafe, as it allows an illegal flow for m. However, with the standard
reduction semantics these judgments may hardly be made, as after two reduction steps
both P and Q reduce to n2〈m〉.

To make the notion of flow explicit in the calculus, we resort to a non-standard
semantics that uses tags for each name to trace the sequence of channels traversed by
the name during the computation. To illustrate, the tagged name n [mpq] represents the
name n that flowed first through the channel m, then through p and finally through q.
Here ‘mpq’ is short for the extended notation m :: p :: q :: %, where % denotes the empty
sequence and ‘::’ is the usual right-associative sequence constructor. We let & range
over sequences of names, and use the notation & · n to indicate the sequence resulting
from appending the name n to the tail of &.

The resulting reduction relation is defined over the class of dynamic processes,
noted A,B, . . . . The structure of dynamic processes coincides with the structure of pro-
cesses, except that the former may use tagged names in addition to names. Indeed,
processes may be understood as special cases of dynamic processes in which all names
are tagged with the empty name sequence (e.g. n [%], that we identify with n). The no-
tion of free names for dynamic processes is redefined to account for presence of the
tags. Specifically, fn(n[&](x̃ : $̃).A) = fn(A)∪ {n}∪ {m | m ∈ &}, and similarly for the
remaining (dynamic) process constructs.

The dynamics of the calculus, in Table 1, is defined as usual in terms of an auxiliary
relation of structural congruence. Structural congruence is exactly as in the #G, but re-
lies on the different definition of free names discussed above. The core of the reduction
relation is in the (red comm) rule, which updates the flow tags to reflect the flow of each
of the arguments through the synchronization channel. With this notion of reduction we
may now judge process P above safe, and Q unsafe, as the two reduction sequences

P −→−→ n2〈m[n1]〉 and Q −→−→ n2〈m[n3]〉

exhibit the different flow of m in the two computations. We remark here that the tags
are only instrumental to record the flow of each name, and have no further effect on the
reductions available for processes. We make this precise by relating our flow-sensitive
semantics of Table 1 with the original reduction semantics of #G. The latter, which we
denote with *→, is defined on processes (rather than on dynamic processes) exactly as
we do here, but uses the standard communication rule, namely:

n〈m1, . . . ,mk〉.P | n(x1:$1, . . . ,xk:$k).Q *→ P | Q{mi/xi }

in place of our (red comm) rule. Given any dynamic process A, let |A| denote the
(proper) process resulting from erasing all the tags from A. Then we have:
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Table 1 The operational semantics
Dynamic Processes: a,b, . . . denote either variables of tagged names of the form n[&].

A ::= 0 | a(x1:$1, . . . ,xn:$n).A | a〈b1, . . . ,bn〉.A | (!n : $)A | (!G)A | A|B | !B

Structural congruence

(monoid)) A | B ≡ B | A, A | 0 ≡ A, (A | B) |C ≡ A | (B |C)
(repl)) !A ≡ A|!A
(name extr) (!n : $)(A | B) ≡ A | (!n : $)B if n /∈ fn(A)
(group extr) (!G)(A | B) ≡ A | (!G)B if G /∈ fg(A)
(name/group exch) (!G)(!n : $)A ≡ (!n : $)(!G)A if G /∈ fg($)
(name exch) (!n1 : $1)(!n2 : $2)A ≡ (!n2 : $2)(!n1 : $1)A
(group exch) (!G1)(!G2)A ≡ (!G2)(!G1)A

Reduction

(red comm) n[&]〈m1[&1], . . . ,mk [&k ]〉.A | n['](x1:$1, . . . ,xk:$k).B −→ A | B{mi [&i·n]/xi }
(red res) A −→ A′ =⇒ (!n:$)A −→ (!n:$)A′

(red group) A −→ A′ =⇒ (!G)A −→ (!G)A′

(red par) A −→ A′ =⇒ A | B −→ A′ | B
(red struct) A≡−→≡ B =⇒ A −→ B

Theorem 1 (Flow reduction vs Standard reduction). Let A be a closed dynamic pro-
cess. If A−→∗ B then |A| *→∗ |B|. Conversely, if |A| *→∗ Q then there exists B such that
A−→∗ B and |B|≡ Q.

This result would hold also in the presence of a matching operator to compare names.
In particular, similarly to our (red comm) rule, in dynamic processes the matching con-
struct would disregard the tags to decide name equality, as in the following reductions:

if [n[&1] = n[&2]]then P else Q −→ P

if [n[&1] = m[&2]]then P else Q −→ Q (n -= m)

Besides being coherent with our current development, disregarding the tags to test name
equality is crucial to encode any sensible form of matching. The simplest illustration
is probably the case of nonce-based authentication protocols, in which a principal gen-
erates a nonce (i.e. a fresh name) and then uses matching to test the freshness of an
incoming message by comparing the nonce included in the message with the name it
generated: clearly, this test may only succeed if we disregard the nonce’s flow.

2.2 Types and Discretionary Access Control Policies

To start illustrate of our types, let pwd be a basic type describing passwords. Then we
may define the type µX .G[pwd ‖ G → X ] to constrain the free re-transmission of values
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with this type only within members of group G. Alternatively, we may define the type
µX .G[pwd ‖ G → X ; F → G[pwd]] to qualify passwords that may also be passed to
friends, of group F, provided that they do not pass them over to third parties.

The re-transmission of values may also be filtered on the basis of the capabilities
that are passed along with the values. For instance, given $= µY.G[(nat)w ‖ F→Y ], we
may define the type µX .G[(nat)rw ‖ G → X ; F → $] to qualify nat channels of group G
that may be received and re-transmitted at group F at a type that restricts their use as to
write-only channels2. Similarly, the type

µX .G[(nat)rw ‖ [ G1 → G[(nat)w ‖ "1] ; G2 → G[(nat)r ‖ "2] ; Default → X ] ]

qualifies nat channels owned by G, that can be delivered to group G 1 and G2 as write-
only and read-only channels respectively. Instead, no restriction applies for other groups,
as indicated by theDefault entry in the delivery policy. The type also indicates the deliv-
ery policies "1 and "2, that we leave unspecified here, for the subsequent ‘hops’, from
G1 and G2 respectively. We further discuss the import of resource types in formalizing
examples of DAC policies below.

Most forms of discretionary access control focus on the so called owner-based ad-
ministration of access rights, by which the owner of an object, typically its originator,
has the discretionary authority over who else can access that object. DAC policies vary
depending on how the owner’s discretionary power can be delegated to other users.

In strict DAC ([18, 19]), the owner is the only entity to have the authority to grant access
to an object. Such policies are directly expressed in our type system with types with a
rather regular structure, namely Owner[T ‖ [User i → $i]i∈I ] where $i is the resource
type that constrains the re-transmission of its values only within the authority of User i,
namely: $i = µX .Owner[T ‖ Useri → X ].

Liberal DAC ([18, 19]), models are more flexible, and interesting. They are based on a
decentralized authorization policy where the owner of an object delegates other users
the privilege of specifying authorizations, possibly with the ability of further delegating
it. Two popular classes of Liberal DAC policies are those known as originator con-
trolled [14], and true delegation [18].

An originator controlled policy prevents access to data being extended to any au-
thority without the owner’s explicit permission. In this case when a resource is created
the owner has full control over how the resource’s capabilities can be distributed. An
example of such policies is given the diagram below, representing anOwner that creates
a channel and specifies how it should be distributed to two parties, Alice and Carl:

Alicer r,w

w

Owner Carl

The channel is first delivered, in read mode, to Alice, who is delegated to re-transmit
it to Carl with the additional write capability; only then is Alice allowed to receive the
write capability from Carl. This delivery policy, imposed by the owner to ensure that
2 Here, and elsewhere, we say transmit at a group to mean transmit at channels of that group.
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Alice will not write on the new channel until it has been received also by Carl, may be
expressed with our types as follows:

Owner[(T )rw ‖ Alice@(T )r → Carl@(T )rw → Alice@(T )w]

A similar example can be recovered from the literature on cryptographic protocols. Con-
sider the case where two parties, Alice and Bob, wish to establish a private exchange.
To accomplish that, Alice creates a fresh name, say cAB, sends it to a trusted Server and
delegates it to forward the name to Bob so that the exchange may take place. Here, the
Server should only act as a forwarder, and not interfere with the exchanges between
Alice and Bob. This can be achieved using the typing

cAB : Alice[(data)rw ‖ Server@(data) → Bob@(data)rw]

in which the the Server receives the channel with no capability, as intended.

True delegation policies are more liberal, and allow any principal receiving the grant
option to further distribute it to principals not explicitly anticipated by the owner. Such
policies are formalized in our system with the help of Default entries. To illustrate, a
policy in which the owner principal gives full discretionary power to a delegate, may be
expressed by the type Owner[T ‖ D → $], where $= µX .Owner[T ‖ Default → X ].

3 Typing and Subtyping

Having illustrated how types may be employed to formalize discretionary policies, we
now turn to the problem of analyzing the import of such policies on the dynamic be-
havior of processes. Notice, to this regard, that the delivery policies we outlined in the
previous section rely critically on the ability to deliver names at types that may vary
non-monotonically along the delivery chains. Then, to have the desired safety guaran-
tees, we must envision a mechanism to ensure that the types at each delivery site be a
safe approximation of the type at the originating site. This is accomplished by the rules
for type formation and subtyping we discuss next.

3.1 Type formation and subtyping

Type formation is defined in Table 2. Any type must be built around group names
and type variables known to the type environment. In addition any resource type, say
G[T ‖ "], must be so defined as to ensure that each resource type occurring in the de-
livery policy " is built around (i) the group name G of the owner, and (ii) a structural
super-type of the structural type T . The first constraint could be lifted, but we do not
explore this possibility here; the second constraint, instead, is critical for soundness as
we just observed. The type formation rules enforce both constraints with the help of the
auxiliary judgments ( .G,T $, that verify $ in relation to the groupG and the type T , for
all the resource types $ introduced by ".

The subtyping relation is axiomatized in Table 3. The first two blocks of rules are
standard (cf. [16]). The core of the subtyping relation is in the last two rules. Rule
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Table 2 Type Formation
Resource Types – owner

($-OWNER)
( .G,T $i fg(G[T ‖ [Gi → $i]]) ⊆ Dom(()

( . G[T ‖ [Gi → $i]i∈I ]

($-VAR)
X ∈ ( ( . 0

( . X

($-REC)
(,X . G[T ‖ "{X}]

( . µX .G[T ‖ "{X}]

Resource Types – step

($-STEP)
( . T ≤ T ′ ( .G,T $i

( .G,T G[T ′ ‖ [Gi → $i]i∈I ]

($-VAR)
X ∈ ( ( . 0

( .G,T X

($-REC)
(,X .G,T ′ G[T ‖ "{X}]

( .G,T ′ µX .G[T ‖ "{X}]

($-TYPE) makes resource-subtyping covariant in the component structural types, as ex-
pected, and required for soundness. More interestingly, ($-POLICY) requires resource
types to imposemore restrictive delivery policies than their sub-types. At a first look, the
ordering relation on delivery policies is reminiscent of the subtype relation on record
types. This is indeed the case if we restrict to delivery policies without Default en-
tries and predicate " " "′ to the additional constraint that Dom(" ′) ⊆ Dom("). The
resulting " relation captures a form of originator controlled DAC model, in which re-
source owners have full delivery control over their resources. On the other hand, in
case Dom("′) ⊃ Dom("), and similarly with policies that include Default entries, the
ordering relation on policies captures DAC models with true delegation, in which in-
termediate users of a resource may autonomously make decisions on the next delivery
steps, provided that they advertise the resource at structural super-type of the owner’s
structural type.

To illustrate, consider first " = [Default → G[$rw]] and "′ = [G1 → G[$r]; G2 →
G[$w]]. For a proper ( one has ( . "" " ′, which provides support for true delegation
as " allows any delivery, while "′ distributes the read capability to channels of group
G1 and the write capability to channels of group G2. As a further example, consider
" = [G1 → G[$r]; Default → G[$rw]] and "′ = [Default → G[$rw]]. Here " allows all
groups but G1 to receive the write capability, whereas " ′ does not make this distinction.
The two policies are not related by the " relation, as ( . " " " ′ requires that in the
presence ofDefault entries in both " and " ′, all delivery constraint expressed in "must
also be enforced by "′.

3.2 Typing of processes and dynamic processes

The typing rules for (dynamic) processes, in Table 4, complete the presentation of the
type system. We remark that the typing rules validate dynamic processes, hence also
the (proper) processes of the source calculus. This is required for subject reduction, as
the result of a reduction (sequence) is a dynamic process rather than a process.

The typing rules for names allow each name to be typed at (any super-type of) the
resource type $ known to the environment, by rules (PROJECT) and (SUBSUMPTION),
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Table 3 Subtypes
(REFLEX)
( . 0 fg($) ⊆ Dom(()

( . $≤ $

(TRANS)
( . $≤ ) ( . )≤ *

( . $≤ *

Structural subtypes:

(T -WRITE)
( . $′1 ≤ $1 · · · ( . $′n ≤ $n n≥ 1

( . ($1, . . . ,$n)w ≤ ($′1, . . . ,$′n)w

(T -READ)
( . $1 ≤ $′1 · · · ( . $n ≤ $′n n≥ 1

( . ($1, . . . ,$n)r ≤ ($′1, . . . ,$′n)r

(T -READ/WRITE)
( . 0 n≥ 0

( . ($1, . . . ,$n)rw ≤ ($1, . . . ,$n)!

Resource Subtypes

Let ( . "" "′ !
∀G ∈Dom("′) if (G ∈Dom(")) then ( . "(G) ≤ "′(G) else ( . "(Default) ≤ "′(G)
and if Default ∈ Dom(")∩Dom("′) then ∀G ∈Dom(")\Dom("′).( . "(G) ≤ "′(Default)

($-TYPE)
( . T ≤ T ′ fg(G[T ‖ "])∪ fg(T ′) ⊆Dom(()

( . G[T ‖ "] ≤ G[T ′ ‖ "]

($-POLICY)
( . "" "′ fg(G[T ‖ "])∪ fg("′) ⊆ Dom(()

( . G[T ‖ "] ≤ G[T ‖ "′]

as well as at any type mentioned at the subsequent hops of each chain of the delivery
policy associated with $. One application of rule (DELIVERY) reaches the types at the
first hops; subsequent applications reach types occurring further on along the chains.

This ability to type names at all their delivery types is crucial to the proof of subject
reduction. To see why, we first look at rule (OUTPUT), the core of the delivery disci-
pline. Consider the case when name, say m is emitted on a channel, say n : G[($)w].
Assume further that m is known to the environment at type F[T ‖ "]. Rule (OUTPUT)
verifies that G is indeed one of the next ‘hops’ in ", and the type $ ′ at whichm should be
delivered to G is a subtype of $, the type of values carried by n. Given that the types of
names known to the environment must be well-formed, the type formation rules ensure
that the original structural type of m is a subtype of the structural component of $ ′, thus
also a subtype of the type $ at which n expects to receive its values: this guarantees
that mmay safely be received at n. Further re-transmissions ofm will undergo the same
checks by the (OUTPUT) rule, but now with the types advertised at the subsequent hops
in ": to prove subject reduction we therefore need to be able to typem at all such types.
Except for this specificity in the typing of names, the proof of subject reduction for the
system is standard (cf. §4).
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We give an example to show the effect of value propagation with a typed version
of the print spooler discussed in the introduction. Let !s(x:$ 1).print〈x〉 | !print(x :
$2).(P | ack〈x〉) | (! j:$J) s〈 j〉.ack(x:$3).C be a system where a client creates a new
job j, sends it to the printer and waits for notification. The desired delivery policy for j
requires the job to be sent first to the print spooler, then to the printer, and finally back
to the client. Such policy is enforced with the types:

$J = Job[file desc ‖ Spool → $1 ] $1 = Job[file desc ‖ Print → $2 ]
$2 = Job[file desc ‖ Client → $3] $3 = Job[file desc ‖ ∆]

and assuming s : Spool[($1)rw] print : Print[($2)rw], and ack : Client[($3)rw]. We leave
it to the reader to verify that all types involved are well-formed and that the process
typechecks.

4 Type System Properties

We conclude the presentation of the type system by elucidating its main properties. To
state such properties, we first introduce two additional (partial) operators on types and
type environments. Given a type environment ( and a sequence of names & we let ([&]
denote the sequence of groups that ( associates with the names in &.

([%] ! %

([n :: &] ! if (((n) = G[T ‖ "] and ([&] -= ⊥) then G :: ([&] else ⊥

Given a closed resource type $, and a sequence of group names #, we then denote with
$ ↓ #, the type occurring in $ at #, in the following sense:

$ ↓ % ! $

G[T ‖ "] ↓ G′ :: # ! if (G′ ∈ Dom(")) then "(G′) ↓ #
else if (Default ∈Dom(")) then "(Default) ↓ # else ⊥

The next three theorems express the safety properties of the type system Rather than
defining an explicit notion of error and showing that well-typed terms don’t have er-
ror transitions, as in, e.g. [6], we state our safety properties directly in terms of types:
the two approaches are essentially equivalent. Theorem 2 states that in all well-typed
dynamic processes, any access to a channel complies with the access rights associated
with the channel, and the arguments are passed over the channel at subtypes of the ex-
pected types. Theorem 3 states that in all well-typed dynamic processes names flow
according to the delivery policies expressed by their types. Finally, by Theorem 4 we
know that such properties are preserved by reduction. Collectively, these theorems pro-
vide static guarantees that in well-typed (proper) processes, all resources are accessed
and delivered according to the policies defined by their types.

Theorem 2 (Access Control). Let A and B be closed, dynamic processes with A ≡
n[&]〈a1, . . . ,ak〉.A′ and B ≡ n[&′](x1:)1, . . . ,xl:)l).B′. Assume, further, that ( . A | B.
Then l = k and one has:
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Table 4 Typing of dynamic processes. (note: we identify n [%] with n)

(EMPTY)

∅ . 0

(ENV n)
( . 0 ( . $ n /∈Dom(()

(,n : $ . 0

(ENV x)
( . 0 fg($) ⊆Dom(() x /∈ Dom(()

(,x : $ . 0

(ENV G)
( . 0 G /∈ Dom(()

(,G . 0

(ENV X )
( . 0 X /∈ Dom(()

(,X . 0

(PROJECT)
(,a : $ . 0

(,a : $ . a : $

(SUBSUMPTION)
( . a : $′ ( . $′ ≤ $

( . a : $

(DELIVERY)
( . n[&] : G[T ‖ "] ( . m : G1[T1 ‖ "1 ] (G1 → $ ∈ ") ∨ (G1 /∈Dom(")∧Default → $ ∈ ")

( . n[&m] : $

Let ( . "i(G) " $i ! if (G ∈ Dom("i)) then ( . "i(G) ≤ $i
else (Default ∈Dom("i)) and ( . "i(Default) ≤ $i

(INPUT)
( . a : G[($1, . . . ,$k)r ‖ " ] (,x1 : $1, . . . ,xk : $k . A 0≤ k

( . a(x1 : $1, . . . ,xk : $k).A

(OUTPUT)
( . a : G[($1, . . . ,$k)w ‖ " ] ( . A ( . bi : Gi[Ti ‖ "i] ( . "i(G) " $i 0≤ i≤ k

( . a〈b1, . . . ,bk〉.A

(NEW G)
(,G . A

( . (!G)A

(NEW n)
(,n : $ . A

( . (!n : $)A

(PAR)
( . A ( . B

( . A | B

(DEAD)
( . 0

( . 0

(REPL)
( . A

( . !A

– ( . n[&] : G[($1, . . . ,$k)w], ( . n[&′] : G[()1, . . . ,)k)r], and
– for all i= 1, ...,k, ( . ai : *i with *i↓G -= ⊥, ( . *i↓G ≤ $i and ( . $i ≤ )i.

Theorem 3 (Flow Control). Let ( . A with A closed. Assume, further, that ( . A de-
pends on the judgment (′ . n[&] : $. Then n ∈ Dom((′) and (′[&] -= ⊥. In addition,
(′(n) = ) with ) such that )↓(′[&] -= ⊥ and (′ . )↓(′[&] ≤ $.

Theorem 4 (Subject Reduction). If ( . A and A−→∗ B, then ( . B.

We remark that theorem 3 could not be meaningfully stated without appealing to
the flow tags attached to names. In particular, it is not true, in general, that given an
extended process A, ( . A implies ( . |A|. To see that, note that ( . A may depend on
two tagged names n[&1] and n[&2] being given different types, (not related by subtyping)
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by resorting to the (DELIVERY) rule. By erasing the tags, we lose the possibility of
appealing to the (DELIVERY) rule, and consequently the judgement ( . |A| fails. For
this very reason, Theorem 4 does not hold, in general, under the reduction semantics
*→ of [3]. Interestingly, however, we can recover subject reduction for *→ provided that
we make adequate assumptions on the structure of the types occurring in ( and A. We
formalize the relationship with the type system of [3] below.

4.1 Encoding the pi-calculus with groups

As we mentioned, the syntax of the pi-calculus with groups is the same as the one in
§2. The types, instead, are defined simply as follows: T ::= G[T1, . . . ,Tn]. These types
may be encoded into our resource types as follows:

[[G[T1, . . . ,Tn] ]] = µX .G[([[T1 ]] , . . . , [[Tn ]] )rw ‖ Default → X ]

The encoding provides all types with the most liberal delivery policy, one that allows
unboundedly-deep delivery over all channels: the only constraint is that the receiving
channels have access to the group of the value they carry with them, exactly as in #G.

We show that our type system is a conservative extension of the type system of
#G. Given a #G type environment ( and a #G process P, let [[( ]] and [[P ]] be the type
environment and process that result from applying the encoding of types systematically
to all types occurring in ( and P. Then we have:

Theorem 5 (Relationships with #G). ( . P is derivable in #G iff [[( ]] . [[P ]] is deriv-
able in our type system.

This follows by observing that if we restrict to simple types, the type formation
rules as well as the (OUPUT) rule for processes coincide with the corresponding rules
in #G. Now, call a type simple when it is the encoding of a #G type. Similarly, call a
type environment and a (dynamic) process simple when all the types occurring therein
are simple. If ( and A are simple, it is not difficult to see that ( . A implies ( . |A|.
Intuitively, the reason is that simple types are insensitive to flows: this is a consequence
of the delivery type being the same at all hops in a simple type. More interestingly, for
simple processes we have subject reduction, as we state next.

Theorem 6 (Subject Reduction for simple processes). Assume ( . P with ( simple,
and P closed and simple, and let P *→∗ Q. Then ( . Q.

Based on this result, the secrecy theorem of [3] can be re-established in our system with
no additional effort for simple processes.

5 Conclusion

We have developed a type theory for the specification and the static analysis of access
control policies in the pi calculus. Our approach extends and complements previous
work on the subject by introducing a new class of types so defined as to control the
dynamic flow of values among system components. We have shown the flexibility of
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our system with several examples, and proved that it provides strong safety guarantees
for all well-typed processes.

There are several desirable extensions to the present system: they include the abil-
ity to express the revocation of capabilities, to change the ownership on resources, to
account for hierarchical relationships among principals, or for declassification mecha-
nisms. A further topic of investigation is the study of typed equivalences to gain deeper
insight into the import of our access control policies in the behavioural properties of
processes. We leave all these to our plans for future work, and conclude here with a
brief discussion on related work.

While we are not aware of any approach specifically targeted at the access control
mechanisms we have discussed here, our work is clearly related to a large body of
literature on (type-based) security in process calculi.

Several type system encompass various forms of access control policies in dis-
tributed systems. Among them, [4] proposes a form of distributed access control based
on typed cryptographic operations; the work on D# has produced fairly sophisticated
type systems [7, 8] to control the access to the resources advertised at the different lo-
cations of a distributed system. None of these systems, however, addresses the kind of
discretionary policies we have considered here. More precisely, in D#, resources are
created at a specific, unique, type and then delivered to different parties at different (su-
per)types on different channels. Unlike in our system, however, the ‘delivery policy’ of
a value is not described (nor prescribed) by its type. As a consequence, the only guar-
antee offered by the the type system is that names delivered at type T will be received,
and re-transmitted freely, at super-types of T . As we have illustrated, our types may be
employed to specify, and enforce, much more expressive policies.

Type systems have also been proposed to control implicit information flows de-
termined by the behaviour of system components (see [12, 17, 10, 21] among others).
These type systems trace the causality relations between computational steps in order to
detect covert channels.We follow a different approach to express and verify the delivery
of (and the access to) the system resources.

Our approach is also related to the large body of existing work on security automata.
In fact, the delivery policies we express in our type system could equivalently be de-
scribed as finite-state automata whose states are structural types and edges are labelled
with groups. On the other hand, security automata have traditionally been employed to
provide for run-time system monitoring [20] rather than as a basis for the development
of static, type-based, security analyses. More interestingly, the possibility to structure
our types as automata (and similarly, as XML-like regular expressions) should lead to
the development of efficient algorithms for (sub-) type checking. We leave this as a
subject of future work.

The use of session types [9] to express and gain control over the different steps of
communication protocols shares motivations with our approach. Session types provide
mechanisms to regulate the sequence of events occurring in a two-parties interaction
session. Specifically, a session type prescribes what type of values may legally be passed
on a given channel, and in which order. On the other hand, our delivery types prescribe
how values can be exchanges among different principals. In both approaches, the types
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employed are finite-state automata: however the information encoded by the states is
different and, as we just argued, largely complementary.
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