
A Course in Combinatorial Optimization

Alexander Schrijver

CWI,
Kruislaan 413,

1098 SJ Amsterdam,
The Netherlands

and

Department of Mathematics,
University of Amsterdam,
Plantage Muidergracht 24,

1018 TV Amsterdam,
The Netherlands.

March 23, 2017
copyright c© A. Schrijver

Contents

1. Shortest paths and trees 5

1.1. Shortest paths with nonnegative lengths 5

1.2. Speeding up Dijkstra’s algorithm with heaps 9

1.3. Shortest paths with arbitrary lengths 12

1.4. Minimum spanning trees 19

2. Polytopes, polyhedra, Farkas’ lemma, and linear programming 23

2.1. Convex sets 23

2.2. Polytopes and polyhedra 25

2.3. Farkas’ lemma 30

2.4. Linear programming 33

3. Matchings and covers in bipartite graphs 39

3.1. Matchings, covers, and Gallai’s theorem 39

3.2. M -augmenting paths 40

3.3. Kőnig’s theorems 41

3.4. Cardinality bipartite matching algorithm 45

3.5. Weighted bipartite matching 47

3.6. The matching polytope 50

4. Menger’s theorem, flows, and circulations 54

4.1. Menger’s theorem 54

4.2. Flows in networks 58

4.3. Finding a maximum flow 60

4.4. Speeding up the maximum flow algorithm 65

4.5. Circulations 68

4.6. Minimum-cost flows 70

5. Nonbipartite matching 78

5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula 78

5.2. Cardinality matching algorithm 81

5.3. Weighted matching algorithm 85

5.4. The matching polytope 91

5.5. The Cunningham-Marsh formula 94

6. Problems, algorithms, and running time 97

6.1. Introduction 97

6.2. Words 98

6.3. Problems 100

6.4. Algorithms and running time 100

6.5. The class NP 101

6.6. The class co-NP 102

6.7. NP-completeness 103

6.8. NP-completeness of the satisfiability problem 103

6.9. NP-completeness of some other problems 106

6.10. Turing machines 108

7. Cliques, stable sets, and colourings 111

7.1. Introduction 111

7.2. Edge-colourings of bipartite graphs 115

7.3. Partially ordered sets 121

7.4. Perfect graphs 125

7.5. Chordal graphs 128

8. Integer linear programming and totally unimodular matrices 132

8.1. Integer linear programming 132

8.2. Totally unimodular matrices 134

8.3. Totally unimodular matrices from bipartite graphs 139

8.4. Totally unimodular matrices from directed graphs 143

9. Multicommodity flows and disjoint paths 148

9.1. Introduction 148

9.2. Two commodities 153

9.3. Disjoint paths in acyclic directed graphs 157

9.4. Vertex-disjoint paths in planar graphs 159

9.5. Edge-disjoint paths in planar graphs 165

9.6. A column generation technique for multicommodity flows 168

10. Matroids 173

10.1. Matroids and the greedy algorithm 173

10.2. Equivalent axioms for matroids 176

10.3. Examples of matroids 180

10.4. Two technical lemmas 183

10.5. Matroid intersection 184

10.6. Weighted matroid intersection 190

10.7. Matroids and polyhedra 194

References 199

Name index 210

Subject index 212

5

1. Shortest paths and trees

1.1. Shortest paths with nonnegative lengths

Let D = (V,A) be a directed graph, and let s, t ∈ V . A walk is a sequence P =
(v0, a1, v1, . . . , am, vm) where ai is an arc from vi−1 to vi for i = 1, . . . ,m. If v0, . . . , vm
all are different, P is called a path.

If s = v0 and t = vm, the vertices s and t are the starting and end vertex of P ,
respectively, and P is called an s − t walk, and, if P is a path, an s − t path. The
length of P is m. The distance from s to t is the minimum length of any s− t path.
(If no s− t path exists, we set the distance from s to t equal to ∞.)

It is not difficult to determine the distance from s to t: Let Vi denote the set of
vertices of D at distance i from s. Note that for each i:

(1) Vi+1 is equal to the set of vertices v ∈ V \ (V0 ∪ V1 ∪ · · · ∪ Vi) for which
(u, v) ∈ A for some u ∈ Vi.

This gives us directly an algorithm for determining the sets Vi: we set V0 := {s} and
next we determine with rule (1) the sets V1, V2, . . . successively, until Vi+1 = ∅.

In fact, it gives a linear-time algorithm:

Theorem 1.1. The algorithm has running time O(|A|).

Proof. Directly from the description.

In fact the algorithm finds the distance from s to all vertices reachable from s.
Moreover, it gives the shortest paths. These can be described by a rooted (directed)
tree T = (V ′, A′), with root s, such that V ′ is the set of vertices reachable in D from
s and such that for each u, v ∈ V ′, each directed u− v path in T is a shortest u− v
path in D.1

Indeed, when we reach a vertex t in the algorithm, we store the arc by which t is
reached. Then at the end of the algorithm, all stored arcs form a rooted tree with
this property.

There is also a trivial min-max relation characterizing the minimum length of an
s − t path. To this end, call a subset A′ of A an s − t cut if A′ = δout(U) for some
subset U of V satisfying s ∈ U and t 6∈ U .2 Then the following was observed by
Robacker [1956]:

1A rooted tree, with root s, is a directed graph such that the underlying undirected graph is a
tree and such that each vertex t 6= s has indegree 1. Thus each vertex t is reachable from s by a
unique directed s− t path.

2δout(U) and δin(U) denote the sets of arcs leaving and entering U , respectively.

6 Chapter 1. Shortest paths and trees

Theorem 1.2. The minimum length of an s−t path is equal to the maximum number
of pairwise disjoint s− t cuts.

Proof. Trivially, the minimum is at least the maximum, since each s−t path intersects
each s− t cut in an arc. The fact that the minimum is equal to the maximum follows
by considering the s− t cuts δout(Ui) for i = 0, . . . , d−1, where d is the distance from
s to t and where Ui is the set of vertices of distance at most i from s.

This can be generalized to the case where arcs have a certain ‘length’. For any
‘length’ function l : A → Q+ and any walk P = (v0, a1, v1, . . . , am, vm), let l(P) be
the length of P . That is:

(2) l(P) :=
m
∑

i=1

l(ai).

Now the distance from s to t (with respect to l) is equal to the minimum length of
any s− t path. If no s− t path exists, the distance is +∞.

Again there is an easy algorithm, due to Dijkstra [1959], to find a minimum-length
s− t path for all t. Start with U := V and set f(s) := 0 and f(v) = ∞ if v 6= s. Next
apply the following iteratively:

(3) Find u ∈ U minimizing f(u) over u ∈ U . For each a = (u, v) ∈ A for which
f(v) > f(u) + l(a), reset f(v) := f(u) + l(a). Reset U := U \ {u}.

We stop if U = ∅. Then:

Theorem 1.3. The final function f gives the distances from s.

Proof. Let dist(v) denote the distance from s to v, for any vertex v. Trivially,
f(v) ≥ dist(v) for all v, throughout the iterations. We prove that throughout the
iterations, f(v) = dist(v) for each v ∈ V \ U . At the start of the algorithm this is
trivial (as U = V).

Consider any iteration (3). It suffices to show that f(u) = dist(u) for the chosen
u ∈ U . Suppose f(u) > dist(u). Let s = v0, v1, . . . , vk = u be a shortest s − u path.
Let i be the smallest index with vi ∈ U .

Then f(vi) = dist(vi). Indeed, if i = 0, then f(vi) = f(s) = 0 = dist(s) = dist(vi).
If i > 0, then (as vi−1 ∈ V \ U):

(4) f(vi) ≤ f(vi−1) + l(vi−1, vi) = dist(vi−1) + l(vi−1, vi) = dist(vi).

This implies f(vi) ≤ dist(vi) ≤ dist(u) < f(u), contradicting the choice of u.

Section 1.1. Shortest paths with nonnegative lengths 7

Clearly, the number of iterations is |V |, while each iteration takes O(|V |) time.
So the algorithm has a running time O(|V |2). In fact, by storing for each vertex v the
last arc a for which (3) applied we find a rooted tree T = (V ′, A′) with root s such
that V ′ is the set of vertices reachable from s and such that if u, v ∈ V ′ are such that
T contains a directed u− v path, then this path is a shortest u− v path in D.

Thus we have:

Theorem 1.4. Given a directed graph D = (V,A), s, t ∈ V , and a length function
l : A → Q+, a shortest s− t path can be found in time O(|V |2).

Proof. See above.

For an improvement, see Section 1.2.

A weighted version of Theorem 1.2 is as follows:

Theorem 1.5. Let D = (V,A) be a directed graph, s, t ∈ V , and let l : A → Z+.
Then the minimum length of an s− t path is equal to the maximum number k of s− t
cuts C1, . . . , Ck (repetition allowed) such that each arc a is in at most l(a) of the cuts
Ci.

Proof. Again, the minimum is not smaller than the maximum, since if P is any s− t
path and C1, . . . , Ck is any collection as described in the theorem:3

(5) l(P) =
∑

a∈AP

l(a) ≥
∑

a∈AP

(number of i with a ∈ Ci)

=
k

∑

i=1

|Ci ∩ AP | ≥
k

∑

i=1

1 = k.

To see equality, let d be the distance from s to t, and let Ui be the set of vertices
at distance less than i from s, for i = 1, . . . , d. Taking Ci := δout(Ui), we obtain a
collection C1, . . . , Cd as required.

Application 1.1: Shortest path. Obviously, finding a shortest route between cities is an
example of a shortest path problem. The length of a connection need not be the geographical
distance. It might represent the time or energy needed to make the connection. It might
cost more time or energy to go from A to B than from B to A. This might be the case, for
instance, when we take differences of height into account (when routing trucks), or air and
ocean currents (when routing airplanes or ships).

Moreover, a route for an airplane flight between two airports so that a minimum amount
of fuel is used, taking weather, altitude, velocities, and air currents into account, can be

3AP denotes the set of arcs traversed by P

8 Chapter 1. Shortest paths and trees

found by a shortest path algorithm (if the problem is appropriately discretized — otherwise
it is a problem of ‘calculus of variations’). A similar problem occurs when finding the
optimum route for boring say an underground railway tunnel.

Application 1.2: Dynamic programming. A company has to perform a job that will
take 5 months. For this job a varying number of extra employees is needed:

(6) month number of extra employees needed
1 b1=10
2 b2=7
3 b3=9
4 b4=8
5 b5=11

Recruiting and instruction costs EUR 800 per employee, while stopping engagement costs
EUR 1200 per employee. Moreover, the company has costs of EUR 1600 per month for
each employee that is engaged above the number of employees needed that month. The
company now wants to decide what is the number of employees to be engaged so that the
total costs will be as low as possible.

Clearly, in the example in any month i, the company should have at least bi and at most
11 extra employees for this job. To solve the problem, make a directed graph D = (V,A)
with

(7) V := {(i, x) | i = 1, . . . , 5; bi ≤ x ≤ 11} ∪ {(0, 0), (6, 0)},
A := {((i, x), (i+ 1, y)) ∈ V × V | i = 0, . . . , 5}.

(Figure 1.1).

At the arc from (i, x) to (i+ 1, y) we take as length the sum of

(8) (i) the cost of starting or stopping engagement when passing from x to y employees
(this is equal to 8(y − x) if y ≥ x and to 12(x− y) if y < x);

(ii) the cost of keeping the surplus of employees in month i+1 (that is, 16(y− bi+1))

(taking EUR 100 as unit).

Now the shortest path from (0, 0) to (6, 0) gives the number of employees for each month
so that the total cost will be minimized. Finding a shortest path is thus a special case of
dynamic programming.

Exercises

1.1. Solve the dynamic programming problem in Application 1.2 with Dijkstra’s method.

Section 1.2. Speeding up Dijkstra’s algorithm with heaps 9

8

64
40

24

64

72

60

48

40

48

24
28

12
16

40

24
48

16
56

32

56 64

40
32

44

16

12 36

28
40

8

16

24

104

80

132

36

4832 0

0

56

3210 4 5 6
0

7

8

9

10

11

44
52

Figure 1.1

1.2. Speeding up Dijkstra’s algorithm with heaps

For dense graphs, a running time bound of O(|V |2) for a shortest path algorithm is
best possible, since one must inspect each arc. But if |A| is asymptotically smaller
than |V |2, one may expect faster methods.

In Dijkstra’s algorithm, we spend O(|A|) time on updating the values f(u) and
O(|V |2) time on finding a u ∈ U minimizing f(u). As |A| ≤ |V |2, a decrease in the
running time bound requires a speed-up in finding a u minimizing f(u).

A way of doing this is based on storing the u in some order so that a u minimizing
f(u) can be found quickly and so that it does not take too much time to restore the
order if we delete a minimizing u or if we decrease some f(u).

This can be done by using a ‘heap’, which is a rooted forest (U, F) on U , with the
property that if (u, v) ∈ F then f(u) ≤ f(v).4 So at least one of the roots minimizes
f(u).

Let us first consider the 2-heap. This can be described by an ordering u1, . . . , un

4A rooted forest is an acyclic directed graph D = (V,A) such that each vertex has indegree at
most 1. The vertices of indegree 0 are called the roots of D. If (u, v) ∈ A, then u is called the parent
of v and v is called a child of u.
If the rooted forest has only one root, it is a rooted tree.

10 Chapter 1. Shortest paths and trees

of the elements of U such that if i = ⌊ j
2
⌋ then f(ui) ≤ f(uj). The underlying rooted

forest is in fact a rooted tree: its arcs are the pairs (ui, uj) with i = ⌊ j
2
⌋.

In a 2-heap, one easily finds a u minimizing f(u): it is the root u1. The following
theorem is basic for estimating the time needed for updating the 2-heap:

Theorem 1.6. If u1 is deleted or if some f(ui) is decreased, the 2-heap can be restored
in time O(log p), where p is the number of vertices.

Proof. To remove u1, perform the following ‘sift-down’ operation. Reset u1 := un

and n := n − 1. Let i = 1. While there is a j ≤ n with 2i + 1 ≤ j ≤ 2i + 2 and
f(uj) < f(ui), choose one with smallest f(uj), swap ui and uj, and reset i := j.

If f(ui) has decreased perform the following ‘sift-up’ operation. While i > 0 and
f(uj) > f(ui) for j := ⌊ i−1

2
⌋, swap ui and uj, and reset i := j. The final 2-heap is as

required.
Clearly, these operations give 2-heaps as required, and can be performed in time

O(log |U |).

This gives the result of Johnson [1977]:

Corollary 1.6a. Given a directed graph D = (V,A), s, t ∈ V and a length function
l : A → Q+, a shortest s− t path can be found in time O(|A| log |V |).

Proof. Since the number of times a minimizing vertex u is deleted and the number
of times a value f(u) is decreased is at most |A|, the theorem follows from Theorem
1.6.

Dijkstra’s algorithm has running time O(|V |2), while Johnson’s heap implemen-
tation gives a running time of O(|A| log |V |). So one is not uniformly better than the
other.

If one inserts a ‘Fibonacci heap’ in Dijkstra’s algorithm, one gets a shortest path
algorithm with running time O(|A| + |V | log |V |), as was shown by Fredman and
Tarjan [1984].

A Fibonacci forest is a rooted forest (V,A), so that for each v ∈ V the children of
v can be ordered in such a way that the ith child has at least i− 2 children. Then:5

Theorem 1.7. In a Fibonacci forest (V,A), each vertex has at most 1 + 2 log |V |
children.

Proof. For any v ∈ V , let σ(v) be the number of vertices reachable from v. We show
that σ(v) ≥ 2(d

out(v)−1)/2, which implies the theorem.6

5dout(v) and din(v) denote the outdegree and indegree of v.
6In fact, σ(v) ≥ F (dout(v)), where F (k) is the kth Fibonacci number, thus explaining the name

Fibonacci forest.

Section 1.2. Speeding up Dijkstra’s algorithm with heaps 11

Let k := dout(v) and let vi be the ith child of v (for i = 1, . . . , k). By induction,
σ(vi) ≥ 2(d

out(vi)−1)/2 ≥ 2(i−3)/2, as dout(vi) ≥ i − 2. Hence σ(v) = 1 +
∑k

i=1 σ(vi) ≥
1 +

∑k
i=1 2

(i−3)/2 = 2(k−1)/2 + 2(k−2)/2 + 1
2
− 1

2

√
2 ≥ 2(k−1)/2.

Now a Fibonacci heap consists of a Fibonacci forest (U, F), where for each v ∈ U
the children of v are ordered so that the ith child has at least i − 2 children, and a
subset T of U with the following properties:

(9) (i) if (u, v) ∈ F then f(u) ≤ f(v);
(ii) if v is the ith child of u and v 6∈ T then v has at least i− 1 children;
(iii) if u and v are two distinct roots, then dout(u) 6= dout(v).

So by Theorem 1.7, (9)(iii) implies that there exist at most 2 + 2 log |U | roots.
The Fibonacci heap will be described by the following data structure:

(10) (i) for each u ∈ U , a doubly linked list Cu of children of u (in order);
(ii) a function p : U → U , where p(u) is the parent of u if it has one, and

p(u) = u otherwise;
(iii) the function dout : U → Z+;
(iv) a function b : {0, . . . , t} → U (with t := 1+⌊2 log |V |⌋) such that b(dout(u)) =

u for each root u;
(v) a function l : U → {0, 1} such that l(u) = 1 if and only if u ∈ T .

Theorem 1.8. When finding and deleting n times a u minimizing f(u) and decreas-
ing m times the value f(u), the structure can be updated in time O(m+ p+ n log p),
where p is the number of vertices in the initial forest.

Proof. Indeed, a u minimizing f(u) can be identified in time O(log p), since we can
scan f(b(i)) for i = 0, . . . , t. It can be deleted as follows. Let v1, . . . , vk be the children
of u. First delete u and all arcs leaving u from the forest. In this way, v1, . . . , vk have
become roots, of a Fibonacci forest, and conditions (9)(i) and (ii) are maintained. To
repair condition (9)(iii), do for each r = v1, . . . , vk the following:

(11) repair(r):
if dout(s) = dout(r) for some root s 6= r, then:
{if f(s) ≤ f(r), add s as last child of r and repair(r);
otherwise, add r as last child of s and repair(s)}.

Note that conditions (9)(i) and (ii) are maintained, and that the existence of a root
s 6= r with dout(s) = dout(r) can be checked with the functions b, dout, and p. (During
the process we update the data structure.)

12 Chapter 1. Shortest paths and trees

If we decrease the value f(u) for some u ∈ U we apply the following to u:

(12) make root(u):
if u has a parent, v say, then:
{delete arc (v, u) and repair(u);
if v 6∈ T , add v to T ; otherwise, remove v from T and make root(v)}.

Now denote by incr(..) and decr(..) the number of times we increase and decrease
.. , respectively. Then:

(13) number of calls of make root = decr(f(u)) + decr(T)
≤ decr(f(u)) + incr(T) + p ≤ 2decr(f(u)) + p = 2m+ p,

since we increase T at most once after we have decreased some f(u).
This also gives, where R denotes the set of roots:

(14) number of calls of repair= decr(F) + decr(R)
≤ decr(F) + incr(R) + p = 2decr(F) + p
≤ 2(n log p+number of calls of make root)+p ≤ 2(n log p+ 2m+ p) + p.

Since deciding calling make root or repair takes time O(1) (by the data structure),
we have that the algorithm takes time O(m+ p+ n log p).

As a consequence one has:

Corollary 1.8a. Given a directed graph D = (V,A), s, t ∈ V and a length function
l : A → Q+, a shortest s− t path can be found in time O(|A|+ |V | log |V |).
Proof. Directly from the description of the algorithm.

1.3. Shortest paths with arbitrary lengths

If lengths of arcs may take negative values, it is not always the case that a shortest
walk exists. If the graph has a directed circuit of negative length, then we can obtain
s− t walks of arbitrarily small negative length (for appropriate s and t).

However, it can be shown that if there are no directed circuits of negative length,
then for each choice of s and t there exists a shortest s − t walk (if there exists at
least one s− t path).

Theorem 1.9. Let each directed circuit have nonnegative length. Then for each pair
s, t of vertices for which there exists at least one s − t walk, there exists a shortest

Section 1.3. Shortest paths with arbitrary lengths 13

s− t walk, which is a path.

Proof. Clearly, if there exists an s− t walk, there exists an s− t path. Hence there
exists also a shortest path P , that is, an s− t path that has minimum length among
all s− t paths. This follows from the fact that there exist only finitely many paths.

We show that P is shortest among all s− t walks. Let P have length L. Suppose
that there exists an s − t walk Q of length less than L. Choose such a Q with a
minimum number of arcs. Since Q is not a path (as it has length less than L), Q
contains a directed circuit C. Let Q′ be the walk obtained from Q by removing C.
As l(C) ≥ 0, l(Q′) = l(Q) − l(C) ≤ l(Q) < L. So Q′ is another s − t walk of length
less than L, however with a smaller number of arcs than Q. This contradicts the
assumption that Q has a minimum number of arcs.

Also in this case there is an easy algorithm, the Bellman-Ford method (Bellman
[1958], Ford [1956]), determining a shortest s− t path.

Let n := |V |. The algorithm calculates functions f0, f1, f2, . . . , fn : V → R∪ {∞}
successively by the following rule:

(15) (i) Put f0(s) := 0 and f0(v) := ∞ for all v ∈ V \ {s}.
(ii) For k < n, if fk has been found, put

fk+1(v) := min{fk(v), min
(u,v)∈A

(fk(u) + l(u, v))}

for all v ∈ V .

Then, assuming that there is no directed circuit of negative length, fn(v) is equal to
the length of a shortest s− v walk, for each v ∈ V . (If there is no s− v path at all,
fn(v) = ∞.)

This follows directly from the following theorem:

Theorem 1.10. For each k = 0, . . . , n and for each v ∈ V ,

(16) fk(v) = min{l(P) |P is an s− v walk traversing at most k arcs}.

Proof. By induction on k from (15).

So the above method gives us the length of a shortest s− t path. It is not difficult
to derive a method finding an explicit shortest s − t path. To this end, determine
parallel to the functions f0, . . . , fn, a function g : V → V by setting g(v) = u when
we set fk+1(v) := fk(u) + l(u, v) in (15)(ii). At termination, for any v, the sequence
v, g(v), g(g(v)), . . . , s gives the reverse of a shortest s− v path. Therefore:

14 Chapter 1. Shortest paths and trees

Corollary 1.10a. Given a directed graph D = (V,A), s, t ∈ V and a length function
l : A → Q, such that D has no negative-length directed circuit, a shortest s − t path
can be found in time O(|V ||A|).

Proof. Directly from the description of the algorithm.

Application 1.3: Knapsack problem. Suppose we have a knapsack with a volume of
8 liter and a number of articles 1, 2, 3, 4, 5. Each of the articles has a certain volume and a
certain value:

(17) article volume value
1 5 4
2 3 7
3 2 3
4 2 5
5 1 4

So we cannot take all articles in the knapsack and we have to make a selection. We want
to do this so that the total value of articles taken into the knapsack is as large as possible.

We can describe this problem as one of finding x1, x2, x3, x4, x5 such that:

(18) x1, x2, x3, x4, x5 ∈ {0, 1},
5x1 + 3x2 + 2x3 + 2x4 + x5 ≤ 8,
4x1 + 7x2 + 3x3 + 5x4 + 4x5 is as large as possible.

We can solve this problem with the shortest path method as follows. Make a directed graph
in the following way (cf. Figure 1.2):

There are vertices (i, x) for 0 ≤ i ≤ 6 and 0 ≤ x ≤ 8 and there is an arc from (i− 1, x)
to (i, y) if y = x or y = x + ai (where ai is the volume of article i) if i ≤ 5 and there are
arcs from each (5, x) to (6, 8). We have deleted in the picture all vertices and arcs that do
not belong to any directed path from (0, 0).

The length of arc ((i− 1, x), (i, y)) is equal to 0 if y = x and to −ci if y = x+ ai (where
ci denotes the value of i). Moreover, all arcs ending at (6, 8) have length 0.

Now a shortest path from (0, 0) to (6, 8) gives us the optimal selection.

Application 1.4: PERT-CPM. For building a house certain activities have to be ex-
ecuted. Certain activities have to be done before other and every activity takes a certain
number of days:

Section 1.3. Shortest paths with arbitrary lengths 15

-4

0 0 0

0 0 0

00

0 0 0 0 0

0 0
0

0

0

0

0

0

0

0

-7

-7

-3

-3

-3
-5

-5

-5

-5

-4

-4

-4

-4

-4

0 0 0 0

6543210
0

1

2

3

4

5

6

7

8

0

-4

Figure 1.2

(19) activity days needed to be done before
activity #

1. groundwork 2 2
2. foundation 4 3
3. building walls 10 4,6,7
4. exterior plumbing 4 5,9
5. interior plumbing 5 10
6. electricity 7 10
7. roof 6 8
8. finishing off outer walls 7 9
9. exterior painting 9 14
10. panelling 8 11,12
11. floors 4 13
12. interior painting 5 13
13. finishing off interior 6
14. finishing off exterior 2

16 Chapter 1. Shortest paths and trees

We introduce two dummy activities 0 (start) and 15 (completion), each taking 0 days, where
activity 0 has to be performed before all other activities and 15 after all other activities.

The project can be represented by a directed graph D with vertices 0, 1, . . . , 14, 15,
where there is an arc from i to j if i has to be performed before j. The length of arc (i, j)
will be the number ti of days needed to perform activity i. This graph with length function
is called the project network.

2 4

10

10

10

4

4

5

7

7
9

8 4 6

2

1 2 3

4

6

9
87

5

10

14

11

12

13

15

58

6

0

0

Figure 1.3

Now a longest path from 0 to 15 gives the minimum number of days needed to build the
house. Indeed, if li denotes the length of a longest path from 0 to i, we can start activity i
on day li. If activity j has been done after activity i, then lj ≥ li+ ti by definition of longest
path. So there is sufficient time for completing activity i and the schedule is practically
feasible. That is, there is the following min-max relation:

(20) the minimum number of days needed to finish the project is equal to the maxi-
mum length of a path in the project network.

A longest path can be found with the Bellman-Ford method, as it is equivalent to a
shortest path when we replace each length by its opposite. Note that D should not have
any directed circuits since otherwise the whole project would be infeasible.

So the project network helps in planning the project and is the basis of the so-called
‘Program Evaluation and Review Technique’ (PERT). (Actually, one often represents ac-
tivities by arcs instead of vertices, giving a more complicated way of defining the graph.)

Any longest path from 0 to 15 gives the minimum number of days needed to complete
the project. Such a path is called a critical path and gives us the bottlenecks in the project.
It tells us which activities should be controlled carefully in order to meet a deadline. At
least one of these activities should be sped up if we wish to complete the project faster.
This is the basis of the ‘Critical Path Method’ (CPM).

Application 1.5: Price equilibrium. A small example of an economical application is
as follows. Consider a number of remote villages, say B,C,D,E and F . Certain pairs of
villages are connected by routes (like in Figure 1.4).

If villages X and Y are connected by a route, let kX,Y be the cost of transporting one
liter of oil from X to Y .

Section 1.3. Shortest paths with arbitrary lengths 17

B

C D

E F

Figure 1.4

At a certain day, one detects an oil well in village B, and it makes oil freely available
in village B. Now one can follow how the oil price will develop, assuming that no other oil
than that from the well in B is available and that only once a week there is contact between
adjacent villages.

It will turn out that the oil prices in the different villages will follow the iterations in
the Bellman-Ford algorithm. Indeed in week 0 (the week in which the well was detected)
the price in B equals 0, while in all other villages the price is ∞, since there is simply no
oil available yet.

In week 1, the price in B equals 0, the price in any village Y adjacent to B is equal to
kB,Y per liter and in all other villages it is still ∞.

In week i + 1 the liter price pi+1,Y in any village Y is equal to the minimum value of
pi,Y and all pi,X + kX,Y for which there is a connection from X to Y .

There will be price equilibrium if for each village Y one has:

(21) it is not cheaper for the inhabitants of Y to go to an adjacent village X and to
transport the oil from X to Y .

Moreover, one has the min-max relation for each village Y :

(22) the maximum liter price in village Y is equal to the the minimum length of a
path in the graph from B to Y

taking kX,Y as length function.

A comparable, but less spatial example is: the vertices of the graph represent oil prod-
ucts (instead of villages) and kX,Y denotes the cost per unit of transforming oil product X
to oil product Y . If oil product B is free, one can determine the costs of the other products
in the same way as above.

Exercises

1.2. Find with the Bellman-Ford method shortest paths from s to each of the other vertices
in the following graphs (where the numbers at the arcs give the length):

18 Chapter 1. Shortest paths and trees

(i)

3

−2

1

4

−3−1

3

7 2

1

2 −5

s

(ii)

2 1 −2 −4 7 −1

1 1

3 −3 4

7 4 3 −8 3 2

2 −4

s

1.3. Let be given the distance table:

to: A B C D E F G

from: A 0 1 ∞ ∞ ∞ 2 12
B ∞ 0 ∞ ∞ ∞ ∞ ∞
C ∞ −15 0 4 8 ∞ ∞
D ∞ ∞ 4 0 ∞ ∞ −2
E ∞ ∞ ∞ 4 0 ∞ ∞
F ∞ ∞ ∞ 9 3 0 12
G ∞ −12 2 3 −1 −4 0

A distance ∞ from X to Y should be interpreted as no direct route existing from X
to Y .

Determine with the Bellman-Ford method the distance from A to each of the other
cities.

1.4. Solve the knapsack problem of Application 1.3 with the Bellman-Ford method.

1.5. Describe an algorithm that tests if a given directed graph with length function con-
tains a directed circuit of negative length.

Section 1.4. Minimum spanning trees 19

1.6. Let D = (V,A) be a directed graph and let s and t be vertices of D, such that t is
reachable from s. Show that the minimum number of arcs in an s − t path is equal
to the maximum value of φ(t) − φ(s), where φ ranges over all functions φ : V → Z

such that φ(w)− φ(v) ≤ 1 for each arc (v, w).

1.4. Minimum spanning trees

Let G = (V,E) be a connected undirected graph and let l : E → R be a function,
called the length function. For any subset F of E, the length l(F) of F is, by definition:

(23) l(F) :=
∑

e∈F

l(e).

In this section we consider the problem of finding a spanning tree in G of minimum
length. There is an easy algorithm for finding a minimum-length spanning tree,
essentially due to Bor̊uvka [1926]. There are a few variants. The first one we discuss
is sometimes called the Dijkstra-Prim method (after Prim [1957] and Dijkstra [1959]).

Choose a vertex v1 ∈ V arbitrarily. Determine edges e1, e2 . . . successively as
follows. Let U1 := {v1}. Suppose that, for some k ≥ 0, edges e1, . . . , ek have been
chosen, forming a spanning tree on the set Uk. Choose an edge ek+1 ∈ δ(Uk) that has
minimum length among all edges in δ(Uk).

7 Let Uk+1 := Uk ∪ ek+1.
By the connectedness of G we know that we can continue choosing such an edge

until Uk = V . In that case the selected edges form a spanning tree T in G. This tree
has minimum length, which can be seen as follows.

Call a forest F greedy if there exists a minimum-length spanning tree T of G that
contains F .

Theorem 1.11. Let F be a greedy forest, let U be one of its components, and let
e ∈ δ(U). If e has minimum length among all edges in δ(U), then F ∪ {e} is again a
greedy forest.

Proof. Let T be a minimum-length spanning tree containing F . Let P be the unique
path in T between the end vertices of e. Then P contains at least one edge f
that belongs to δ(U). So T ′ := (T \ {f}) ∪ {e} is a tree again. By assumption,
l(e) ≤ l(f) and hence l(T ′) ≤ l(T). Therefore, T ′ is a minimum-length spanning tree.
As F ∪ {e} ⊆ T ′, it follows that F ∪ {e} is greedy.

Corollary 1.11a. The Dijkstra-Prim method yields a spanning tree of minimum
length.

7δ(U) is the set of edges e satisfying |e ∩ U | = 1.

20 Chapter 1. Shortest paths and trees

Proof. It follows inductively with Theorem 1.11 that at each stage of the algorithm
we have a greedy forest. Hence the final tree is greedy — equivalently, it has minimum
length.

In fact one may show:

Theorem 1.12. Implementing the Dijkstra-Prim method using Fibonacci heaps gives
a running time of O(|E|+ |V | log |V |).

Proof. The Dijkstra-Prim method is similar to Dijkstra’s method for finding a short-
est path. Throughout the algorithm, we store at each vertex v ∈ V \ Uk, the length
f(v) of a shortest edge {u, v} with u ∈ Uk, organized as a Fibonacci heap. A vertex
uk+1 to be added to Uk to form Uk+1 should be identified and removed from the Fi-
bonacci heap. Moreover, for each edge e connecting uk+1 and some v ∈ V \ Uk+1, we
should update f(v) if the length of uk+1v is smaller than f(v).

Thus we find and delete ≤ |V | times a u minimizing f(u) and we decrease ≤ |E|
times a value f(v). Hence by Theorem 1.8 the algorithm can be performed in time
O(|E|+ |V | log |V |).

The Dijkstra-Prim method is an example of a so-called greedy algorithm. We
construct a spanning tree by throughout choosing an edge that seems the best at the
moment. Finally we get a minimum-length spanning tree. Once an edge has been
chosen, we never have to replace it by another edge (no ‘back-tracking’).

There is a slightly different method of finding a minimum-length spanning tree,
Kruskal’s method (Kruskal [1956]). It is again a greedy algorithm, and again itera-
tively edges e1, e2, . . . are chosen, but by some different rule.

Suppose that, for some k ≥ 0, edges e1, . . . , ek have been chosen. Choose an edge
ek+1 such that {e1, . . . , ek, ek+1} forms a forest, with l(ek+1) as small as possible. By
the connectedness of G we can (starting with k = 0) iterate this until the selected
edges form a spanning tree of G.

Corollary 1.12a. Kruskal’s method yields a spanning tree of minimum length.

Proof. Again directly from Theorem 1.11.

In a similar way one finds a maximum-length spanning tree.

Application 1.6: Minimum connections. There are several obvious practical situations
where finding a minimum-length spanning tree is important, for instance, when designing a
road system, electrical power lines, telephone lines, pipe lines, wire connections on a chip.
Also when clustering data say in taxonomy, archeology, or zoology, finding a minimum
spanning tree can be helpful.

Section 1.4. Minimum spanning trees 21

Application 1.7: The maximum reliability problem. Often in designing a network
one is not primarily interested in minimizing length, but rather in maximizing ‘reliability’
(for instance when designing energy or communication networks). Certain cases of this
problem can be seen as finding a maximum length spanning tree, as was observed by Hu
[1961]. We give a mathematical description.

Let G = (V,E) be a graph and let s : E → R+ be a function. Let us call s(e) the
strength of edge e. For any path P in G, the reliability of P is, by definition, the minimum
strength of the edges occurring in P . The reliability rG(u, v) of two vertices u and v is equal
to the maximum reliability of P , where P ranges over all paths from u to v.

Let T be a spanning tree of maximum strength, i.e., with
∑

e∈ET s(e) as large as possible.
(Here ET is the set of edges of T .) So T can be found with any maximum spanning tree
algorithm.

Now T has the same reliability as G, for each pair of vertices u, v. That is:

(24) rT (u, v) = rG(u, v) for each u, v ∈ V .

We leave the proof as an exercise (Exercise 1.11).

Exercises

1.7. Find, both with the Dijkstra-Prim algorithm and with Kruskal’s algorithm, a span-
ning tree of minimum length in the graph in Figure 1.5.

3 2

2 4 1

5 3

3 6 3

5 4 24 6 3

4 3 5 7 4 2

Figure 1.5

1.8. Find a spanning tree of minimum length between the cities given in the following
distance table:

22 Chapter 1. Shortest paths and trees

Ame Ams Ape Arn Ass BoZ Bre Ein Ens s-G Gro Haa DH s-H Hil Lee Maa Mid Nij Roe Rot Utr Win Zut Zwo

Amersfoort 0 47 47 46 139 123 86 111 114 81 164 67 126 73 18 147 190 176 63 141 78 20 109 65 70

Amsterdam 47 0 89 92 162 134 100 125 156 57 184 20 79 87 30 132 207 175 109 168 77 40 151 107 103

Apeldoorn 47 89 0 25 108 167 130 103 71 128 133 109 154 88 65 129 176 222 42 127 125 67 66 22 41

Arnhem 46 92 25 0 132 145 108 78 85 116 157 112 171 63 64 154 151 200 17 102 113 59 64 31 66

Assen 139 162 108 132 0 262 225 210 110 214 25 182 149 195 156 68 283 315 149 234 217 159 143 108 69

Bergen op Zoom 123 134 167 145 262 0 37 94 230 83 287 124 197 82 119 265 183 59 128 144 57 103 209 176 193

Breda 86 100 130 108 225 37 0 57 193 75 250 111 179 45 82 228 147 96 91 107 49 66 172 139 156

Eindhoven 111 125 103 78 210 94 57 0 163 127 235 141 204 38 107 232 100 153 61 50 101 91 142 109 144

Enschede 114 156 71 85 110 230 193 163 0 195 135 176 215 148 132 155 236 285 102 187 192 134 40 54 71

’s-Gravenhage 81 57 128 116 214 83 75 127 195 0 236 41 114 104 72 182 162 124 133 177 26 61 180 146 151

Groningen 164 184 133 157 25 287 250 235 135 236 0 199 147 220 178 58 308 340 174 259 242 184 168 133 94

Haarlem 67 20 109 112 182 124 111 141 176 41 199 0 73 103 49 141 203 165 129 184 67 56 171 127 123

Den Helder 126 79 154 171 149 197 179 204 215 114 147 73 0 166 109 89 276 238 188 247 140 119 220 176 144

’s-Hertogenbosch 73 87 88 63 195 82 45 38 148 104 220 103 166 0 69 215 123 141 46 81 79 53 127 94 129

Hilversum 18 30 65 64 156 119 82 107 132 72 178 49 109 69 0 146 192 172 81 150 74 16 127 83 88

Leeuwarden 147 132 129 154 68 265 228 232 155 182 58 141 89 215 146 0 306 306 171 256 208 162 183 139 91

Maastricht 190 207 176 151 283 183 147 100 236 162 308 203 276 123 192 305 0 242 135 50 188 176 213 182 217

Middelburg 176 175 222 200 315 59 96 153 285 124 340 165 238 141 172 306 242 0 187 203 98 156 264 231 246

Nijmegen 63 109 42 17 149 128 91 61 102 133 174 129 188 46 81 171 135 187 0 85 111 76 81 48 83

Roermond 141 168 127 102 234 144 107 50 187 177 259 184 247 81 150 256 50 203 85 0 151 134 166 133 168

Rotterdam 78 77 125 113 217 57 49 101 192 26 242 67 140 79 74 208 188 98 111 151 0 58 177 143 148

Utrecht 20 40 67 59 159 103 66 91 134 61 184 56 119 53 16 162 176 156 76 134 58 0 123 85 90

Winterswijk 109 151 66 64 143 209 172 142 40 180 168 171 220 127 127 183 213 264 81 166 177 123 0 44 92

Zutphen 65 107 22 31 108 176 139 109 54 146 133 127 176 94 83 139 182 231 48 133 143 85 44 0 48

Zwolle 70 103 41 66 69 193 156 144 71 151 94 123 144 129 88 91 217 246 83 168 148 90 92 48 0

1.9. Let G = (V,E) be a graph and let l : E → R be a ‘length’ function. Call a forest F
good if l(F ′) ≥ l(F) for each forest F ′ satisfying |F ′| = |F |.
Let F be a good forest and e be an edge not in F such that F ∪ {e} is a forest and
such that (among all such e) l(e) is as small as possible. Show that F ∪ {e} is good
again.

1.10. Let G = (V,E) be a complete graph and let l : E → R+ be a length function satisfying
l(uw) ≥ min{l(uv), l(vw)} for all distinct u, v, w ∈ V . Let T be a longest spanning
tree in G.

Show that for all u,w ∈ V , l(uw) is equal to the minimum length of the edges in the
unique u− w path in T .

1.11. Prove (24).

23

2. Polytopes, polyhedra, Farkas’

lemma, and linear programming

2.1. Convex sets

A subset C of Rn is called convex if for all x, y in C and any 0 ≤ λ ≤ 1 also λx+(1−λ)y
belongs to C. So C is convex if with any two points in C, the whole line segment
connecting x and y belongs to C.

Clearly, the intersection of any number of convex sets is again a convex set. So,
for any subset X of Rn, the smallest convex set containing X exists. This set is called
the convex hull of X and is denoted by conv.hull(X). One easily proves:

(1) conv.hull(X) = {x | ∃t ∈ N, ∃x1, . . . , xt ∈ X, ∃λ1, . . . , λt ≥ 0 :
x = λ1x1 + · · ·+ λtxt, λ1 + · · ·+ λt = 1}.

A basic property of closed convex sets is that any point not in C can be separated
from C by a ‘hyperplane’. Here a subset H of Rn is called a hyperplane (or an affine
hyperplane) if there exist a vector c ∈ Rn with c 6= 0 and a δ ∈ R such that:

(2) H = {x ∈ Rn | cTx = δ}.

We say that H separates z and C if z and C are in different components of Rn \H.

Theorem 2.1. Let C be a closed convex set in Rn and let z 6∈ C. Then there exists
a hyperplane separating z and C.

Proof. Since the theorem is trivial if C = ∅, we assume C 6= ∅. Then there exists a
vector y in C that is nearest to z, i.e., that minimizes ‖z − y‖.

(The fact that such a y exists, can be seen as follows. Since C 6= ∅, there exists
an r > 0 such that B(z, r) ∩ C 6= ∅. Here B(z, r) denotes the closed ball with center
z and radius r. Then y minimizes the continuous function ‖z − y‖ over the compact
set B(z, r) ∩ C.)

Now define:

(3) c := z − y, δ :=
1

2
(‖z‖2 − ‖y‖2).

We show

(4) (i) cT z > δ,
(ii) cTx < δ for each x ∈ C.

24 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming

Indeed, cT z = (z − y)T z > (z − y)T z − 1
2
‖z − y‖2 = δ. This shows (4)(i).

If (4)(ii) would not hold, there exists an x in C such that cTx ≥ δ. Since cTy <
cTy+ 1

2
‖c‖2 = δ, we know cT (x− y) > 0. Hence there exists a λ with 0 < λ ≤ 1 and

(5) λ <
2cT (x− y)

‖x− y‖2 .

Define

(6) w := λx+ (1− λ)y.

So w belongs to C. Moreover,

(7) ‖w − z‖2 = ‖λ(x− y) + (y − z)‖2 = ‖λ(x− y)− c‖2
= λ2‖x− y‖2 − 2λcT (x− y) + ‖c‖2 < ‖c‖2 = ‖y − z‖2.

Here < follows from (5).
However, (7) contradicts the fact that y is a point in C nearest to z.

Theorem 2.1 implies a characterization of closed convex sets – see Exercise 2.1.
Call a subset H of Rn a halfspace (or an affine halfspace) if there exist a vector c ∈ Rn

with c 6= 0 and a δ ∈ R such that

(8) H = {x ∈ Rn | cTx ≤ δ}.

Clearly, each affine halfspace is a closed convex set.
Theorem 2.1 implies that if C is a closed convex set and z 6∈ C, then there exists

an affine halfspace H so that C ⊆ H and z 6∈ H.

Exercises

2.1. Let C ⊆ Rn. Then C is a closed convex set if and only if C =
⋂F for some collection

F of affine halfspaces.

2.2. Let C ⊆ Rn be a convex set and let A be an m × n matrix. Show that the set
{Ax | x ∈ C} is again convex.

2.3. Let X be a finite set of vectors in Rn. Show that conv.hull(X) is compact.

(Hint: Show that conv.hull(X) is the image under a continuous function of a compact
set.)

2.4. Show that if z ∈ conv.hull(X), then there exist affinely independent vectors x1, . . . , xm
in X such that z ∈ conv.hull{x1, . . . , xm}. (This is the affine form of ‘Carathéodory’s
theorem’ (Carathéodory [1911]).)

Section 2.2. Polytopes and polyhedra 25

(Vectors x1, . . . , xm are called affinely independent if there are no reals λ1, . . . , λm,
such that λ1x1 + · · ·+ λmxm = 0 and λ1 + · · ·+ λm = 0 and such that λ1, . . . , λm are
not all equal to 0.)

2.5. (i) Let C and D be two nonempty, bounded, closed, convex subsets of Rn such that
C ∩D = ∅. Derive from Theorem 2.1 that there exists an affine hyperplane H
separating C and D. (This means that C and D are in different components of
Rn \H.)

(Hint: Consider the set C −D := {x− y | x ∈ C, y ∈ D}.)
(ii) Show that in (i) we cannot delete the boundedness condition.

2.2. Polytopes and polyhedra

Special classes of closed convex sets are formed by the polytopes and the polyhedra.
In the previous section we saw that each closed convex set is the intersection of affine
halfspaces, possibly infinitely many. If it is the intersection of a finite number of affine
halfspaces, the convex set is called a polyhedron.

So a subset P of Rn is a polyhedron if and only if there exists an m× n matrix A
and a vector b ∈ Rm such that

(9) P = {x ∈ Rn | Ax ≤ b}.

Here Ax ≤ b means:

(10) a1x ≤ b1, . . . , amx ≤ bm,

where a1, . . . , am are the rows of A.

The matrix A may have zero rows, i.e. m = 0. In that case, P = Rn.

Related is the notion of ‘polytope’. A subset P of Rn is called a polytope if P is
the convex hull of a finite number of vectors. That is, there exist vectors x1, . . . , xt

in Rn such that

(11) P = conv.hull{x1, . . . , xt}.

We will show that a subset P of Rn is a polytope if and only if it is a bounded
polyhedron. This might be intuitively clear, but a strictly mathematical proof requires
some work.

We first give a definition. Let P be a convex set. A point z ∈ P is called a
vertex of P if z is not a convex combination of two other points in P . That is, there
do not exist points x, y in P and a λ with 0 < λ < 1 such that x 6= z, y 6= z and
z = λx+ (1− λ)y.

26 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming

To characterize vertices we introduce the following notation. Let P = {x | Ax ≤
b} be a polyhedron and let z ∈ P . Then Az is the submatrix of A consisting of those
rows ai of A for which aiz = bi.

Then we can show:

Theorem 2.2. Let P = {x | Ax ≤ b} be a polyhedron in Rn and let z ∈ P . Then z
is a vertex of P if and only if rank(Az) = n.

Proof. Necessity. Let z be a vertex of P and suppose rank(Az) < n. Then there
exists a vector c 6= 0 such that Azc = 0. Since aiz < bi for every ai that does not
occur in Az, there exists a δ > 0 such that:

(12) ai(z + δc) ≤ bi and ai(z − δc) ≤ bi

for every row ai of A not occurring in Az. Since Azc = 0 and Az ≤ b it follows that

(13) A(z + δc) ≤ b and A(z − δc) ≤ b.

So z+δc and z−δc belong to P . Since z is a convex combination of these two vectors,
this contradicts the fact that z is a vertex of P .

Sufficiency. Suppose rank(Az) = n while z is not a vertex of P . Then there exist
points x and y in P such that x 6= z 6= y and z = 1

2
(x+ y). Then for every row ai of

Az:

(14) aix ≤ bi = aiz =⇒ ai(x− z) ≤ 0, and
aiy ≤ bi = aiz =⇒ ai(y − z) ≤ 0.

Since y − z = −(x− z), this implies that ai(x− z) = 0. Hence Az(x− z) = 0. Since
x− z 6= 0, this contradicts the fact that rank(Az) = n.

Theorem 2.2 implies that a polyhedron has only a finite number of vertices: For
each two different vertices z and z′ one has Az 6= Az′ , since Azx = bz has only one
solution, namely x = z (where bz denotes the part of b corresponding to Az). Since
there exist at most 2m collections of subrows of A, P has at most 2m vertices.

From Theorem 2.2 we derive:

Theorem 2.3. Let P be a bounded polyhedron, with vertices x1, . . . , xt. Then P =
conv.hull{x1, . . . , xt}.

Proof. Clearly

(15) conv.hull{x1, . . . , xt} ⊆ P,

Section 2.2. Polytopes and polyhedra 27

since x1, . . . , xt belong to P and since P is convex.

The reverse inclusion amounts to:

(16) if z ∈ P then z ∈ conv.hull{x1, . . . , xt}.

We show (16) by induction on n− rank(Az).

If n− rank(Az) = 0, then rank(Az) = n, and hence, by Theorem 2.2, z itself is a
vertex of P . So z ∈ conv.hull{x1, . . . , xt}.

If n− rank(Az) > 0, then there exists a vector c 6= 0 such that Azc = 0. Define

(17) µ0 := max{µ | z + µc ∈ P},
ν0 := max{ν | z − νc ∈ P}.

These numbers exist since P is compact. Let x := z + µ0c and y := z − ν0c.

Now

(18) µ0 = min{bi − aiz

aic
| ai is a row of A; aic > 0}.

This follows from the fact that µ0 is the largest µ such that ai(z + µc) ≤ bi for each
i = 1, . . . ,m. That is, it is the largest µ such that

(19) µ ≤ bi − aiz

aic

for every i with aic > 0.

Let the minimum (18) be attained by i0. So for i0 we have equality in (18).
Therefore

(20) (i) Azx = Azz + µ0Azc = Azz,
(ii) ai0x = ai0(z + µ0c) = bi0 .

So Ax contains all rows in Az, and moreover it contains row ai0 . Now Azc = 0
while ai0c 6= 0. This implies rank(Ax) > rank(Az). So by our induction hypothesis, x
belongs to conv.hull{x1, . . . , xt}. Similarly, y belongs to conv.hull{x1, . . . , xt}. There-
fore, as z is a convex combination of x and y, z belongs to conv.hull{x1, . . . , xt}.

As a direct consequence we have:

Corollary 2.3a. Each bounded polyhedron is a polytope.

Proof. Directly from Theorem 2.3.

28 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming

Conversely:

Theorem 2.4. Each polytope is a bounded polyhedron.

Proof. Let P be a polytope in Rn, say

(21) P = conv.hull{x1, . . . , xt}.

We may assume that t ≥ 1. We prove the theorem by induction on n. Clearly, P is
bounded.

If P is contained in some affine hyperplane, the theorem follows from the induction
hypothesis.

So we may assume that P is not contained in any affine hyperplane. It implies
that the vectors x2 − x1, . . . , xt − x1 span Rn. It follows that there exist a vector x0

in P and a real r > 0 such that the ball B(x0, r) is contained in P .

Without loss of generality, x0 = 0. Define P ∗ by

(22) P ∗ := {y ∈ Rn | xTy ≤ 1 for each x ∈ P}.

Then P ∗ is a polyhedron, as

(23) P ∗ = {y ∈ Rn | xT
j y ≤ 1 for j = 1, . . . , t}.

This follows from the fact that if y belongs to the right hand set in (23) and x ∈ P
then x = λ1x1 + · · ·+ λtxt for certain λ1, . . . , λt ≥ 0 with λ1 + · · ·+ λt = 1, implying

(24) xTy =
t

∑

j=1

λjx
T
j y ≤

t
∑

j=1

λj = 1.

So y belongs to P ∗.

Moreover, P ∗ is bounded, since for each y 6= 0 in P ∗ one has that x := r · ‖y‖−1 · y
belongs to B(0, r) and hence to P . Therefore, xTy ≤ 1, and hence

(25) ‖y‖ = (xTy)/r ≤ 1/r.

So P ∗ ⊆ B(0, 1/r).

This proves that P ∗ is a bounded polyhedron. By Corollary 2.3a, P ∗ is a polytope.
So there exist vectors y1, . . . , ys in Rn such that

(26) P ∗ = conv.hull{y1, . . . , ys}.

We show:

Section 2.2. Polytopes and polyhedra 29

(27) P = {x ∈ Rn | yTj x ≤ 1 for all j = 1, . . . , s}.

This implies that P is a polyhedron.
To see the inclusion ⊆ in (27), it suffices to show that each of the vectors xi

belongs to the right hand side in (27). This follows directly from the fact that for
each j = 1, . . . , s, yTj xi = xT

i yj ≤ 1, since yj belongs to P ∗.
To see the inclusion ⊇ in (25), let x ∈ Rn be such that yTj x ≤ 1 for all j = 1, . . . , s.

Suppose x 6∈ P . Then there exists a hyperplane separating x and P . That is, there
exist a vector c 6= 0 in Rn and a δ ∈ R such that cTx′ < δ for each x′ ∈ P , while
cTx > δ. As 0 ∈ P , δ > 0. So we may assume δ = 1. Hence c ∈ P ∗. So there exist
µ1, . . . , µs ≥ 0 such that c = µ1y1 + · · ·µsys and µ1 + · · · + µs = 1. This gives the
contradiction:

(28) 1 < cTx =
s

∑

j=1

µjy
T
j x ≤

s
∑

j=1

µj = 1.

Convex cones

Convex cones are special cases of convex sets. A subset C of Rn is called a convex
cone if for any x, y ∈ C and any λ, µ ≥ 0 one has λx+ µy ∈ C.

For any X ⊆ Rn, cone(X) is the smallest cone containing X. One easily checks:

(29) cone(X) = {λ1x1 + · · ·λtxt | x1, . . . , xt ∈ X;λ1, . . . , λt ≥ 0}.

A cone C is called finitely generated if C = cone(X) for some finite set X.

Exercises

2.6. Determine the vertices of the following polyhedra:

(i) P = {(x, y) | x ≥ 0, y ≥ 0, y − x ≤ 2, x+ y ≤ 8, x+ 2y ≤ 10, x ≤ 4}.
(ii) P = {(x, y, z) | x + y ≤ 2, y + z ≤ 4, x + z ≤ 3,−2x − y ≤ 3,−y − 2z ≤

3,−2x− z ≤ 2}.
(iii) P = {(x, y) | x+ y ≤ 1, x− y ≤ 2}.
(iv) P = {(x, y) | x+ y = 1, x ≥ 3}.
(v) P = {(x, y, z) | x ≥ 0, y ≥ 0, x+ y ≤ 1}.
(vi) P = {(x, y, z) | x+ y ≥ 1, x+ z ≥ 1, y − z ≥ 0}.
(vii) P = {(x, y) | 3x+ 2y ≤ 18, x− y ≥ −6, 5x+ 2y ≤ 20, x ≥ 0, y ≥ 0}.

2.7. Let C ⊆ Rn. Then C is a closed convex cone if and only if C =
⋂F for some

collection F of linear halfspaces.

30 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming

(A subset H of Rn is called a linear halfspace if H = {x ∈ Rn | cTx ≤ 0} for some
nonzero vector c.)

2.8. Show that if z ∈ cone(X), then there exist linearly independent vectors x1, . . . , xm
in X such that z ∈ cone{x1, . . . , xm}. (This is the linear form of ‘Carathéodory’s
theorem’.)

2.9. Let A be an m× n matrix of rank m and let b ∈ Rm. Derive from Exercise 2.8 that
the system Ax = b has a nonnegative solution x if and only if it has a nonnegative
basic solution.

(A submatrix B of A is called a basis of A if B is a nonsingular m×m submatrix of
A. A solution x of Ax = b is a basic solution if A has a basis B so that x is 0 in those
coordinates not corresponding to columns in B.)

2.10. Prove that every finitely generated convex cone is a closed set. (This can be derived
from Exercise 2.3 and Corollary 2.3a.)

2.11. Prove that a convex cone is finitely generated if and only if it is the intersection of
finitely many linear halfspaces.

(Hint: Use Corollary 2.3a and Theorem 2.4.)

2.12. Let P be a subset of Rn. Show that P is a polyhedron if and only if P = Q+ C for
some polytope Q and some finitely generated convex cone C.

(Hint: Apply Exercise 2.11 to cone(X) in Rn+1, where X is the set of vectors

(

1
x

)

in Rn+1 with x ∈ P .)

2.13. For any subset X of Rn, define

(30) X∗ := {y ∈ Rn | xT y ≤ 1 for each x ∈ X}.

(i) Show that for each convex cone C, C∗ is a closed convex cone.

(ii) Show that for each closed convex cone C, (C∗)∗ = C.

2.14. Let P be a polyhedron.

(i) Show that P ∗ is again a polyhedron.

(Hint: Use previous exercises.)

(ii) Show that P contains the origin if and only if (P ∗)∗ = P .

(iii) Show that the origin is an internal point of P if and only if P ∗ is bounded.

2.3. Farkas’ lemma

Let A be an m × n matrix and let b ∈ Rm. With the Gaussian elimination method
one can prove that

Section 2.3. Farkas’ lemma 31

(31) Ax = b

has a solution x if and only if there is no solution y for the following system of linear
equations:

(32) yTA = 0, yT b = −1.

Farkas’ lemma (Farkas [1894,1896,1898]) gives an analogous characterization for
the existence of a nonnegative solution x for (31).

Theorem 2.5 (Farkas’ lemma). The system Ax = b has a nonnegative solution if
and only if there is no vector y satisfying yTA ≥ 0 and yT b < 0.

Proof. Necessity. Suppose Ax = b has a solution x0 ≥ 0 and suppose there exists a
vector y0 satisfying yT0 A ≥ 0 and yT0 b < 0. Then we obtain the contradiction

(33) 0 > yT0 b = yT0 (Ax0) = (yT0 A)x0 ≥ 0.

Sufficiency. Suppose Ax = b has no solution x ≥ 0. Let a1, . . . , an be the columns
of A. So

(34) b 6∈ C := cone{a1, . . . , an}.

So by Exercise 2.7 there exists a linear halfspace H containing C and not containing
b. That is, there exists a vector c such that cT b < 0 while cTx ≥ 0 for each x in C.
In particular, cTaj ≥ 0 for j = 1, . . . , n. So y := c satisfies yTA ≥ 0 and yT b < 0.

So Farkas’ lemma states that exactly one of the following two assertions is true:

(35) (i) ∃x ≥ 0 : Ax = b,
(ii) ∃y : yTA ≥ 0 and yT b < 0.

There exist several variants of Farkas’ lemma, that can be easily derived from
Theorem 2.5.

Corollary 2.5a. The system Ax ≤ b has a solution x if and only if there is no vector
y satisfying y ≥ 0, yTA = 0 and yT b < 0.

Proof. Let A′ be the matrix

(36) A′ := [A − A I],

where I denotes the m×m identity matrix.

32 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming

Then Ax ≤ b has a solution x if and only if the system A′x′ = b has a nonnegative
solution x′. Applying Theorem 2.5 to A′x′ = b gives the corollary.

Another consequence is:

Corollary 2.5b. Suppose that the system Ax ≤ b has at least one solution. Then for
every solution x of Ax ≤ b one has cTx ≤ δ if and only if there exists a vector y ≥ 0
such that yTA = cT and yT b ≤ δ.

Proof. Sufficiency. If such a vector y exists, then for every vector x one has

(37) Ax ≤ b =⇒ yTAx ≤ yT b =⇒ cTx ≤ yT b =⇒ cTx ≤ δ.

Necessity. Suppose that such a vector y does not exist. It means that the following
system of linear inequalities in the variables y and λ has no solution (yT λ) ≥ (0 0):

(38) (yT λ)

(

A b
0 1

)

= (cT δ).

According to Farkas’ lemma this implies that there exists a vector

(

z
µ

)

so that

(39)

(

A b
0 1

)(

z
µ

)

≥
(

0
0

)

and (cT δ)

(

z
µ

)

< 0.

We distinguish two cases.

Case 1: µ = 0. Then Az ≥ 0 and cT z < 0. However, by assumption, Ax ≤ b has
a solution x0. Then, for τ large enough:

(40) A(x0 − τz) ≤ b and cT (x0 − τz) > δ.

This contradicts the fact that Ax ≤ b implies cTx ≤ δ.

Case 2: µ > 0. As (39) is homogeneous, we may assume that µ = 1. Then for
x := −z one has:

(41) Ax ≤ b and cTx > δ.

Again this contradicts the fact that Ax ≤ b implies cTx ≤ δ.

Exercises

Section 2.4. Linear programming 33

2.15. Prove that there exists a vector x ≥ 0 such that Ax ≤ b if and only if for each y ≥ 0
satisfying yTA ≥ 0 one has yT b ≥ 0.

2.16. Prove that there exists a vector x > 0 such that Ax = 0 if and only if for each y
satisfying yTA ≥ 0 one has yTA = 0. (Stiemke’s theorem (Stiemke [1915]).)

2.17. Prove that there exists a vector x 6= 0 satisfying x ≥ 0 and Ax = 0 if and only if
there is no vector y satisfying yTA > 0. (Gordan’s theorem (Gordan [1873]).)

2.18. Prove that there exists a vector x satisfying Ax < b if and only if y = 0 is the only
solution for y ≥ 0, yTA = 0, yT b ≤ 0.

2.19. Prove that there exists a vector x satisfying Ax < b and A′x ≤ b′ if and only if for all
vectors y, y′ ≥ 0 one has:

(i) if yTA+ y′TA′ = 0 then yT b+ y′T b′ ≥ 0, and

(ii) if yTA+ y′TA′ = 0 and y 6= 0 then yT b+ y′T b′ > 0.

(Motzkin’s theorem (Motzkin [1936]).)

2.20. Let A be an m × n matrix and let b ∈ Rm, with m ≥ n + 1. Suppose that Ax ≤ b
has no solution x. Prove that there exist indices i0, . . . , in so that the system ai0x ≤
bi0 , . . . , ainx ≤ bin has no solution x. Here ai is the ith row of A and bi is the ith
component of b.

(Hint: Combine Farkas’ lemma with Carathéodory’s theorem.)

2.4. Linear programming

One of the standard forms of a linear programming (LP) problem is:

(42) maximize cTx,
subject to Ax ≤ b.

So linear programming can be considered as maximizing a ‘linear function’ cTx over
a polyhedron P = {x | Ax ≤ b}. Geometrically, this can be seen as shifting a
hyperplane to its ‘highest’ level, under the condition that it intersects P .

Problem (42) corresponds to determining the following maximum:

(43) max{cTx | Ax ≤ b}.

This is the form in which we will denote an LP-problem.
If P = {x | Ax ≤ b} is a nonempty polytope, then it is clear that max{cTx | Ax ≤

b} is attained by a vertex of P (cf. Exercise 2.21).
Clearly, also any minimization problem can be transformed to form (43), since

34 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming

(44) min{cTx | Ax ≤ b} = −max{−cTx | Ax ≤ b}.

One says that x is a feasible solution of (43) if x satisfies Ax ≤ b. If x moreover
attains the maximum, x is called an optimum solution.

The famous method to solve linear programming problems is the simplex method,
designed by Dantzig [1951b]. The first polynomial-time method for LP-problems is
due to Khachiyan [1979,1980], based on the ellipsoid method. In 1984, Karmarkar
[1984] published another polynomial-time method for linear programming, the inte-
rior point method, which turns out to be competitive in practice with the simplex
method.

The Duality theorem of linear programming, due to von Neumann [1947], states
that if the maximum (43) is finite, then the maximum value is equal to the minimum
value of another, so-called dual LP-problem:

(45) min{yT b | y ≥ 0; yTA = cT}.

In order to show this, we first prove:

Lemma 2.1. Let P be a polyhedron in Rn and let c ∈ Rn. If sup{cTx | x ∈ P} is
finite, then max{cTx | x ∈ P} is attained.

Proof. Let δ := sup{cTx | x ∈ P}. Choose matrix A and vector b so that P = {x |
Ax ≤ b}. We must show that there exists an x ∈ Rn such that Ax ≤ b and cTx ≥ δ.

Suppose that such an x does not exist. Then by Farkas’ lemma, in the form of
Corollary 2.5a, there exists a vector y ≥ 0 and a real number λ ≥ 0 such that:

(46) yTA− λcT = 0, yT b− λδ < 0.

This gives

(47) λδ = λ sup{cTx | Ax ≤ b} = sup{λcTx | Ax ≤ b} = sup{yTAx | Ax ≤ b} ≤
yT b < λδ,

a contradiction.

From this we derive:

Theorem 2.6 (Duality theorem of linear programming). Let A be an m× n matrix,
b ∈ Rm, c ∈ Rn. Then

(48) max{cTx | Ax ≤ b} = min{yT b | y ≥ 0; yTA = cT},

Section 2.4. Linear programming 35

provided that both sets are nonempty.

Proof. First note that

(49) sup{cTx | Ax ≤ b} ≤ inf{yT b | y ≥ 0; yTA = cT},

because if Ax ≤ b, y ≥ 0, yTA = cT , then

(50) cTx = (yTA)x = yT (Ax) ≤ yT b.

As both sets are nonempty,the supremum and the infimum are finite. By Lemma 2.1
it suffices to show that we have equality in (49).

Let δ := sup{cTx | Ax ≤ b}. Hence:

(51) if Ax ≤ b then cTx ≤ δ.

So by Corollary 2.5b there exists a vector y such that

(52) y ≥ 0, yTA = cT , yT b ≤ δ.

This implies that the infimum in (49) is at most δ.

The Duality theorem can be interpreted geometrically as follows. Let

(53) max{cTx | Ax ≤ b} =: δ

be attained at a point x∗. Without loss of generality we may assume that the first k
rows of A belong to the matrix Ax∗ . So a1x ≤ b1, . . . , akx ≤ bk are those inequalities
in Ax ≤ b for which aix

∗ = bi holds. Elementary geometric insight (cf. Figure
2.1) gives that cTx = δ must be a nonnegative linear combination of the equations
a1x = b1, . . . , akx = bk.

That is, there exist λ1, . . . , λk ≥ 0 such that:

(54) λ1a1 + · · ·+ λkak = cT ,
λ1b1 + · · ·+ λkbk = δ.

Define

(55) y∗ := (λ1, . . . , λk, 0, . . . , 0)
T .

Then y∗ is a feasible solution for the dual problem min{yT b | y ≥ 0; yTA = cT}.
Therefore,

36 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming

c

a x=b
2

2

Tc x= δ
2

a
a 1

P

x*
a x=b 1

1

Figure 2.1

(56) max{cTx | Ax ≤ b} = δ = λ1b1 + · · ·+ λkbk ≥ min{yT b | y ≥ 0; yTA = cT}.

Since trivially the converse inequality holds:

(57) max{cTx | Ax ≤ b} ≤ min{yT b | y ≥ 0; yTA = cT}

(cf. (50)), y∗ is an optimum solution of the dual problem.

There exist several variants of the Duality theorem.

Corollary 2.6a. Let A be an m× n matrix, b ∈ Rm, c ∈ Rn. Then

(58) max{cTx | x ≥ 0;Ax = b} = min{yT b | yTA ≥ cT},

provided that both sets are nonempty.

Proof. Define

(59) Ã :=

A
−A
−I

 , b̃ :=

b
−b
0

 .

Then

(60) max{cTx | x ≥ 0;Ax = b} = max{cTx | Ãx ≤ b̃} =
min{zT b̃ | z ≥ 0; zT Ã = cT} =
min{uT b− vT b+ wT0 | u, v, w ≥ 0; uTA− vTA− wT = cT} =
min{yT b | yTA ≥ cT}.

Section 2.4. Linear programming 37

The last equality follows by taking y := u− v.

Exercises

2.21. Let P = {x | Ax ≤ b} be a nonempty polytope. Prove that max{cTx | Ax ≤ b} is
attained by a vertex of P .

2.22. Let P = {x | Ax ≤ b} be a (not necessarily bounded) polyhedron, such that P has at
least one vertex. Prove that if max{cTx | Ax ≤ b} is finite, it is attained by a vertex
of P .

2.23. Prove the following variant of the Duality theorem:

(61) max{cTx | x ≥ 0;Ax ≤ b} = min{yT b | y ≥ 0; yTA ≥ cT }

(assuming both sets are nonempty).

2.24. Prove the following variant of the Duality theorem:

(62) max{cTx | Ax ≥ b} = min{yT b | y ≤ 0; yTA = cT }

(assuming both sets are nonempty).

2.25. Let a matrix, a column vector, and a row vector be given:

(63)

A B C
D E F
G H K

 ,

a
b
c

 , (d e f),

where A,B,C,D,E, F,G,H,K are matrices, a, b, c are column vectors, and d, e, f are
row vectors (of appropriate dimensions). Then

(64) max{dx+ ey + fz | x ≥ 0; z ≤ 0;
Ax+By + Cz ≤ a;
Dx+ Ey + Fz = b;
Gx+Hy +Kz ≥ c}

= min{ua+ vb+ wc | u ≥ 0;w ≤ 0;
uA+ vD + wG ≥ d;
uB + vE + wH = e;
uC + vF + wK ≤ f},

assuming that both sets are nonempty.

38 Chapter 2. Polytopes, polyhedra, Farkas’ lemma, and linear programming

2.26. Give an example of a matrix A and vectors b and c for which both {x | Ax ≤ b} and
{y | y ≥ 0; yTA = cT } are empty.

2.27. Let x̃ be a feasible solution of max{cTx | Ax ≤ b} and let ỹ be a feasible solution
of min{yT b | y ≥ 0; yTA = cT }. Prove that x̃ and ỹ are optimum solutions of the
maximum and minimum, respectively if and only if for each i = 1, . . . ,m one has:
ỹi = 0 or aix̃ = bi.

(Here A has m rows and ai denotes the ith row of A.)

2.28. Let A be an m × n matrix and let b ∈ Rm. Let {x | Ax ≤ b} be nonempty and let
C be the convex cone {x | Ax ≤ 0}. Prove that the set of all vectors c for which
max{cTx | Ax ≤ b} is finite, is equal to C∗.

39

3. Matchings and covers in

bipartite graphs

3.1. Matchings, covers, and Gallai’s theorem

Let G = (V,E) be a graph. A stable set is a subset C of V such that e 6⊆ C for each
edge e of G. A vertex cover is a subset W of V such that e ∩W 6= ∅ for each edge e
of G. It is not difficult to show that for each U ⊆ V :

(1) U is a stable set ⇐⇒ V \ U is a vertex cover.

A matching is a subset M of E such that e ∩ e′ = ∅ for all e, e′ ∈ M with e 6= e′.
A matching is called perfect if it covers all vertices (that is, has size 1

2
|V |). An edge

cover is a subset F of E such that for each vertex v there exists e ∈ F satisfying
v ∈ e. Note that an edge cover can exist only if G has no isolated vertices.

Define:

(2) α(G) := max{|C| | C is a stable set},
τ(G) := min{|W | | W is a vertex cover},
ν(G) := max{|M | | M is a matching},
ρ(G) := min{|F | | F is an edge cover}.

These numbers are called the stable set number, the vertex cover number, thematching
number, and the edge cover number of G, respectively.

It is not difficult to show that:

(3) α(G) ≤ ρ(G) and ν(G) ≤ τ(G).

The triangle K3 shows that strict inequalities are possible. In fact, equality in one of
the relations (3) implies equality in the other, as Gallai [1958,1959] proved:

Theorem 3.1 (Gallai’s theorem). For any graph G = (V,E) without isolated vertices
one has

(4) α(G) + τ(G) = |V | = ν(G) + ρ(G).

Proof. The first equality follows directly from (1).
To see the second equality, first let M be a matching of size ν(G). For each of the

|V | − 2|M | vertices v missed by M , add to M an edge covering v. We obtain an edge
cover of size |M |+ (|V | − 2|M |) = |V | − |M |. Hence ρ(G) ≤ |V | − ν(G).

40 Chapter 3. Matchings and covers in bipartite graphs

Second, let F be an edge cover of size ρ(G). For each v ∈ V delete from F , dF (v)−1
edges incident with v. We obtain a matching of size at least |F |−∑

v∈V (dF (v)−1) =
|F | − (2|F | − |V |) = |V | − |F |. Hence ν(G) ≥ |V | − ρ(G).

This proof also shows that if we have a matching of maximum cardinality in any
graph G, then we can derive from it a minimum cardinality edge cover, and conversely.

Exercises

3.1. Let G = (V,E) be a graph without isolated vertices. Define:

(5) α2(G) := the maximum number of vertices such that no edge
contains more than two of these vertices;

ρ2(G) := the minimum number of edges such that each vertex
is contained in at least two of these edges;

τ2(G) := the minimum number of vertices such that each edge
contains at least two of these vertices

ν2(G) := the maximum number of edges such that no vertex is
contained in more than two of these edges;

possibly taking vertices (edges, respectively) more than once.

(i) Show that α2(G) ≤ ρ2(G) and that ν2(G) ≤ τ2(G).

(ii) Show that α2(G) + τ2(G) = 2|V |.
(iii) Show that ν2(G) + ρ2(G) = 2|V |.

3.2. M-augmenting paths

Basic in matching theory are M -augmenting paths, which are defined as follows. Let
M be a matching in a graph G = (V,E). A path P = (v0, v1, . . . , vt) in G is called
M-augmenting if

(6) (i) t is odd,
(ii) v1v2, v3v4, . . . , vt−2vt−1 ∈ M ,
(iii) v0, vt 6∈

⋃

M .

Note that this implies that v0v1, v2v3, . . . , vt−1vt do not belong to M .

Clearly, if P = (v0, v1, . . . , vt) is an M -augmenting path, then

(7) M ′ := M△EP

Section 3.3. Kőnig’s theorems 41

edge in M
edge not in M vertex covered bynot M

vertex covered by M

Figure 3.1

is a matching satisfying |M ′| = |M |+ 1.8

In fact, it is not difficult to show that:

Theorem 3.2. Let G = (V,E) be a graph and let M be a matching in G. Then
either M is a matching of maximum cardinality, or there exists an M-augmenting
path.

Proof. IfM is a maximum-cardinality matching, there cannot exist anM -augmenting
path P , since otherwise M△EP would be a larger matching.

If M ′ is a matching larger than M , consider the components of the graph G′ :=
(V,M ∪ M ′). As G′ has maximum valency two, each component of G′ is either a
path (possibly of length 0) or a circuit. Since |M ′| > |M |, at least one of these
components should contain more edges of M ′ than of M . Such a component forms
an M -augmenting path.

3.3. Kőnig’s theorems

A classical min-max relation due to Kőnig [1931] (extending a result of Frobenius
[1917]) characterizes the maximum size of a matching in a bipartite graph (we follow
the proof of De Caen [1988]):

Theorem 3.3 (Kőnig’s matching theorem). For any bipartite graph G = (V,E) one
has

(8) ν(G) = τ(G).

That is, the maximum cardinality of a matching in a bipartite graph is equal to the
minimum cardinality of a vertex cover.

Proof. By (3) it suffices to show that ν(G) ≥ τ(G). We may assume that G has at
least one edge. Then:

(9) G has a vertex u covered by each maximum-size matching.

8EP denotes the set of edges in P . △ denotes symmetric difference.

42 Chapter 3. Matchings and covers in bipartite graphs

To see this, let e = uv be any edge of G, and suppose that there are maximum-size
matchings M and N missing u and v respectively9. Let P be the component of M∪N
containing u. So P is a path with end vertex u. Since P is not M -augmenting (as M
has maximum size), P has even length, and hence does not traverse v (otherwise, P
ends at v, contradicting the bipartiteness of G). So P∪e would form anN -augmenting
path, a contradiction (as N has maximum size). This proves (9).

Now (9) implies that for the graph G′ := G − u one has ν(G′) = ν(G) − 1.
Moreover, by induction, G′ has a vertex cover C of size ν(G′). Then C ∪ {u} is a
vertex cover of G of size ν(G′) + 1 = ν(G).

Combination of Theorems 3.1 and 3.3 yields the following result of Kőnig [1932].

Corollary 3.3a (Kőnig’s edge cover theorem). For any bipartite graph G = (V,E),
without isolated vertices, one has

(10) α(G) = ρ(G).

That is, the maximum cardinality of a stable set in a bipartite graph is equal to the
minimum cardinality of an edge cover.

Proof. Directly from Theorems 3.1 and 3.3, as α(G) = |V | − τ(G) = |V | − ν(G) =
ρ(G).

Exercises

3.2. (i) Prove that a k-regular bipartite graph has a perfect matching (if k ≥ 1).

(ii) Derive that a k-regular bipartite graph has k disjoint perfect matchings.

(iii) Give for each k > 1 an example of a k-regular graph not having a perfect
matching.

3.3. Prove that in a matrix, the maximum number of nonzero entries with no two in the
same line (=row or column), is equal to the minimum number of lines that include
all nonzero entries.

3.4. Let A = (A1, . . . , An) be a family of subsets of some finite set X. A subset Y of X is
called a transversal or a system of distinct representatives (SDR) of A if there exists
a bijection π : {1, . . . , n} → Y such that π(i) ∈ Ai for each i = 1, . . . , n.

Decide if the following collections have an SDR:

(i) {3, 4, 5}, {2, 5, 6}, {1, 2, 5}, {1, 2, 3}, {1, 3, 6},
(ii) {1, 2, 3, 4, 5, 6}, {1, 3, 4}, {1, 4, 7}, {2, 3, 5, 6}, {3, 4, 7}, {1, 3, 4, 7}, {1, 3, 7}.

9M misses a vertex u if u 6∈ ⋃

M . Here
⋃

M denotes the union of the edges in M ; that is, the
set of vertices covered by the edges in M .

Section 3.3. Kőnig’s theorems 43

3.5. Let A = (A1, . . . , An) be a family of subsets of some finite set X. Prove that A has
an SDR if and only if

(11)
∣

∣

⋃

i∈I

Ai

∣

∣ ≥ |I|

for each subset I of {1, . . . , n}.
[Hall’s ‘marriage’ theorem (Hall [1935]).]

3.6. Let A = (A1, . . . , An) be subsets of the finite set X. A subset Y of X is called a
partial transversal or a partial system of distinct representatives (partial SDR) if it is
a transversal of some subcollection (Ai1 , . . . , Aik) of (A1, . . . , An).

Show that the maximum cardinality of a partial SDR of A is equal to the minimum
value of

(12) |X \ Z|+ |{i | Ai ∩ Z 6= ∅}|,

where Z ranges over all subsets of X.

3.7. Let A = (A1, . . . , An) be a family of finite sets and let k be a natural number. Show
that A has k pairwise disjoint SDR’s of A if and only if

(13)
∣

∣

⋃

i∈I

Ai

∣

∣ ≥ k|I|

for each subset I of {1, . . . , n}.

3.8. Let A = (A1, . . . , An) be a family of subsets of a finite set X and let k be a natural
number. Show that X can be partitioned into k partial SDR’s if and only if

(14) k · |{i | Ai ∩ Y 6= ∅}| ≥ |Y |

for each subset Y of X.

(Hint: Replace each Ai by k copies of Ai and use Exercise 3.6 above.)

3.9. Let (A1, . . . , An) and (B1, . . . , Bn) be two partitions of the finite set X.

(i) Show that (A1, . . . , An) and (B1, . . . , Bn) have a common SDR if and only if for
each subset I of {1, . . . , n}, the set

⋃

i∈I Ai intersects at least |I| sets among
B1, . . . , Bn.

(ii) Suppose that |A1| = · · · = |An| = |B1| = · · · = |Bn|. Show that the two
partitions have a common SDR.

3.10. Let (A1, . . . , An) and (B1, . . . , Bn) be two partitions of the finite set X. Show that the
minimum cardinality of a subset of X intersecting each set among A1, . . . , An, B1, . . . ,
Bn is equal to the maximum number of pairwise disjoint sets inA1, . . . , An, B1, . . . , Bn.

44 Chapter 3. Matchings and covers in bipartite graphs

3.11. A matrix is called doubly stochastic if it is nonnegative and each row sum and each
column sum is equal to 1. A matrix is called a permutation matrix if each entry is 0
or 1 and each row and each column contains exactly one 1.

(i) Show that for each doubly stochastic matrix A = (ai,j)
n
i,j=1 there exists a per-

mutation π ∈ Sn such that ai,π(i) 6= 0 for all i = 1, . . . , n.

(ii) Derive that each doubly stochastic matrix is a convex linear combination of
permutation matrices.

[Birkhoff-von Neumann theorem (Birkhoff [1946], von Neumann [1953]).]

3.12. Let G = (V,E) be a bipartite graph with colour classes U and W . Let b : V → Z+

be so that
∑

v∈U b(v) =
∑

v∈W b(v) =: t.

A b-matching is a function c : E → Z+ so that for each vertex v of G:

(15)
∑

e∈E,v∈e

c(e) = b(v)

Show that there exists a b-matching if and only if

(16)
∑

v∈X

b(v) ≥ t

for each vertex cover X.

3.13. Let G = (V,E) be a bipartite graph and let b : V → Z+. Show that G has a subgraph
G′ = (V,E′) such that degG′(v) = b(v) for each v ∈ V if and only if each X ⊆ V
contains at least

(17)
1

2
(
∑

v∈X

b(v)−
∑

v∈V \X

b(v))

edges.

3.14. Let G = (V,E) be a bipartite graph and let b : V → Z+. Show that the maximum
number of edges in a subset F of E so that each vertex v of G is incident with at
most b(v) of the edges in F , is equal to

(18) min
X⊆V

∑

v∈X

b(v) + |E(V \X)|.

3.15. Let G = (V,E) be a bipartite graph and let k ∈ N. Prove that G has k disjoint
perfect matchings if and only if each X ⊆ V contains at least k(|X| − 1

2 |V |) edges.

3.16. Show that each 2k-regular graph contains a set F of edges so that each vertex is
incident with exactly two edges in F .

Section 3.4. Cardinality bipartite matching algorithm 45

3.4. Cardinality bipartite matching algorithm

We now focus on the problem of finding a maximum-sized matching in a bipartite
graph algorithmically.

In any graph, if we have an algorithm finding an M -augmenting path for any
matching M (if it exists), then we can find a maximum cardinality matching: we
iteratively find matchings M0,M1, . . ., with |Mi| = i, until we have a matching Mk

such that there does not exist any Mk-augmenting path.

We now describe how to find an M -augmenting path in a bipartite graph.

Matching augmenting algorithm for bipartite graphs

input: a bipartite graph G = (V,E) and a matching M ,
output: a matching M ′ satisfying |M ′| > |M | (if there is one).
description of the algorithm: Let G have colour classes U and W . Orient each
edge e = {u, w} of G (with u ∈ U,w ∈ W) as follows:

(19) if e ∈ M then orient e from w to u,
if e 6∈ M then orient e from u to w.

Let D be the directed graph thus arising. Consider the sets

(20) U ′ := U \⋃M and W ′ := W \⋃M .

Now an M -augmenting path (if it exists) can be found by finding a directed path
in D from any vertex in U ′ to any vertex in W ′. Hence in this way we can find a
matching larger than M .

This implies:

Theorem 3.4. A maximum-size matching in a bipartite graph can be found in time
O(|V ||E|).

Proof. The correctness of the algorithm is immediate. Since a directed path can
be found in time O(|E|), we can find an augmenting path in time O(|E|). Hence a
maximum cardinality matching in a bipartite graph can be found in time O(|V ||E|)
(as we do at most |V | iterations).

Hopcroft and Karp [1973] gave an O(|V |1/2|E|) algorithm.

Application 3.1: Assignment problem. Suppose we have k machines at our disposal:
m1, . . . ,mk. On a certain day we have to carry out n jobs: j1, . . . , jn. Each machines
is capable of performing some jobs, but can do only one job a day. E.g., we could have

46 Chapter 3. Matchings and covers in bipartite graphs

five machines m1, . . . ,m5 and five jobs j1, . . . , j5 and the capabilities of the machines are
indicated by crosses in the following table:

j1 j2 j3 j4 j5

m1 X X X

m2 X X X X

m3 X X

m4 X

m5 X

We want to assign the machines to the jobs in such a way that every machine performs
at most one job and that a largest number of jobs is carried out.

In order to solve this problem we represent the machines and jobs by verticesm1, . . . ,mk

and j1, . . . , jn of a bipartite graph G = (V,E), and we make an edge from mi to jj if job j
can be performed by machine i. Thus the example gives Figure 3.2. Then a maximum-size
matching in G corresponds to a maximum assignment of jobs.

3

4

2

1
m

m

3
m

4
m

m
5 5

j

j

j

j
2

j
1

Figure 3.2

Exercises

3.17. Find a maximum-size matching and a minimum vertex cover in the bipartite graph
in Figure 3.3.

3.18. Solve the assignment problem given in Application 3.1.

3.19. Derive Kőnig’s matching theorem from the cardinality matching algorithm for bipar-
tite graphs.

3.20. Show that a minimum-size vertex cover in a bipartite graph can be found in polyno-
mial time.

3.21. Show that, given a family of sets, a system of distinct representatives can be found
in polynomial time (if it exists).

Section 3.5. Weighted bipartite matching 47

1

a b c d e f

2 3 4 5

g h i j

109876

Figure 3.3

3.5. Weighted bipartite matching

We now consider the problem of finding a matching of maximum weight for which
we describe the so-called Hungarian method developed by Kuhn [1955], using work of
Egerváry [1931] (see Corollary 3.7b below).

Let G = (V,E) be a graph and let w : E → R be a ‘weight’ function. For any
subset M of E define the weight w(M) of M by

(21) w(M) :=
∑

e∈M

w(e).

The maximum-weight matching problem consists of finding a matching of maximum
weight.

Again, augmenting paths are of help at this problem. Call a matching M extreme
if it has maximum weight among all matchings of cardinality |M |.

Let M be an extreme matching. Define a ‘length’ function l : E → R as follows:

(22) l(e) :=

{

w(e) if e ∈ M ,

−w(e) if e 6∈ M .

Then the following holds:

Proposition 1. Let P be an M-augmenting path of minimum length. If M is
extreme, then M ′ := M△EP is extreme again.

Proof. Let N be any extreme matching of size |M | + 1. As |N | > |M |, M ∪ N has
a component Q that is an M -augmenting path. As P is a shortest M -augmenting
path, we know l(Q) ≥ l(P). Moreover, as N△EQ is a matching of size |M |, and as
M is extreme, we know w(N△EQ) ≤ w(M). Hence

(23) w(N) = w(N△EQ)− l(Q) ≤ w(M)− l(P) = w(M ′).

Hence M ′ is extreme.

48 Chapter 3. Matchings and covers in bipartite graphs

This implies that if we are able to find a minimum-length M -augmenting path in
polynomial time, we can find a maximum-weight matching in polynomial time: find
iteratively extreme matchings M0,M1, . . . such that |Mk| = k for each k. Then the
matching among M0,M1, . . . of maximum weight is a maximum-weight matching.

IfG is bipartite, we can find a minimum-lengthM -augmenting path as follows. Let
G have colour classes U and W . Orient the edges of G as in (19), making the directed
graph D, and let U ′ and W ′ as in (20). Then a minimum-length M -augmenting path
can be found by finding a minimum-length path in D from any vertex in U ′ to any
vertex in W ′. This can be done in polynomial time, since:

Theorem 3.5. Let M be an extreme matching. Then D has no directed circuit of
negative length.

Proof. Suppose C is a directed circuit in D with length l(C) < 0. We may assume
C = (u0, w1, u1, . . . , wt, ut) with u0 = ut and u1, . . . , ut ∈ U and w1, . . . , wt ∈ W .
Then the edges w1u1, . . . , wtut belong to M and the edges u0w1, u1w2, . . . , ut−1wt do
not belong to M . Then M ′′ := M△EC is a matching of cardinality k of weight
w(M ′′) = w(M)− l(C) > w(M), contradicting the fact that M is extreme.

This gives a polynomial-time algorithm to find a maximum-weight matching in a
bipartite graph. The description above yields:

Theorem 3.6. A maximum-weight matching in a bipartite graph G = (V,E) can be
found in O(|V |2|E|) time.

Proof. We do O(|V |) iterations, each consisting of finding a shortest path (in a graph
without negative-length directed circuits), which can be done in O(|V ||E|) time (with
the Bellman-Ford algorithm — see Corollary 1.10a).

In fact, a sharpening of this method (by transmitting a ‘potential’ p : V → Q

throughout the matching augmenting iterations, making the length function l non-
negative, so that Dijkstra’s method can be used) gives an O(|V |(|E| + |V | log |V |))
algorithm.

Application 3.2: Optimal assignment. Suppose that we have n jobs and m machines
and that each job can be done on each machine. Moreover, let a cost function (or cost
matrix) ki,j be given, specifying the cost of performing job j by machine i. We want to
perform the jobs with a minimum of total costs.

This can be solved with the maximum-weight bipartite matching algorithm. To this
end, we make a complete bipartite graph G with colour classes of cardinality m and n. Let
K be the maximum of ki,j over all i, j. Define the weight of the edge connecting machine i
and job j to be equal to K − ki,j . Then a maximum-weight matching in G corresponds to

Section 3.5. Weighted bipartite matching 49

an optimum assignment of machines to jobs.

So the algorithm for solving the assignment problem counters the remarks made by
Thorndike [1950] in an Address delivered on September 9, 1949 at a meeting of the American
Psychological Association at Denver, Colorado:

There are, as has been indicated, a finite number of permutations in the assign-
ment of men to jobs. When the classification problem as formulated above was
presented to a mathematician, he pointed to this fact and said that from the
point of view of the mathematician there was no problem. Since the number of
permutations was finite, one had only to try them all and choose the best. He
dismissed the problem at that point. This is rather cold comfort to the psy-
chologist, however, when one considers that only ten men and ten jobs mean
over three and a half million permutations. Trying out all the permutations
may be a mathematical solution to the problem, it is not a practical solution.

Application 3.3: Transporting earth. Monge [1784] was one of the first to consider
the assignment problem, in the role of the problem of transporting earth from one area to
another, which he considered as the discontinuous, combinatorial problem of transporting
molecules:

Lorsqu’on doit transporter des terres d’un lieu dans un autre, on a coutime de
donner le nom de Déblai au volume des terres que l’on doit transporter, & le
nom de Remblai à l’espace qu’elles doivent occuper après le transport.

Le prix du transport d’une molécule étant, toutes choses d’ailleurs égales, pro-
portionnel à son poids & à l’espace qu’on lui fait parcourir, & par conséquent le
prix du transport total devant être proportionnel à la somme des produits des
molécules multipliées chacune par l’espace parcouru, il s’ensuit que le déblai &
le remblai étant donné de figure & de position, il n’est pas indifférent que telle
molécule du déblai soit transportée dans tel ou tel autre endroit du remblai,
mais qu’il y a une certaine distribution à faire des molécules du premier dans
le second, daprès laquelle la somme de ces produits sera la moindre possible, &
le prix du transport total sera minimum.10

Monge describes an interesting geometric method to solve the assignment problem in this
case: let l be a line touching the two areas from one side; then transport the earth molecule

10When one must transport earth from one place to another, one usually gives the name of Déblai
to the volume of earth that one must transport, & the name of Remblai to the space that they
should occupy after the transport.
The price of the transport of one molecule being, if all the rest is equal, proportional to its weight

& to the distance that one makes it covering, & hence the price of the total transport having to be
proportional to the sum of the products of the molecules each multiplied by the distance covered,
it follows that, the déblai & the remblai being given by figure and position, it makes difference if a
certain molecule of the déblai is transported to one or to another place of the remblai, but that there
is a certain distribution to make of the molcules from the first to the second, after which the sum of
these products will be as little as possible, & the price of the total transport will be a minimum.

50 Chapter 3. Matchings and covers in bipartite graphs

touched in one area to the position touched in the other area. Then repeat, until all
molecules are transported.

Exercises

3.22. Five mechanics, stationed in the cities A,B,C,D,E, have to perform jobs in the cities
F,G,H, I, J . The jobs must be assigned in such a way to the mechanics that everyone
gets one job and that the total distance traveled by them is as small as possible. The
distances are given in the tables below. Solve these assignment problems with the
weighted matching algorithm.

(i)

F G H I J

A 6 17 10 1 3
B 9 23 21 4 5
C 2 8 5 0 1
D 19 31 19 20 9
E 21 25 22 3 9

(ii)

F G H I J

A 11 5 21 7 18
B 17 4 20 9 25
C 4 1 3 2 4
D 6 2 19 3 9
E 19 7 23 18 26

3.23. Derive from the weighted matching algorithm for bipartite graphs an algorithm for
finding a minimum-weight perfect matching in a bipartite graph G = (V,E). (A
matching M is perfect if

⋃

M = V .)

3.24. Let A1, . . . , An be subsets of the finite set X and let w : X → R+ be a ‘weight’
function. Derive from the weighted matching algorithm a polynomial-time algorithm
to find a minimum-weight SDR.

3.6. The matching polytope

The weighted matching problem is related to the ‘matching polytope’. Let G = (V,E)
be a graph. For each matching M let the incidence vector χM : E → R of M be
defined by:

(24) χM(e) := 1 if e ∈ M ,
χM(e) := 0 if e 6∈ M ,

Section 3.6. The matching polytope 51

for e ∈ E.

It is important to realize that the set of functions f : E → R can be considered
as a vector space and each such function as a vector. Thus we can denote f(e) by fe.
The function χM can be considered alternatively as a vector in the vector space RE.
Similarly for functions g : V → R.

The matching polytope of G is defined as:

(25) Pmatching(G) :=conv.hull{χM | M is a matching in G}.

So Pmatching(G) is a polytope in RE.

The matching polytope is a polyhedron, and hence can be described by linear
inequalities. For bipartite graphs, these inequalities are quite simple. To this end
it is convenient first to consider perfect matchings. (A matching M is perfect if
⋃

M = V .) Now the perfect matching polytope of G is defined by:

(26) Pperfect matching(G) :=conv.hull{χM | M is a perfect matching in G}.

Again, Pperfect matching(G) is a polytope in RE. Now the following can be derived quite
directly from Exercise 3.11:

Theorem 3.7. Let G = (V,E) be a bipartite graph. Then the perfect matching
polytope Pperfect matching(G) is equal to the set of vectors x ∈ RE satisfying:

(27) xe ≥ 0 for each e ∈ E;
∑

e∋v

xe = 1 for each v ∈ V .

Proof. Left to the reader (Exercise 3.25).

Clearly, each vector x in Pperfect matching(G) should satisfy (27), since each vector
χM satisfies (27). The essence of the theorem is that the inequalities (27) are enough
to define the polytope Pperfect matching(G).

(An alternative way of proving Theorem 3.7 is using the ‘total unimodularity’ of
the incidence matrix of a bipartite graph, together with the Hoffman-Kruskal theorem
on integer solutions to linear programming problems with integer data and totally
unimodular constraint matrix — see Section 8.3.)

From Theorem 3.7 one can derive the linear inequalities describing the matching
polytope of a bipartite graph:

Corollary 3.7a. Let G = (V,E) be a bipartite graph. Then the matching polytope
Pmatching(G) is equal to the set of vectors x ∈ RE satisfying:

52 Chapter 3. Matchings and covers in bipartite graphs

(28) xe ≥ 0 for each e ∈ E;
∑

e∋v

xe ≤ 1 for each v ∈ V .

Proof. Left to the reader (Exercise 3.26).

Clearly, one cannot delete the bipartiteness condition: if G is the triangle K3 then
the function x defined by xe := 1/2 for each edge e satisfies (28), but does not belong
to the matching polytope.

Corollary 3.7a asserts that the weighted matching problem can be formulated as
a linear programming problem:

(29) maximize wTx,
subject to xe ≥ 0 for each e ∈ E;

∑

e∋v

xe ≤ 1 for each v ∈ V .

With linear programming duality one can derive from this a ‘weighted’ extension
of Kőnig’s matching theorem, due to Egerváry [1931]:

Corollary 3.7b. Let G = (V,E) be a bipartite graph and let w : E → R be a ‘weight’
function. Then the maximum weight of a matching is equal to the minimum value of
∑

v∈V y(v), where y ranges over all functions y : V → R+ satisfying y(u)+y(v) ≥ w(e)
for each edge e = uv of G.

Proof. The maximum weight of a matching in G is equal to

(30) max{wTχM | M is a matching in G}.

Since Pmatching(G) is the convex hull of the χM , (30) is equal to

(31) max{wTx | x ∈ Pmatching(G)}.

By Corollary 3.7a this is equal to

(32) max{wTx | xe ≥ 0 for each e ∈ E;
∑

e∋v xe ≤ 1 for each v ∈ V }.

By linear programming duality this is equal to

(33) min{∑v∈V yv | yv ≥ 0 for each v ∈ V ;
yu + yv ≥ we for each edge e = uv}.

Section 3.6. The matching polytope 53

This is exactly the minimum described in the Corollary.

An extension of this corollary gives a further extension of Kőnig’s matching the-
orem (Theorem 3.3):

Theorem 3.8. In Corollary 3.7b, if w is integer-valued, then we can take also y
integer-valued.

Proof. Let y ∈ RV
+ attain the minimum, and assume that we have chosen y so that

the number of vertices v with yv 6∈ Z is as small as possible. Let U and W be the two
colour classes of G and let X be the set of vertices v of G with yv 6∈ Z. If X = ∅ we
are done, so assume that X 6= ∅. Without loss of generality, |X ∩U | ≥ |X ∩W |. Let
u be a vertex in X ∩U with yu −⌊yu⌋ as small as possible. Let ε := yu −⌊yu⌋. Reset

(34) ỹv :=

yv − ε if v ∈ X ∩ U ,

yv + ε if v ∈ X ∩W ,

yv if v 6∈ X.

One easily checks that again ỹv+ ỹv′ ≥ w(e) for each edge e = vv′ of G (using the fact
that w is integer-valued). Moreover,

∑

v∈V ỹv =
∑

v∈V yv − ε|X ∩ U | + ε|X ∩W | ≤
∑

v∈V yv. So ỹ also attains the minimum. However, ỹ has fewer noninteger-valued
components than y (as ỹu ∈ Z), contradicting our assumption.

Exercises

3.25. Derive Theorem 3.7 from Exercise 3.11.

3.26. Derive Corollary 3.7a from Theorem 3.7.

54 Chapter 4. Menger’s theorem, flows, and circulations

4. Menger’s theorem, flows, and

circulations

4.1. Menger’s theorem

In this section we study the maximum number k of pairwise disjoint paths in a graph
connecting two vertices, or two sets of vertices. Here ‘disjoint’ can mean: vertex-
disjoint (= having no vertex in common), or internally vertex-disjoint (= having no
vertex in common except for their end vertices), or arc-disjoint (= having no arc in
common). By the way, we often say ‘disjoint’ to mean ‘pairwise disjoint’.

Let D = (V,A) be a directed graph and let S and T be subsets of V . A path is
called an S − T path if it runs from a vertex in S to a vertex in T .

Menger [1927] gave a min-max theorem for the maximum number of disjoint S−T
paths. We follow the proof given by Göring [2000].

A set C of vertices is called S − T disconnecting if C intersects each S − T path
(C may intersect S ∪ T).

Theorem 4.1 (Menger’s theorem (directed vertex-disjoint version)). Let D = (V,A)
be a digraph and let S, T ⊆ V . Then the maximum number of vertex-disjoint S − T
paths is equal to the minimum size of an S − T disconnecting vertex set.

Proof. Obviously, the maximum does not exceed the minimum. Equality is shown
by induction on |A|, the case A = ∅ being trivial.

Let k be the minimum size of an S − T disconnecting vertex set. Choose a =
(u, v) ∈ A. If each S − T disconnecting vertex set in D − a has size at least k, then
inductively there exist k vertex-disjoint S − T paths in D − a, hence in D.

So we can assume that D − a has an S − T disconnecting vertex set C of size
≤ k − 1. Then C ∪ {u} and C ∪ {v} are S − T disconnecting vertex sets of D of size
k. So |C| = k − 1.

Now each S− (C ∪{u}) disconnecting vertex set B of D−a has size at least k, as
it is S − T disconnecting in D. Indeed, each S − T path P in D intersects C ∪ {u},
and hence P contains an S − (C ∪ {u}) path in D − a. So P intersects B.

So by induction, D− a contains k disjoint S− (C ∪{u}) paths. As |C ∪{u}| = k,
this means that for each c ∈ C ∪ {u} there exists an S − c path Pc such that for
distinct c, c′ ∈ C ∪ {u}, Pc and Pc′ are disjoint. So each Pc intersects C ∪ {u} only in
c.

Similarly, there exists for each c ∈ U ∪ {v} a c − T path such that for distinct
c, c′ ∈ C ∪ {v}, Qc and Qc′ are disjoint. Again, each Qc intersects C ∪ {v} only in c.

Note that for c ∈ C ∪ {u} and c′ ∈ C ∪ {v}, if Pc and Qc′ intersect in some vertex
w, then c = w = c′. For suppose not. By symmetry we can assume that w 6= c. Then
w 6∈ C ∪ {u}, as otherwise Pc and Pw would intersect. Then the concatenation of the

Section 4.1. Menger’s theorem 55

S − w part of Pc and the w − T part of Qc′ is a walk from S to T in D − a avoiding
C (also in case w = v). This contradicts the fact that C is S − T disconnecting for
D − a.

For each c ∈ C, let Rc be the S − T path obtained by concatenating Pc and Qc.
Moreover, let R be the S − T path obtained by concatenating Pu, arc a = (u, v), and
Qv. By the above, the paths Rc (c ∈ C) and R form k pairwise disjoint S − T paths.

A consequence of this theorem is a variant on internally vertex-disjoint s−t paths,
that is, s− t paths having no vertex in common except for s and t. Recall that a set
U of vertices is called an s− t vertex-cut if s, t 6∈ U and each s− t path intersects U .

Corollary 4.1a (Menger’s theorem (directed internally vertex-disjoint version)). Let
D = (V,A) be a digraph and let s and t be two distinct and nonadjacent vertices of
D. Then the maximum number of internally vertex-disjoint s− t paths is equal to the
minimum size of an s− t vertex-cut.

Proof. Let D′ := D − s − t and let S and T be the sets of outneighbours of s and
of inneighbours of t, respectively. Then Theorem 4.1 applied to D′, S, T gives the
corollary.

In turn, Theorem 4.1 follows from Corollary 4.1a by adding two new vertices s
and t and arcs (s, v) for all v ∈ S and (v, t) for all v ∈ T .

Also an arc-disjoint version can be derived (where paths are arc-disjoint if they
have no arc in common).

Recall that a set C of arcs is an s− t cut if C = δout(U) for some subset U of V
with s ∈ U and t 6∈ U .

Corollary 4.1b (Menger’s theorem (directed arc-disjoint version)). Let D = (V,A)
be a digraph and s, t ∈ V with s 6= t. Then the maximum number of arc-disjoint s− t
paths is equal to the minimum size of an s− t cut.

Proof. Let L(D) be the line digraph of D and let S := δout(s) and T := δin(t).11

Then Theorem 4.1 for L(D), S, T implies the corollary. Note that a minimum-size set
of arcs intersecting each s − t path necessarily is an s − t cut. Moreover, an S − T
path in L(D) yields an s − t walk in D, which contains an s − t path in D. Hence
disjoint paths in L(D) yield arc-disjoint paths in D.

The internally vertex-disjoint version of Menger’s theorem can be derived in turn
from the arc-disjoint version: make a digraph D′ as follows from D: replace any

11For any vertex v, δout(v) = δout({v}) and δin(v) = δin({v}).

56 Chapter 4. Menger’s theorem, flows, and circulations

vertex v by two vertices v′, v′′ and make an arc (v′, v′′); moreover, replace each arc
(u, v) by (u′′, v′). Then Corollary 4.1b for D′, s′′, t′ gives Corollary 4.1a for D, s, t.
Note that an s′′ − t′ cut C in D′ yields a set X of vertices and arcs in D intersecting
each s− t path, with |X| = |C|. Replacing each arc occurring in X by one of its ends
different from s, t, yields an s− t vertex cut in D of size at most |C|.

Similar theorems hold for undirected graphs. They can be derived from the di-
rected case by replacing each undirected edge uw by two opposite arcs (u, w) and
(w, u).

Application 4.1: Routing airplanes. An airline company carries out a certain number
of flights according to some fixed timetable, in a weekly cycle. The timetable is basically
given by a flight number i (for instance 562), a departure city dci (for instance Vancouver),
a departure time dti (for instance Monday 23.15h), an arrival city aci (for instance Tokyo),
and an arrival time ati (for instance Tuesday 7.20h). All times include boarding and disem-
barking and preparing the plane for a next flight. Thus a plane with arrival time Tuesday
7.20h at city c, can be used for any flight from c with departure time from Tuesday 7.20h
on.

The flights are carried out by n airplanes of one type, denoted by a1, . . . , an. At each
weekday there should be an airplane for maintenance at the home basis, from 6.00h till
18.00h. Legal rules prescribe which of the airplanes a1, . . . , an should be at the home basis
during one day the coming week, but it is not prescribed which airplane should be at the
home basis at which day (see Application 9.4 for an extension where this is prescribed).

The timetable is made in such a way that at each city the number of incoming flights is
equal to the number of outgoing flights. Here ‘maintenance’ is also considered as a flight.
However, there is flexibility in assigning the airplanes to the flights: if at a certain moment
at a certain city two or more airplanes are available for a flight, in principle any of them
can be used for that flight. Which of the available airplanes will be used, is decided by the
main office of the company. This decision is made at 18.00h on the Saturday before. At
that time the company makes the exact routing of the planes for the coming week.

At that moment, certain planes are performing certain flights, while other planes are
grounded at certain cities. Routing the airplanes is easy as the timetable is set up in such
a way that at each moment and each city enough airplanes are available.

Indeed, one can make a directed graph D (Figure 4.1) with vertex set all pairs (dci, dti)
and (aci, ati) for all flight numbers i. For each flight i that is not in the air at Saturday
18.00h, one makes an arc from (dci, dti) to (aci, ati). We also do this for the “flights”
representing maintenance.

Moreover, for each city c and each two consecutive times t, t′ at which any flight departs
or arrives at c, one makes m parallel arcs from (c, t) to (c, t′), where m is the number of
airplanes that will be in city c during the period t–t′.

In this way we obtain a directed graph such that at each vertex the indegree is equal
to the outdegree, except at any (c, tc) where tc is the earliest time after Saturday 18.00h
at which any flight arrives at or leaves city c. Hence we can find in D arc-disjoint paths
P1, . . . , Pn (where n is the number of airplanes) in D such that each arc is in exactly one of
the Pi. This would give a routing for the airplanes.

However, the restriction that some prescribed airplanes must undergo maintenance the

Section 4.1. Menger’s theorem 57

SatFriThuSat Sun Mon Tue Wed

maintenancemaintenancemaintenancemaintenancemaintenance

B

C

D

E

F

G

J

K

L

N

H

I

M

A

Figure 4.1

coming week gives some complications. It means for instance that if a certain airplane ai
(say) is now on the ground at city c and should be home for maintenance the coming week,
then the path Pi should start at (c, tc) and should traverse one of the arcs representing
maintenance. If ai is now in the air, then path Pi should start at (c, t) where t is the
first-coming arrival time of ai and should traverse a maintenance arc. So the company first
finds arc-disjoint paths Pi1 , . . . , Pik , where ai1 , . . . , aik are the airplanes that should undergo
maintenance the coming week. These paths can be extended to paths P1, . . . , Pn such that
each arc is traversed exactly once.

So the problem can be solved by finding arc-disjoint paths starting in a given set of
vertices and ending in a given set of vertices (by slightly extending the graph D).

Exercises

4.1. Let D = (V,A) be a directed graph and let s, t1, . . . , tk be vertices of D. Prove
that there exist pairwise arc-disjoint paths P1, . . . , Pk such that Pi is an s − ti path
(i = 1, . . . , k) if and only if for each U ⊆ V with s ∈ U one has

(1) |δout(U)| ≥ |{i | ti 6∈ U}|.

4.2. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of subsets of a finite set.
Show that A and B have a common SDR if and only if for all I, J ⊆ {1, . . . , n} one
has

(2)
∣

∣

⋃

i∈I

Ai ∩
⋃

j∈J

Bj

∣

∣ ≥ |I|+ |J | − n.

58 Chapter 4. Menger’s theorem, flows, and circulations

4.3. Let G = (V,E) be a bipartite graph, with colour classes V1 and V2, such that |V1| =
|V2|. Show that G has k pairwise disjoint perfect matchings if and only if for each
subset U of V1:

(3)
∑

v∈V2

min{k, |E(v) ∩ U |} ≥ k|U |,

where E(v) denotes the set of vertices adjacent to v.

4.4. Let D = (V,A) be a simple directed graph and let s, t ∈ V . Let α be the minimum
length of an s− t path. Show that the maximum number of pairwise arc-disjont s− t
paths is at most (|V |/α)2.
(Hint : Let Uk denote the set of vertices at distance at most k from s. Show that
|δout(Uk)| ≤ (|V |/α)2 for some k < α.)

4.2. Flows in networks

Other consequences of Menger’s theorem concern ‘flows in networks’. Let D = (V,A)
be a directed graph and let s, t ∈ V . Throughout we assume s 6= t. A function
f : A → R is called an s− t flow if:12

(4) (i) f(a) ≥ 0 for each a ∈ A;

(ii)
∑

a∈δin(v)

f(a) =
∑

a∈δout(v)

f(a) for each v ∈ V \ {s, t}.

Condition (4)(ii) is called the flow conservation law : the amount of flow entering a
vertex v 6= s, t should be equal to the amount of flow leaving v.

The value of an s− t flow f is, by definition:

(5) value(f) :=
∑

a∈δout(s)

f(a)−
∑

a∈δin(s)

f(a).

So the value is the net amount of flow leaving s. It can be shown that it is equal to
the net amount of flow entering t.

Let c : A → R+, called a capacity function. We say that a flow f is under c (or
subject to c) if

(6) f(a) ≤ c(a) for each a ∈ A.

The maximum flow problem now is to find an s− t flow under c, of maximum value.
To formulate a min-max relation, define the capacity of a cut δout(U) by:

12δout(v) and δin(v) denote the sets of arcs leaving v and entering v, respectively.

Section 4.2. Flows in networks 59

(7) c(δout(U)) :=
∑

a∈δout(U)

c(a).

Then:

Proposition 2. For every s− t flow f under c and every s− t cut δout(U) one has:

(8) value(f) ≤ c(δout(U)).

Proof.

(9) value(f) =
∑

a∈δout(s)

f(a)−
∑

a∈δin(s)

f(a)

=
∑

a∈δout(s)

f(a)−
∑

a∈δin(s)

f(a) +
∑

v∈U\{s}

(
∑

a∈δout(v)

f(a)−
∑

a∈δin(v)

f(a))

=
∑

v∈U

(
∑

a∈δout(v)

f(a)−
∑

a∈δin(v)

f(a)) =
∑

a∈δout(U)

f(a)−
∑

a∈δin(U)

f(a)

⋆

≤
∑

a∈δout(U)

f(a)
⋆⋆

≤
∑

a∈δout(U)

c(a) = c(δout(U)).

It is convenient to note the following:

(10) equality holds in (8) ⇐⇒ ∀a ∈ δin(U) : f(a) = 0 and
∀a ∈ δout(U) : f(a) = c(a).

This follows directly from the inequalities ⋆ and ⋆⋆ in (9).
Now from Menger’s theorem one can derive that equality can be attained in (8),

which is a theorem of Ford and Fulkerson [1956]:

Theorem 4.2 (max-flow min-cut theorem). For any directed graph D = (V,A),
s, t ∈ V with s 6= t, and c : A → R+, the maximum value of an s− t flow under c is
equal to the minimum capacity of an s− t cut. In formula:

(11) max
f s-t flow

value(f) = min
δout(U) s-t cut

c(δout(U)).

Proof. If c is integer-valued, the corollary follows from Menger’s theorem (directed
arc-disjoint version — Corollary 4.1b) by replacing each arc a by c(a) parallel arcs.
If c is rational-valued, there exists a natural number N such that Nc(a) is integer
for each a ∈ A. Changing each c(a) to Nc(a) multiplies both the maximum and the
minimum by N . So the equality follows from the case where c is integer-valued.

60 Chapter 4. Menger’s theorem, flows, and circulations

If c is real-valued, we can derive the corollary from the case where c is rational-
valued, by continuity and compactness arguments.

Moreover, one has (Dantzig [1951a]):

Corollary 4.2a (Integrity theorem). If c is integer-valued, there exists an integer-
valued maximum flow.

Proof. Directly from Menger’s theorem.

Exercises

4.5. Let D = (V,A) be a directed graph and let s, t ∈ V . Let f : A→ R+ be an s− t flow
of value β. Show that there exists an s − t flow f ′ : A → Z+ of value ⌈β⌉ such that
⌊f(a)⌋ ≤ f ′(a) ≤ ⌈f(a)⌉ for each arc a. (Integer flow theorem (Dantzig [1951a]).)

4.6. Let G = (V,E) be a graph and let c : E → R+ be a ‘capacity’ function. Let K be
the complete graph on V . For each edge st of K, let w(st) be the minimum capacity
of any s− t cut in G. [An s− t cut is any subset δ(W) with s ∈W, t 6∈W .]

Let T be a spanning tree in K of maximum total weight with respect to the function
w. Prove that for all s, t ∈ V , w(st) is equal to the minimum weight of the edges of
T in the unique s− t path in T .

(Hint: Use Exercise 1.10.)

4.3. Finding a maximum flow

Let D = (V,A) be a directed graph, let s, t ∈ V , and let c : A → Q+ be a ‘capacity’
function. We now describe the algorithm of Ford and Fulkerson [1956] to find an s− t
flow of maximum value under c.

In this section, by flow we will mean an s − t flow under c, and by cut an s − t
cut. A maximum flow is a flow of maximum value.

We now describe the algorithm of Ford and Fulkerson [1957] to determine a max-
imum flow. We assume that c(a) > 0 for each arc a. Moreover, for the sake of
exposition we assume that for no arc (u, v), also (v, u) is an arc. (We can achieve
this by, if necessary, ‘inserting a new vertex on an arc’.) First we give an important
subroutine:

Flow augmenting algorithm

input: a flow f .
output: either (i) a flow f ′ with value(f ′) > value(f),

or (ii) a cut δout(W) with c(δout(W)) = value(f).

Section 4.3. Finding a maximum flow 61

description of the algorithm: For any pair a = (v, w) define a−1 := (w, v). Make
an auxiliary graph Df = (V,Af) by the following rule: for any arc a ∈ A,

(12) if f(a) < c(a) then a ∈ Af ,
if f(a) > 0 then a−1 ∈ Af .

So if 0 < f(a) < c(a) then both a and a−1 are arcs of Af .

Now there are two possibilities:

(13) Case 1: There exists an s− t path in Df ,
Case 2: There is no s− t path in Df .

Case 1: There exists an s− t path P = (v0, a1, v1, . . . , ak, vk) in Df = (V,Af).
So v0 = s and vk = t. We may assume that P is a path. As a1, . . . , ak belong to Af ,
we know by (12) that for each i = 1, . . . , k:

(14) either (i) ai ∈ A and σi := c(ai)− f(ai) > 0
or (ii) a−1

i ∈ A and σi := f(a−1
i) > 0.

Define α := min{σ1, . . . , σk}. So α > 0. Let f ′ : A → R+ be defined by, for a ∈ A:

(15) f ′(a) := f(a) + α, if a = ai for some i = 1, . . . , k;
:= f(a)− α, if a = a−1

i for some i = 1, . . . , k;
:= f(a), for all other a.

Then f ′ again is an s − t flow under c. The inequalities 0 ≤ f ′(a) ≤ c(a) hold
because of our choice of α. It is easy to check that also the flow conservation law
(4)(ii) is maintained.

Moreover,

(16) value(f ′) = value(f) + α,

since either (v0, v1) ∈ A, in which case the outgoing flow in s is increased by α, or
(v1, v0) ∈ A, in which case the ingoing flow in s is decreased by α.

Path P is called a flow augmenting path.

Case 2: There is no path in Df = (V,Af) from s to t.
Now define:

(17) U := {u ∈ V | there exists a path in Df from s to u}.

Then s ∈ U while t 6∈ U , and so δout(U) is an s− t cut.

62 Chapter 4. Menger’s theorem, flows, and circulations

By definition of U , if u ∈ U and v 6∈ U , then (u, v) 6∈ Af (as otherwise also v
would belong to U). Therefore:

(18) if (u, v) ∈ δout(U), then (u, v) 6∈ Af , and so (by (12)): f(u, v) = c(u, v),
if (u, v) ∈ δin(U), then (v, u) 6∈ Af , and so (by (12)): f(u, v) = 0.

Then (10) gives:

(19) c(δout(U)) = value(f).

This finishes the description of the flow augmenting algorithm. The description
of the (Ford-Fulkerson) maximum flow algorithm is now simple:

Maximum flow algorithm

input: directed graph D = (V,A), s, t ∈ V, c : A → R+.
output: a maximum flow f and a cut δout(U) of minimum capacity, with value(f) =
c(δout(U)).
description of the algorithm: Let f0 be the ‘null flow’ (that is, f0(a) = 0 for
each arc a). Determine with the flow augmenting algorithm flows f1, f2, . . . , fN such
that fi+1 = f ′

i , until, in the (N + 1)-th iteration, say, we obtain output (ii) of the
flow augmenting algorithm. Then we have flow fN and a cut δout(U) with the given
properties.

We show that the algorithm terminates, provided that all capacities are rational.

Theorem 4.3. If all capacities c(a) are rational, the algorithm terminates.

Proof. If all capacities are rational, there exists a natural number K so that Kc(a)
is an integer for each a ∈ A. (We can take for K the l.c.m. of the denominators of
the c(a).)

Then in the flow augmenting iterations, every flow fi(a) and every α is a multiple
of 1/K. So at each iteration, the flow value increases by at least 1/K. Since the flow
value cannot exceed c(δout(s)), we can have only finitely many iterations.

We should note here that this theorem is not true if we allow general real-valued
capacities.

In Section 4.4 we shall see that if we choose always a shortest path as flow aug-
menting path, then the algorithm has polynomially bounded running time.

Note that the algorithm also implies the max-flow min-cut theorem (Theorem
4.2). Note moreover that in the maximum flow algorithm, if all capacities are integer,
then the maximum flow will also be integer-valued. So it also implies the integrity
theorem (Corollary 4.2a).

Section 4.3. Finding a maximum flow 63

Application 4.2: Transportation problem. Suppose that there are m factories, that
all produce the same product, and n customers that use the product. Each month, factory
i can produce si tons of the product. Customer j needs every month dj tons of the product.
From factory i to customer j we can transport every month at most ci,j tons of the product.
The problem is: can the needs of the customers be fulfilled?

s t

b
1

2
f

1

b
4

3
f

3
b

5
b

b
2

f

Figure 4.2

In order to solve the problem with the maximum-flow algorithm, we make the graph as
in Figure 4.2 (for m = 3, n = 5). We define a capacity function c on the arcs as follows:

(20) c(s, fi) := si for i = 1, . . . ,m,
c(fi, bj) := ci,j for i = 1, . . . ,m; j = 1, . . . , n,
c(bj , t) := dj for j = 1, . . . , n.

Now we have:

(21) the needs of the customers can be fulfilled ⇐⇒ there is an s− t flow under c with
value d1 + · · ·+ dn.

Since there cannot exist an s − t flow under c of value larger than d1 + · · · + dn (since
c(δin(t)) = d1 + · · ·+ dn), the problem can be solved with the maximum-flow algorithm.

If there exists a flow of value d1+ · · ·+dn, then the flow on arc (fi, bj) gives the amount
that should be transported each month from factory i to customer j. The flow on arc (s, fi)
gives the amount to be produced each month by factory fi.

Exercises

4.7. Determine with the maximum flow algorithm an s − t flow of maximum value and
an s− t cut of minimum capacity in the following graphs (where the numbers at the
arcs give the capacities):

64 Chapter 4. Menger’s theorem, flows, and circulations

(i)

1 11

5

2

5

1

2

4

2

7

4

10 12

2 2s t

2

(ii)

12

7
3

4
1 1

3

1

9

1
11

2

1

3 2

352

2

7

5

s t

(iii) s t

3
3

6 9

8

4

5

4

4

1

52

7

1

2

6

(iv) s t

2
2

4

4

5

2
2

10 4

12

1

5 7

6

2

3

3

Section 4.4. Speeding up the maximum flow algorithm 65

4.8. Solve the transportation problem with the maximum-flow algorithm for the following
data: m = n = 3, s1 = 13, s2 = 9, s3 = 4, d1 = 3, d2 = 7, d3 = 12,

ci,j j = 1 j = 2 j = 3

i = 1 2 0 8
i = 2 3 8 3
i = 3 0 1 3

4.9. Describe the problem of finding a maximum-size matching in a bipartite graph as a
maximum flow problem.

4.10. Determine with the maximum-flow algorithm if there exists a 3 × 3 matrix A = (ai,j)
satisfying:13

ai,j ≥ 0 for all i, j = 1, 2, 3;

A1 ≤

13
9
4

;

1TA = (3, 7, 12);

A ≤

2 0 8
3 8 3
0 1 3

.

4.11. Give an example of a directed graph with irrational capacities, in which, at a bad
choice of flow augmenting paths, the maximum flow algorithm does not terminate.

4.12. Let D = (V,A) be a directed graph, let s, t ∈ V and let f : A→ Q+ be an s− t flow
of value b. Show that for each U ⊆ V with s ∈ U, t 6∈ U one has:

(22)
∑

a∈δout(U)

f(a) −
∑

a∈δin(U)

f(a) = b.

4.4. Speeding up the maximum flow algorithm

We saw that the number of iterations in the maximum flow algorithm is finite, if all
capacities are rational. If we choose as our flow augmenting path P in the auxiliary
graph Df an arbitrary s − t path, the number of iterations yet can get quite large.
For instance, in the graph in Figure 4.3 the number of iterations, at a bad choice of
paths, can become 2 · 10k.

131 denotes the vector (1, 1, 1)T .

66 Chapter 4. Menger’s theorem, flows, and circulations

s t1

10 10

1010

k k

kk

Figure 4.3

However, if we choose always a shortest s− t path in Df as our flow augmenting
path P (that is, with a minimum number of arcs), then the number of iterations is
at most |V | · |A|. This was shown by Dinits [1970] and Edmonds and Karp [1972].

Again, for any directed graph D = (V,A) and s, t ∈ V , let µ(D) denote the
minimum length of an s− t path. Moreover, let α(D) denote the set of arcs contained
in at least one shortest s− t path. Then one has:

Proposition 3. Let D = (V,A) and s, t ∈ V . Let D′ := (V,A ∪ α(D)−1). Then
µ(D′) = µ(D) and α(D′) = α(D).

Proof. It suffices to show that µ(D) and α(D) are invariant if we add a−1 to D for
one arc a ∈ α(D). Suppose not. Then there is an s − t path P traversing a−1, of
length at most µ(D). As a ∈ α(D), there is an s − t path Q traversing a, of length
µ(D). Hence AP ∪ AQ \ {a, a−1} contains an s− t path of length less than µ(D), a
contradiction.

This implies the result of Dinits [1970] and Edmonds and Karp [1972]:

Theorem 4.4. If we choose in each iteration a shortest s−t path as flow augmenting
path, the number of iterations is at most |V ||A|.

Proof. If we augment flow f along a shortest path P , obtaining flow f ′, then Df ′

is a subgraph of D′ := (V,Af ∪ α(Df)
−1). Hence µ(Df ′) ≥ µ(D′) = µ(Df) (by

Proposition 3). Moreover, if µ(Df ′) = µ(Df), then α(Df ′) ⊆ α(D′) = α(Df) (again
by Proposition 3). As at least one arc in P belongs to Df but not to Df ′ , we have a
strict inclusion.

So throughout the iterations, (µ(Df),−|α(Df)|) strictly increases lexicographi-
cally. Since µ(Df) < |V | and |α(Df)| ≤ |A| for each f , the number of iterations is at
most |V ||A|.

Since a shortest path can be found in time O(|A|), this gives:

Corollary 4.4a. The maximum flow problem can be solved in time O(|V ||A|2).

Section 4.4. Speeding up the maximum flow algorithm 67

Proof. Directly from Theorem 4.4.

This algorithm can be improved, as was shown by Karzanov [1974]. In each
iteration we find a shortest path in O(|A|) time. But as long as the distance from s
to t does not increase, we could use the data-structure of the previous shortest path
search so as to find the next shortest path.

This can be described as follows. Call an s − t flow f blocking if for each s − t
flow g ≥ f one has g = f . Now Karzanov [1974] showed the following (we give the
short proof of Malhotra, Kumar, and Maheshwari [1978]; see also Tarjan [1984]):

Theorem 4.5. Given an acyclic directed graph D = (V,A), s, t ∈ V , and a capacity
function c : A → Q+, a blocking flow can be found in time O(|V |2).

Proof. First order the vertices reachable from s as s = v1, v2, . . . , vn−1, vn topologi-
cally ; that is, if (vi, vj) ∈ A then i < j. This can be done in time O(|A|).14

We describe the procedure recursively. Consider the minimum of the values
c(δin(v)) for all v ∈ V \ {s} and c(δout(v)) for all v ∈ V \ {t}. Let the minimum
be attained by vi and c(δout(vi)) (without loss of generality). Define f(a) := c(a) for
each a ∈ δout(vi) and f(a) := 0 for all other a.

Next for j = i+1, . . . , n−1, redefine f(a) for each a ∈ δout(vj) so that f(a) ≤ c(a)
and so that f(δout(vj)) = f(δin(vj)). By the minimality of vi and c(δin(v)), we can
always do this, as initially f(δin(vj)) ≤ c(δout(vi)) ≤ c(δin(vj)). We do this in such a
way that finally f(a) ∈ {0, c(a)} for all but at most one a in δout(vj).

After that, for j = i, i − 1, . . . , 2, redefine similarly f(a) for a ∈ δin(vj) so that
f(a) ≤ c(a) and so that f(δin(vj)) = f(δout(vj)).

If vi ∈ {s, t} we stop, and f is a blocking flow.

If vi 6∈ {s, t}, set c′(a) := c(a) − f(a) for each a ∈ A, and delete all arcs a with
c′(a) = 0 and delete vi and all arcs incident with vi, thus obtaining the directed graph
D′ = (V ′, A′). Obtain (recursively) a blocking flow f ′ in D′ subject to the capacity
function c′. Define f ′′(a) := f(a) + f ′(a) for a ∈ A′ and f ′′(a) = f(a) for a ∈ A \ A′.
Then f ′′ is a blocking flow in D.

This describes the algorithm. The correctness can be seen as follows. If vi ∈ {s, t}
the correctness is immediate. If vi 6∈ {s, t}, suppose f ′′ is not a blocking flow in D,
and let P be an s − t path in D such that f ′′(a) < c(a) for each arc a in P . Then
each arc of P belongs to A′, since f ′′(a) = f(a) = c(a) for each a ∈ A \ (A′ ∪ δin(vi)).
So for each arc a of P one has c′(a) = c(a) − f(a) > f ′′(a) − f(a) = f ′(a). This
contradicts the fact that f ′ is a blocking flow in D′.

The running time of the algorithm is O(|V |2), since the running time of the iter-

14This can be done recursively as follows (cf. Knuth [1968], Tarjan [1974]). If δout(s) = ∅, then
the ordering is trivial. If δout(s) 6= ∅, choose (s, v) ∈ δout(s), and order the vertices reachable from v
topologically, as w1, . . . , wm, delete them from D, and order the remaining vertices reachable from
s topologically as v1, . . . , vk; then v1, . . . , vk, w1, . . . , wm gives a required topological ordering.

68 Chapter 4. Menger’s theorem, flows, and circulations

ation is O(|V | + |A \ A′|), and since there are at most |V | iterations. (Note that we
determine the topological ordering only once, at the preprocessing.)

Theorem 4.5 has the following consequence:

Corollary 4.5a. Given a directed graph D = (V,A), s, t ∈ V , and a capacity function
c : A → Q, a flow f satisfying µ(Df) > µ(D) can be found in time O(|V |2).

Proof. Let D̃ be the subgraph of D consisting of all arcs that are contained in a
shortest s − t path in D. Find a blocking flow in D̃. Then µ(Df) > µ(D) (by
Proposition 3).

Hence we have:

Corollary 4.5b. Given a directed graph D = (V,A), s, t ∈ V , and a capacity function
c : A → Q, a maximum s− t flow can be found in time O(|V |3).

Proof. Directly from the foregoing.

Goldberg and Tarjan [1990] gave an O(|A| log(|V |2/|A|)) algorithm for finding
a blocking flow in an acyclic directed graph, implying an O(|V ||A| log(|V |2/|A|))
algorithm for finding a maximum flow in any directed graph. An alternative approach
finding a maximum flow in time O(|V ||A| log(|V |2/|A|)) was described in Goldberg
and Tarjan [1988].

For surveys on maximum flow algorithms, see Goldberg, Tardos, and Tarjan [1990]
and Ahuja, Magnanti, and Orlin [1993].

4.5. Circulations

A theorem related to the max-flow min-cut theorem is due to Hoffman [1960] and
concerns circulations. Let D = (V,A) be a directed graph. A function f : A → R is
called a circulation if for each vertex v ∈ V one has:

(23)
∑

a∈δin(v)

f(a) =
∑

a∈δout(v)

f(a).

So now the flow conservation law holds at each vertex v.

Hoffman [1960] proved the following theorem (which can also be derived from the
max-flow min-cut theorem, but a direct proof seems shorter). For any directed graph
D = (V,A), and any d, c, f : A → R with d(a) ≤ f(a) ≤ c(a) for each a ∈ A, we
define

Section 4.5. Circulations 69

(24) Af := {a | f(a) < c(a)} ∪ {a−1 | d(a) < f(a)},

and Df := (V,Af).

Theorem 4.6 (Hoffman’s circulation theorem). Let D = (V,A) be a directed graph
and let d, c : A → R be such that d(a) ≤ c(a) for each arc a. Then there exists a
circulation f such that

(25) d(a) ≤ f(a) ≤ c(a)

for each arc a if and only if

(26)
∑

a∈δin(U)

d(a) ≤
∑

a∈δout(U)

c(a)

for each subset U of V .

Proof. To see necessity of (26), suppose that a circulation f satisfying (25) exists.
Then15

(27) d(δin(U)) ≤ f(δin(U)) = f(δout(U)) ≤ c(δout(U)).

To see sufficiency, define for any f : A → R and any v ∈ V ,

(28) lossf (v) := f(δout(v))− f(δin(v)).

So lossf can be seen as a vector in RV .

Choose a function f satisfying d ≤ f ≤ c and minimizing ‖lossf‖1. Let

(29) S := {v ∈ V | lossf (v) < 0} and T := {v ∈ V | lossf (v) > 0}.

If S = ∅, then f is a circulation, and we are done. So assume S 6= ∅. If Df contains
an S − T path, we can modify f so as to reduce ‖lossf‖1. So Df does not contain
any S − T path. Let U be the set of vertices reachable in Df from S. Then for each
a ∈ δout(U) we have a 6∈ Af and hence f(a) = c(a). Similarly, for each a ∈ δin(U) we
have a−1 6∈ Af and hence f(a) = d(a). Therefore

(30) c(δout(U))− d(δin(U)) = f(δout(U))− f(δin(U)) = lossf (U) = lossf (S) < 0,

contradicting (26).

15For any function g : A→ R and subset B of A, we write g(B) =
∑

a∈B
g(a).

70 Chapter 4. Menger’s theorem, flows, and circulations

One has moreover:

Theorem 4.7. In Theorem 4.6, if c and d are integer and there exists a circulation
f satisfying d ≤ f ≤ c, then there exists an integer-valued circulation f ′ satisfying
d ≤ f ′ ≤ c.

Proof. Directly from the proof above.

Exercises

4.13. Let D = (V,A) be a directed graph and let f : A → R be a circulation. Show that
there exists a circulation f ′ such that f ′ is integer-valued and such that ⌊f(a)⌋ ≤
f ′(a) ≤ ⌈f(a)⌉ for each arc a.

4.14. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be partitions of a finite set X and let k
be a natural number. Prove that X can be covered by k common SDR’s of A and B
if and only if

(31)
∣

∣(
⋃

i∈I

Ai ∪
⋃

j∈J

Bj)
∣

∣ ≥ |X|+ k(|I|+ |J | − n)

for all I, J ⊆ {1, . . . , n} with
⋃

i∈I Ai ∩
⋃

j∈J Bj = ∅.

4.15. Let D = (V,A) be a directed graph, and let f : A → R+. Let C be the collection
of directed circuits in D. For each directed circuit C in D let χC be the incidence
vector of C. That is, χC : A→ {0, 1}, with χC(a) = 1 if C traverses a and χC(a) = 0
otherwise.

Show that f is a nonnegative circulation if and only if there exists a function λ : C →
R+ such that

(32) f =
∑

C∈C

λ(C)χC .

That is, the nonnegative circulations form the cone generated by {χC | C ∈ C}.

4.6. Minimum-cost flows

In the previous sections we were searching for flows of maximum value. In this section
we consider the problem of finding a flow of maximum value with the additional
property that it has ‘minimum cost’.

Let be given again a directed graph D = (V,A), distinct vertices s and t of D,
and a capacity function c : A → R+. Let moreover be given a function k : A → R+,

Section 4.6. Minimum-cost flows 71

called the cost function. Again we assume that c(a) > 0 for each a, and that for no
u, v ∈ V , both (u, v) and (v, u) occur as arc of D.

Define for any function f : A → R+ the cost of f as:

(33) cost(f) :=
∑

a∈A

k(a)f(a).

The following is the minimum-cost flow problem (or min-cost flow problem):

(34) given: a directed graph D = (V,A), s, t ∈ V , a capacity function c : A → R+

and a cost function k : A → R+;
find: an s − t flow subject to c of maximum value, such that f has minimum

cost among all s− t flows subject to c of maximum value.

This problem can be solved with an adaptation of the algorithm described in
Section 4.3. Let us define an s− t flow f ≤ c to be an extreme flow if f has minimum
cost among all s− t flows g ≤ c with value(g) = value(f).

So an extreme flow does not need to have maximum value. An extreme flow is a
flow f that has minimum cost among all flows with the same value as f .

Define a length function l : A ∪ A−1 → R by:

(35) l(a) :=

{

k(a) if a ∈ A,

−k(a−1) if a−1 ∈ A

for each a ∈ A ∪A−1. For any directed path or circuit P in A ∪A−1, let l(P) be the
sum of l(a) over arcs a in P .

For any flow f , let again Df = (V,Af) be the auxiliary graph corresponding to f
(in the sense of the flow augmenting algorithm).

Proposition 4. f is an extreme flow if and only if Df has no directed circuit C with
l(C) < 0.

Proof. Necessity. Suppose that C = (a1, . . . , ak) is a directed circuit inDf of negative
length; that is,

(36) l(C) = l(a1) + l(a2) + · · ·+ l(ak) < 0.

So a1, . . . , ak are arcs in Df . Define for i = 1, . . . , k:

(37) σi :=

{

c(ai)− f(ai) if ai ∈ A,

f(a−1
i) if a−1

i ∈ A.

72 Chapter 4. Menger’s theorem, flows, and circulations

Note that by definition of Df , σi > 0 for each i = 1, . . . , k. Let α := min{σ1, . . . , σk}
and define for each a ∈ A:

(38) g(a) :=

f(a) + α if a ∈ C,

f(a)− α if a−1 ∈ C,

f(a) otherwise.

Then g is again an s − t flow subject to c, with value(g) = value(f). Moreover one
has

(39) cost(g) = cost(f) + α · l(C) < cost(f).

So f is not an extreme flow.

Sufficiency. Let g be any flow with value(g) =value(f). Define h : Af → R+ by:

(40) h(a) := g(a)− f(a) if g(a) > f(a), and
h(a−1) := f(a)− g(a) if g(a) < f(a),

for a ∈ A, while h(a) = 0 for all other arcs a of Af . Then h is a circulation in Df .

Hence, by Exercise 4.15, there exists a function λ : C → R+ such that h =
∑

C∈C λ(C)χC . Hence cost(g) − cost(f) =
∑

C∈C λ(C)l(C). Assuming Df has no
directed circuits of negative length, it follows that cost(g) ≥ cost(f). So f is an
extreme flow.

With this we can show:

Proposition 5. Let f be an extreme flow. Let f ′ arise by choosing in the flow
augmenting algorithm a path P in Df minimizing l(P). Then f ′ is an extreme flow
again.

Proof. If Df ′ has a directed circuit C with l(C) < 0, we could have chosen a shorter
s − t path in Df . To see this, let A(P) and A(C) be the sets of arcs in P and C,
respectively. Then A(C) ⊆ Af ′ ⊆ Af ∪ A(P)−1. Hence for B := A(C) ∩ A(P)−1, the
set (A(P) \ B−1) ∪ (A(C) \ B) is a subset of Af . Moreover, it can be decomposed
into a directed s − t path Q and a number of directed circuits C1, . . . , Ck, counting
multiplicities: if an arc occurs both in A(P) and A(C), then it occurs twice in this
decomposition. (This decomposition exists since adding arc (t, s) makes (V, (A(P) \
B−1) ∪ (A(C) \B)) Eulerian.)

Since l(Ci) ≥ 0 for each i (as Ci is a directed circuit in Af and f is extreme), and
since l(B−1) = −l(B), we have

Section 4.6. Minimum-cost flows 73

(41) l(P) > l(P)+ l(C) = l(P)− l(B−1)+ l(C)− l(B) = l(Q)+
k

∑

i=1

l(Ci) ≥ l(Q).

This contradicts the fact that P is shortest in Df .

This implies that the min-cost flow problem can be solved by choosing in the flow
augmenting algorithm a shortest path in the auxiliary graph throughout. The first
flow, the all-zero flow f0, is trivially an extreme flow. Hence also all further flows
f1, f2, f3, . . . will be extreme flows by Proposition 5. Therefore, also the last flow,
which is of maximum value, is an extreme flow. So we have a solution to the min-cost
flow problem. (Here we assume that all capacities are rational.)

In this process, we should be able to find a shortest s − t path in the auxiliary
graphs Df . This is indeed possible with the Bellman-Ford method, since Df does not
have directed circuits of negative length as we saw in Proposition 4.

The algorithm can be modified so that all lengths are nonnegative throughout
the iterations, and this yields a running time of O(M · (m + n log n)), where M is
the value of a maximum flow (assuming all capacities to be integer). This is not
polynomial-time. Tardos [1985] gave the first polynomial-time algorithm to find a
minimum-cost flow of maximum value. At the moment of writing, the asymptotically
fastest method was given by Orlin [1988,1993] and runs in O(m log n(m + n log n))
time.

In a similar way one can describe a minimum-cost circulation algorithm. For more
about network flows we refer to the books of Ford and Fulkerson [1962] and Ahuja,
Magnanti, and Orlin [1993].

Application 4.3: Minimum-cost transportation problem. Beside the data in Appli-
cation 4.2 one may also have a cost function ki,j , giving the cost of transporting 1 ton from
factory i to costumer j. Moreover, there is given a cost ki of producing 1 ton by factory
i (for each i). We want to make a production and transportation plan that minimizes the
total cost.

This problem can be solved by assigning also costs to the arcs in Application 4.2. We
can take the costs on the arcs from bj to t equal to 0.

Application 4.4: Routing empty freighters. Historically, in his paper “Optimum
utilization of the transportation system”, Koopmans [1948] was one of the first studying
the minimum-cost transportation problem, in particular with application to the problem of
routing empty freighters. Koopmans considered the surplus and need of register ton of ship
capacity at harbours all over the world, as given by the following table (data are aggregated
to main harbours):

74 Chapter 4. Menger’s theorem, flows, and circulations

Net receipt of dry cargo in overseas trade, 1925

Unit: Millions of metric tons per annum

Harbour Received Dispatched Net receipts
New York 23.5 32.7 −9.2
San Francisco 7.2 9.7 −2.5
St. Thomas 10.3 11.5 −1.2
Buenos Aires 7.0 9.6 −2.6
Antofagasta 1.4 4.6 −3.2
Rotterdam 126.4 130.5 − 4.1
Lisbon 37.5 17.0 20.5
Athens 28.3 14.4 13.9
Odessa 0.5 4.7 −4.2
Lagos 2.0 2.4 −0.4
Durban 2.1 4.3 −2.2
Bombay 5.0 8.9 −3.9
Singapore 3.6 6.8 −3.2
Yokohama 9.2 3.0 6.2
Sydney 2.8 6.7 −3.9
Total 266.8 266.8 0.0

Given is moreover a distance table between these harbours. Koopmans wondered how
ships should be routed between harbours so as to minimize the total amount of ton kilome-
ters made by empty ships.

This problem is a special case of the min-cost flow problem. Make a graph with vertex
set all harbours, together with two dummy harbours s and t. From any harbour u with
a surplus (positive net receipt) to any harbour w with a need (negative net receipt) make
an arc with cost equal to the distance between u and w, and with capacity ∞. Moreover,
from s to any harbour u with a surplus σ, make an arc with cost 0 and capacity equal to
σ. Similarly, from any harbour w with a need ν, make an arc to t, with cost 0 and capacity
equal to ν.

Now a maximum flow of minimum cost corresponds to an optimum routing of ships
between harbours.

A similar model applies to the problem of routing empty box cars in a railway network
(Feeney [1957], cf. Norman and Dowling [1968], White and Bomberault [1969]).

Application 4.5: Routing of railway stock. NS (Nederlandse Spoorwegen = Dutch
Railways) performs a daily schedule on its line Amsterdam–Vlissingen, with the following
(weekday) timetable:

ride number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191

Amsterdam d 6.48 7.55 8.56 9.56 10.56 11.56 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.56 20.56 21.56 22.56

Rotterdam a 7.55 8.58 9.58 10.58 11.58 12.58 13.58 14.58 15.58 16.58 17.58 18.58 19.58 20.58 21.58 22.58 23.58

Rotterdam d 7.00 8.01 9.02 10.03 11.02 12.03 13.02 14.02 15.02 16.00 17.01 18.01 19.02 20.02 21.02 22.02 23.02

Roosendaal a 7.40 8.41 9.41 10.43 11.41 12.41 13.41 14.41 15.41 16.43 17.43 18.42 19.41 20.41 21.41 22.41 23.54

Roosendaal d 7.43 8.43 9.43 10.45 11.43 12.43 13.43 14.43 15.43 16.45 17.45 18.44 19.43 20.43 21.43

Vlissingen a 8.38 9.38 10.38 11.38 12.38 13.38 14.38 15.38 16.38 17.40 18.40 19.39 20.38 21.38 22.38

ride number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176

Vlissingen d 5.30 6.54 7.56 8.56 9.56 10.56 11.56 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.55

Roosendaal a 6.35 7.48 8.50 9.50 10.50 11.50 12.50 13.50 14.50 15.50 16.50 17.50 18.50 19.50 20.49

Roosendaal d 5.29 6.43 7.52 8.53 9.53 10.53 11.53 12.53 13.53 14.53 15.53 16.53 17.53 18.53 19.53 20.52 21.53

Rotterdam a 6.28 7.26 8.32 9.32 10.32 11.32 12.32 13.32 14.32 15.32 16.32 17.33 18.32 19.32 20.32 21.30 22.32

Rotterdam d 5.31 6.29 7.32 8.35 9.34 10.34 11.34 12.34 13.35 14.35 15.34 16.34 17.35 18.34 19.34 20.35 21.32 22.34

Amsterdam a 6.39 7.38 8.38 9.40 10.38 11.38 12.38 13.38 14.38 15.38 16.40 17.38 18.38 19.38 20.38 21.38 22.38 23.38

Section 4.6. Minimum-cost flows 75

The rides are carried out by one type of stock, that consists of two-way units that can
be coupled with each other. The length of the trains can be changed at the end stations
and at two intermediate stations: Rotterdam and Roosendaal. So in this example, each
train ride consists of three ride ‘segments’.

Based on the expected number of passengers, NS determines for each ride segment a
minimum number of units that should be deployed for that segment:

ride number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191

Amsterdam-Rotterdam 3 5 4 3 3 3 3 3 3 4 5 5 3 2 2 2 1

Rotterdam-Roosendaal 2 3 4 4 2 3 3 3 3 4 5 5 4 2 2 2 1

Roosendaal-Vlissingen 3 2 2 2 2 3 2 3 3 3 4 4 3 2 1

ride number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176

Vlissingen-Roosendaal 2 4 4 4 2 2 3 2 2 2 3 3 2 2 2

Roosendaal-Rotterdam 2 4 5 4 5 3 3 3 2 3 3 4 3 2 2 2 2

Rotterdam-Amsterdam 1 3 5 4 4 5 3 3 3 3 3 4 5 3 2 2 2 2

17

19

20

22

24
1

10

6

7

8

9

11
12

13

14

15

16

18

21

23

2

3

4

5

Roosendaal

Amsterdam

Vlissingen

Rotterdam

Figure 4.4

A unit uncoupled from a train at a station can be coupled at any other later train, in
the same direction or the other. Moreover, for each segment there is a maximum number

76 Chapter 4. Menger’s theorem, flows, and circulations

of units given that can be used for that segment (depending for instance on the length of
station platforms).

The company now wishes to find the minimum number of units that should be used to
run the schedule (excluding maintenance).

As was observed by Bartlett [1957] (cf. van Rees [1965]) this problem can be considered
as a minimum-cost circulation problem (cf. Figure 4.4). Make a directed graph D with
vertex set all pairs (s, t) where s is any station where the train composition can be changed
(in our example: the end stations and the two intermediate stations) and t is any time at
which there is a train arriving at or leaving s. For each ride segment make an arc from (s, t)
to (s′, t′) if the segment leaves s at time t and arrives at s′ at time t′.

Moreover, for each station s and each two consecutive times t, t′ at which segments
arrive or leave, one makes an arc from (s, t) to (s, t′). One also does this overnight.

Now for each arc a coming from a segment assign a lower bound d(a) equal to the
number given in the table above for the segment. Moreover, define an upper bound c(a)
equal to the maximum number of units that can be used for that segment. For each arc a
from (s, t) to (s, t′) let d(a) := 0 and c(a) := ∞.

For each arc a define a cost k(a) := 0, except if a corresponds to an overnight stay at
one of cities, when k(a) := 1. Then a minimum-cost circulation corresponds to a routing of
the stock using a minimum number of units.

There are several variations possible. Instead of an upper bound c(a) = ∞ for the arcs a
from (c, t) to (s, t′) one can take c(a) equal to the capacity of the storage area at s. Instead
of a cost k(a) = 0 at each segment one can take k(a) equal to the cost of riding one unit of
stock over that segment. This can be weighed against the cost of buying extra units.

A similar model for routing airplanes was considered by Ferguson and Dantzig [1955].

Exercises

4.16. Determine in the following networks a maximum s− t flow of minimum-cost (cost in
italics, capacity in bold):

(i) s t

5

3

1

2

3
2

5

6

7

8

3

5

22

6

5

10

18

4

4

7

Section 4.6. Minimum-cost flows 77

(ii) ts

3

8

9

3 17

7

2

4

5

3

1

4
1

2

2

20

6

2

3
2

3

3

6

40

2

1 1

30

5

(iii) s t

2

4

1

1

3

4 1

3

8

1

5

2 43

7
8

3

8

6

1 1

5

2

7

6

8

1

1

1
9

2

8

2

7

4.17. Solve the minimum-cost transportation problem for the following data sets:

(i) m = n = 3, s1 = 9, s2 = 15, s3 = 7, d1 = 5, d2 = 13, d3 = 7, k1 = 2, k2 = 3, k3 =
2,

ci,j j = 1 j = 2 j = 3

i = 1 6 4 0
i = 2 3 9 4
i = 3 0 2 6

ki,j j = 1 j = 2 j = 3

i = 1 8 3 5
i = 2 2 7 1
i = 3 2 5 9

(ii) m = n = 3, s1 = 11, s2 = 7, s3 = 6, d1 = 9, d2 = 7, d3 = 5, k1 = 4, k2 = 3, k3 = 3,

ci,j j = 1 j = 2 j = 3

i = 1 7 4 0
i = 2 3 3 2
i = 3 0 2 4

ki,j j = 1 j = 2 j = 3

i = 1 3 2 4
i = 2 2 8 4
i = 3 1 3 2

4.18. Describe the problem of finding a maximum-weight matching in a bipartite graph as
a minimum-cost flow problem.

4.19. Reduce the problem of finding an extreme flow of given value, to the min-cost flow
problem as described above.

78 Chapter 5. Nonbipartite matching

5. Nonbipartite matching

5.1. Tutte’s 1-factor theorem and the Tutte-Berge

formula

A basic result on matchings in arbitrary (not necessarily bipartite) graphs was found
by Tutte [1947]. It characterizes graphs that have a perfect matching. A perfect
matching (or a 1−factor) is a matching M that covers all vertices of the graph. (So
M partitions the vertex set of G.)

Berge [1958] observed that Tutte’s theorem implies a min-max formula for the
maximum size of a matching in a graph, the Tutte-Berge formula, which we prove
first.

Call a component of a graph odd if it has an odd number of vertices. For any
graph G, define

(1) o(G) := number of odd components of G.

Let ν(G) denotes the maximum size of a matching. For any graph G = (V,E) and
U ⊆ V , the graph obtained by deleting all vertices in U and all edges incident with
U , is denoted by G− U .

Then:

Theorem 5.1 (Tutte-Berge formula). For each graph G = (V,E),

(2) ν(G) = min
U⊆V

1
2
(|V |+ |U | − o(G− U)).

Proof. To see ≤, we have for each U ⊆ V :

(3) ν(G) ≤ |U |+ν(G−U) ≤ |U |+ 1
2
(|V \U |−o(G−U)) = 1

2
(|V |+|U |−o(G−U)).

We prove the reverse inequality by induction on |V |, the case V = ∅ being trivial.
We can assume that G is connected, since otherwise we can apply induction to the
components of G.

First assume that there exists a vertex v covered by all maximum-size matchings.
Then ν(G− v) = ν(G)− 1, and by induction there exists a subset U ′ of V \ {v} with

(4) ν(G− v) = 1
2
(|V \ {v}|+ |U ′| − o(G− v − U ′)).

Then U := U ′ ∪ {v} gives equality in (2), since

Section 5.1. Tutte’s 1-factor theorem and the Tutte-Berge formula 79

(5) ν(G) = ν(G− v) + 1 = 1
2
(|V \ {v}|+ |U ′| − o(G− v − U ′)) + 1

= 1
2
(|V |+ |U | − o(G− U)).

So we can assume that there is no such v. In particular, ν(G) < 1
2
|V |. We show

that there exists a matching of size 1
2
(|V | − 1), which implies the theorem (taking

U := ∅).
Indeed, suppose to the contrary that each maximum-size matching M misses at

least two distinct vertices u and v. Among all such M,u, v, choose them such that
the distance dist(u, v) of u and v in G is as small as possible.

If dist(u, v) = 1, then u and v are adjacent, and hence we can augment M by the
edge uv, contradicting the maximality of |M |. So dist(u, v) ≥ 2, and hence we can
choose an intermediate vertex t on a shortest u−v path. By assumption, there exists
a maximum-size matching N missing t. Choose such an N with |M ∩N | maximal.

By the minimality of dist(u, v), N covers both u and v. Hence, as M and N cover
the same number of vertices, there exists a vertex x 6= t covered by M but not by N .
Let x ∈ e = xy ∈ M . Then y is covered by some edge f ∈ N , since otherwise N ∪{e}
would be a matching larger than N . Replacing N by (N \ {f}) ∪ {e} would increase
its intersection with M , contradicting the choice of N .

(This proof is based on the proof of Lovász [1979] of Edmonds’ matching polytope
theorem.)

The Tutte-Berge formula immediately implies Tutte’s 1-factor theorem.

Corollary 5.1a (Tutte’s 1-factor theorem). A graph G = (V,E) has a perfect match-
ing if and only if G− U has at most |U | odd components, for each U ⊆ V .

Proof. Directly from the Tutte-Berge formula (Theorem 5.1), since G has a perfect
matching if and only if ν(G) ≥ 1

2
|V |.

In the following sections we will show how to find a maximum-size matching
algorithmically.

With Gallai’s theorem, the Tutte-Berge formula implies a formula for the edge
cover number ρ(G), where o(U) denotes the number of odd components of the sub-
graph G[U] of G induced by U (meaning that G[U] = (U, {e ∈ E | e ⊆ U})):

Corollary 5.1b. Let G = (V,E) be a graph without isolated vertices. Then

(6) ρ(G) = max
U⊆V

|U |+ o(U)

2
.

Proof. By Gallai’s theorem (Theorem 3.1) and the Tutte-Berge formula (Theorem
5.1),

80 Chapter 5. Nonbipartite matching

(7) ρ(G) = |V | − ν(G) = |V | − min
W⊆V

|V |+ |W | − o(V \W)

2
= max

U⊆V

|U |+ o(U)

2
.

Exercises

5.1. (i) Show that a tree has at most one perfect matching.

(ii) Show (not using Tutte’s 1-factor theorem) that a tree G = (V,E) has a perfect
matching if and only if the subgraph G− v has exactly one odd component, for
each v ∈ V .

5.2. Let G be a 3-regular graph without any bridge. Show that G has a perfect matching.
(A bridge is an edge e not contained in any circuit; equivalently, deleting e increases
the number of components; equivalently, {e} is a cut.)

5.3. Let A1, . . . , An be a collection of nonempty subsets of the finite set X so that each
element in X is in exactly two sets among A1, . . . , An. Show that there exists a set
Y intersecting all sets A1, . . . , An, and satisfying |Y | ≤ t if and only if for each subset
I of {1, . . . , n} the number of components of (Ai | i ∈ I) containing an odd number
of sets in (Ai | i ∈ I) is at most 2t− |I|.
(Here a subset Y of X is called a component of (Ai | i ∈ I) if it is a minimal nonempty
subset of X with the property that for each i ∈ I: Ai ∩ Y = ∅ or Ai ⊆ Y .)

5.4. Let G = (V,E) be a graph and let T be a subset of V . Then G has a matching
covering T if and only if the number of odd components of G−W contained in T is
at most |W |, for each W ⊆ V .

5.5. Let G = (V,E) be a graph and let b : V → Z+. Show that there exists a function
f : E → Z+ so that for each v ∈ V :

(8)
∑

e∈E,v∈e

f(e) = b(v)

if and only if for each subset W of V the number β(W) is at most b(V \W).

(Here for any subset W of V , b(W) :=
∑

v∈W b(v). Moreover, β(W) denotes the
following. Let U be the set of isolated vertices in the graph G|W induced by W and
let t denote the number of components C of the graph G|W \U with b(C) odd. Then
β(W) := b(U) + t.)

5.6. Let G = (V,E) be a graph and let b : V → Z+. Show that G has a subgraph
G′ = (V,E′) such that degG′(v) = b(v) for each v ∈ V if and only if for each two
disjoint subsets U and W of V one has

(9)
∑

v∈U

b(v) ≥ q(U,W) +
∑

v∈W

(b(v)− dG−U (v)).

Section 5.2. Cardinality matching algorithm 81

Here q(U,W) denotes the number of components K of G− (U ∪W) for which b(K)
plus the number of edges connecting K and W , is odd. Moreover, dG−U (v) is the
degree of v in the subgraph induced by V \ U .

5.2. Cardinality matching algorithm

We now investigate the problem of finding a maximum-cardinality matching algorith-
mically. Like in the bipartite case, the key is to find an augmenting path. However,
the idea for bipartite graphs to orient the edges using the two colour classes, does not
apply to nonbipartite graphs.

Yet one could try to find an M -augmenting path by finding a so-called M -
alternating walk, but such a path can run into a loop that cannot immediately be
deleted. It was J. Edmonds who found the trick to resolve this problem, namely
by ‘shrinking’ the loop (which he called a ‘blossom’). Then applying recursion to a
smaller graph solves the problem.

We first describe the operation of shrinking. Let X and Y be sets. Then we define
X/Y as follows:

(10) X/Y := X if X ∩ Y = ∅,
X/Y := (X \ Y) ∪ {Y } if X ∩ Y 6= ∅.

So if G = (V,E) is a graph and C ⊆ V , then V/C arises from V by deleting all
vertices in C, and adding one new vertex called C. For any edge e of G, e/C = e if
e is disjoint from C, while e/C = uC if e = uv with u 6∈ C, v ∈ C. (If e = uv with
u, v ∈ C, then e/C is a loop CC; they can be neglected in the context of matchings.)
Then for any F ⊆ E:

(11) F/C := {f/C | f ∈ F}.

So G/C := (V/C,E/C) is again a graph. We say that G/C arises from G by shrinking
C.

Let G = (V,E) be a graph and let M be a matching in G, and let W be the set of
vertices missed by M . A walk P = (v0, v1, . . . , vt) is called M-alternating if for each
i = 1, . . . , t− 1 exactly one of vi−1vi and vivi+1 belongs to M . Note that one can find
a shortest M -alternating W −W walk of positive length, by considering the auxiliary
directed graph D = (V,A) with

(12) A := {(w,w′) | ∃x ∈ V : {w, x} ∈ E, {x, w′} ∈ M}.

Then M -alternating W −W walks correspond to directed walks in D from a vertex
in W to a vertex that is adjacent to at least one vertex in W .

82 Chapter 5. Nonbipartite matching

So an M -augmenting path is an M -alternating W − W walk of positive length,
in which all vertices are distinct. By Theorem 3.2, a matching M has maximum size
if and only if there is no M -augmenting path. We call an M -alternating walk P an
M-blossom if v0, . . . , vt−1 are distinct, v0 is missed by M , and vt = v0.

The core of the algorithm is the following observation.

Theorem 5.2. Let C be an M-blossom in G. Then M has maximum size in G if
and only if M/C has maximum size in G/C.

Proof. Let C = (v0, v1, . . . , vt), G
′ := G/C and M ′ := M/C.

First let P be an M -augmenting path in G. We may assume that P does not start
at v0 (otherwise we can reverse P). If P does not traverse any vertex in C, then P
is also M ′-augmenting in G′. If P does traverse a vertex in C, we can decompose P
as P = QR, where Q ends at a vertex in C, and no other vertex on Q belongs to C.
Then by replacing the last vertex of Q by C makes Q to an M ′-augmenting path in
G′.

Conversely, let P ′ be an M ′-augmenting path in G′. If P ′ does not traverse vertex
C of G′, then P ′ is also an M -augmenting path in G. If P ′ traverses vertex C of G′,
we may assume it ends at C (as C is missed by M ′). So we can replace C in P ′ by
some vertex vi ∈ C to obtain a path Q in G ending at vi. If i is odd, extending Q
by vi+1, . . . , vt−1, vt gives an M -augmenting path in G. If i is even, extending Q by
vi−1, . . . , v1, v0 gives an M -augmenting path in G.

Another useful observation is (where a W − v walk is a walk starting at a vertex
in W and ending at v):

Theorem 5.3. Let P = (v0, v1, . . . , vt) be a shortest even-length M-alternating W−v
walk. Then either P is simple or there exist i < j such that vi = vj, i is even, j is
odd, and v0, . . . , vj−1 are all distinct.

Proof. Assume P is not simple. Choose i < j such that vj = vi and such that j is as
small as possible. If j − i is even, we can delete vi+1, . . . , vj from P so as to obtain
a shorter M -alternating W − v walk. So j − i is odd. If j is even and i is odd, then
vi+1 = vj−1 (as it is the vertex matched to vi = vj), contradicting the minimality of
j.

We now describe an algorithm for the following problem:

(13) given: a matching M ;
find: a matching N with |N | = |M |+ 1 or conclude that M is a maximum-size

matching.

Let W be the set of vertices missed by M .

Section 5.2. Cardinality matching algorithm 83

(14) Case 1. There is no M-alternating W −W walk. Then M has maximum size
(as there is no M -augmenting path).

Case 2. There is an M-alternating W −W walk. Let P = (v0, v1, . . . , vt) be a
shortest such walk.

Case 2a. P is path. Hence P is an M -augmenting path. Then output N :=
M△EP .

Case 2b. P is not a path. That is, not all vertices in P are different. Choose
i < j such that vi = vj with j as small as possible. Reset M :=
M△{v0v1, v1v2, . . . , vi−1vi}. Then C := (vi, vi+1, . . . , vj) is anM -blossom.
Apply the algorithm (recursively) to G′ = G/C and M ′ := M/C.

• If it gives an M ′-augmenting path P ′ in G′, transform P ′ to an
M -augmenting path in G (as in the proof of Theorem 5.2).

• If it concludes that M ′ has maximum size in G′, then M has max-
imum size in G (by Theorem 5.2).

This gives a polynomial-time algorithm to find a maximum-size matching, which
is a basic result of Edmonds [1965c].

Theorem 5.4. Given an undirected graph, a maximum-size matching can be found
in time O(|V |2|E|).
Proof. The algorithm directly follows from algorithm (14), since one can iteratively
apply it, starting with M = ∅, until a maximum-size matching is attained.

By using (12), a shortest M -alternating W −W walk can be found in time O(|E|).
Moreover, the graph G/C can be constructed in time O(|E|). Since the recursion has
depth at most |V |, each application of algorithm (14) takes O(|V ||E|) time. Since the
number of applications is at most |V |, we have the time bound given in the theorem.

In fact, the method can be sharpened to O(|V |3) (Balinski [1969]), O(|V |5/2) (Even
and Kariv [1975]) and even to O(|V |1/2|E|) (Micali and Vazirani [1980]). For surveys,
see Schrijver [2003].

Application 5.1: Pairing. If a certain group of people has to be split into pairs, where
certain pairs fit and other pairs do not fit (for instance, when assigning hotel rooms or bus
seats to a touring group), we have an example of a (perfect) matching problem.

Application 5.2: Two-processor scheduling. Suppose we have to carry out certain
jobs, where some of the jobs have to be done before other. We can represent this by a
partially ordered set (X,≤) where X is the set of jobs and x < y indicates that job x has
to be done before job y. Each job takes one time-unit, say one hour.

Suppose now that there are two workers, each of which can do one job at a time.
Alternatively, suppose that you have one machine, that can do at each moment two jobs

84 Chapter 5. Nonbipartite matching

simultaneously (such a machine is called a two-processor).
We wish to do all jobs within a minimum total time span. This problem can be solved

with the matching algorithm as follows. Make a graph G = (X,E), with vertex set X (the
set of jobs) and with edge set

(15) E := {{u, v} | u 6≤ v and v 6≤ u}.

(So (X,E) is the complementary graph of the ‘comparability graph’ associated with (X,≤).)
Consider now a possible schedule of the jobs. That is, we have a sequence p1, . . . , pt,

where each pi is either a singleton vertex or an edge of G so that p1, . . . , pt partition X and
so that if x ∈ pi and y ∈ pj and x < y then i < j.16

Now the pairs in this list should form a matching M in G. Hence t = |X| − |M |. In
particular, t cannot be smaller than |X| − ν(G), where ν(G) is the matching number of G.

Now it can be shown that in fact one can always make a schedule with t = |X| − ν(G).
To this end, let Q be a minimum partition of V into vertices and edges of G, and let Y be
the set of minimal elements of X. If q ⊆ Y for some q ∈ Q, we can replace X by X \ q and
Q by Q \ {q}, and apply induction.

So we may assume that each y ∈ Y is contained in an edge yz ∈ Q with z 6∈ Y . Choose
an edge yz ∈ Q such that y ∈ Y and such that the height of z is as small as possible. (The
height of an element z is the maximum size of a chain in (X,≤) with maximum element z.)
As z 6∈ Y there exists an y′z′ ∈ Q with y′ ∈ Y and y′ < z.

Now clearly yy′ is an edge of G, as y and y′ are minimal elements. Moreover, zz′ is an
edge of G. For if z < z′ then y′ < z < z′, contradicting the fact that y′z′ ∈ EG; and if
z′ < z than z′ would have smaller height than z.

So replacing yz and y′z′ in Q by yy′ and zz′, we have yy′ ⊆ Y , and we can apply
induction as before.

Exercises

5.7. Apply the matching augmenting algorithm to the matchings in the following graphs:

(i)

(ii)

16Here we identify a vertex v with the set {v}.

Section 5.3. Weighted matching algorithm 85

(iii)

5.3. Weighted matching algorithm

Edmonds [1965a] proved that also the maximum-weight matching problem can be
solved in polynomial time. Equivalently, the minimum-weight perfect matching prob-
lem can be solved in polynomial time. It is the problem:

(16) given: a graph G = (V,E) and a ‘weight’ function w : E → Q;
find: a perfect matching M minimizing

∑

e∈M w(e).

We describe the algorithm, assuming without loss of generality that G has at least
one perfect matching and that w(e) ≥ 0 for each edge e (we can add a constant to
all edge weights without changing the problem).

Like the cardinality matching algorithm, the weighted matching algorithm is based
on shrinking sets of vertices. Unlike the cardinality matching algorithm however, for
weighted matchings one has to ‘deshrink’ sets of vertices (the reverse operation of
shrinking). Thus we have to keep track of the shrinking history throughout the
iterations.

The algorithm is ‘primal-dual’. The ‘vehicle’ carrying us to a minimum-weight
perfect matching is a pair of a nested17 collection Ω of odd-size subsets of V , and a
function π : Ω → Q satisfying:

(17) (i) π(U) ≥ 0 if U ∈ Ω with |U | ≥ 3,

(ii)
∑

U∈Ω

e∈δ(U)

π(U) ≤ w(e) for each e ∈ E.

This implies that for each perfect matching N in G one has w(N) ≥
∑

U∈Ω

π(U), since

(18) w(N) =
∑

e∈N

w(e) ≥
∑

e∈N

∑

U∈Ω

e∈δ(U)

π(U) =
∑

U∈Ω

π(U)|N ∩ δ(U)| ≥
∑

U∈Ω

π(U).

Notation and assumptions. Let be given Ω and π : Ω → Q. Define

17A collection Ω of subsets of a set V is called nested if U ∩W = ∅ or U ⊆ W or W ⊆ U for any
U,W ∈ Ω.

86 Chapter 5. Nonbipartite matching

(19) wπ(e) := w(e)−
∑

U∈Ω

e∈δ(U)

π(U)

for any edge e ∈ E. (So (17)(ii) implies wπ(e) ≥ 0.)

G/Ω denotes the graph obtained from G by shrinking all sets in Ωmax, the set of
inclusionwise maximal sets in Ω. We will assume throughout that {v} ∈ Ω for each
v ∈ V . Hence, as Ω is nested and covers V , Ωmax is a partition of V .

When shrinking a set U ∈ Ω, we denote the new vertex representing the shrunk
set U just by U . So G/Ω has vertices the sets in Ωmax, with two distinct elements
U,U ′ ∈ Ωmax adjacent if and only if G has an edge connecting U and U ′. We denote
any edge of G/Ω by the original edge in G.

Throughout we restrict ourselves to Ω and π satisfying:

(20) for each U ∈ Ω with |U | ≥ 3, the graph obtained from G|U by shrinking all
inclusionwise maximal proper subsets of U that are in Ω, has a Hamiltonian
circuit CU of edges e with wπ(e) = 0.

X

edge in M
edge not in M

vertex covered by M
vertex not covered by M

Figure 5.1. An M -alternating forest

M-alternating forests. An important role in the algorithm is played by a so-called
‘M -alternating forest’ relative to a matching M (cf. Figure 5.1).

Let M be a matching in a graph G = (V,E) and let W be the set of vertices
missed by M . Then a subset F of E is an M-alternating forest in G if F is a forest
containing M such that each component of (V, F) consists either of an edge in M

Section 5.3. Weighted matching algorithm 87

or contains exactly one vertex in W and such that each path in F starting in W is
M -alternating.

The set of vertices v ∈ V for which there exists an even-length (odd-length,
respectively) W − v path in F is denoted by even(F) (odd(F), respectively).

The algorithm. We iterate with Ω and π : Ω → Q satisfying (17) and (20), a
matching M in G/Ω and an M -alternating forest F in G/Ω with wπ(F) = 0.

Initially, we set M := ∅, F := ∅, Ω := {{v} | v ∈ V }, and π({v}) := 0 for
each v ∈ V . Then, as long as M is not a perfect matching in G/Ω, we perform the
following iteratively:

(21) Reset π(U) := π(U) − α for U ∈ odd(F) and π(U) := π(U) + α for U ∈
even(F), where α is the largest value such that (17) is maintained. After
that

(i) there exists an edge e of G/Ω with wπ(e) = 0 such that e
intersects even(F) but not odd(F),
or (ii) there exists a U ∈ odd(F) with |U | ≥ 3 and π(U) = 0.

First assume (i) holds. If only one end of e belongs to even(F), extend F
by e. If both ends of e belong to even(F) and F ∪ {e} contains a circuitC,
let U := V C and CU := C, add U to Ω (defining π(U) := 0), and replace F
by F/U and M by M/U . If both ends of e belong to even(F) and F ∪ {e}
contains an M -augmenting path, augment M and reset F := M .
Next assume (ii) holds. Delete U from Ω, replace F by F ∪ P ∪ N and
M by M ∪ N , where P is the even-length path in CU connecting the two
edges of F incident with U and where N is the matching in CU covering all
vertices in U that are not covered by M .

(Note that in this iteration α is bounded, since
∑

U∈Ω π(U) is bounded (by (18), as
there is at least one perfect matching), and since |even(F)| > |odd(F)| (as M is not
perfect).)

If M is a perfect matching in G/Ω, we are done: by (20) we can expand M to a
perfect matching N in G with wπ(N) = 0 and |N ∩ δ(U)| = 1 for each U ∈ Ω; then N
has equality throughout in (18), and hence it is a minimum-weight perfect matching.

Theorem 5.5. There are at most |V |2 iterations.

Proof. In any iteration where we augment M , the value of |V (G/Ω)|−2|M | decreases
by 2. If there is no matching augmentation, this value remains invariant. So there
are at most 1

2
|V | matching augmentations.

Let Veven be the set of vertices v ∈ V that are shrunk to a vertex in even(F).
Let Ω0 be the set of vertices of G/Ω that do not belong to even(F). Then in any
iteration with no matching augmentation, 2|Veven| + |Ω0| increases. Since this value
cannot exceed 2|V |, between any two matching augmentations there are at most 2|V |

88 Chapter 5. Nonbipartite matching

iterations.

This gives the theorem of Edmonds [1965a]:

Corollary 5.5a. A minimum-weight perfect matching can be found in polynomial
time.

Proof. The nestedness of Ω implies that |Ω| ≤ 2|V | (which is an easy exercise — see
Exercise 5.10). Hence each iteration can be performed in polynomial time. With any
U ∈ Ω with |U | ≥ 3 we should keep the Hamiltonian circuit CU of (20) — which we
had obtained earlier when shrinking U .

As a consequence one can derive:

Corollary 5.5b. In any graph with weight function on the edges, a maximum-weight
matching can be found in polynomial time.

Proof. Left to the reader. (Exercise 5.9.)

The above algorithm can be implemented in time O(|V |3), which is a result of
Gabow [1973] and Lawler [1976]. Faster algorithms were given by Galil, Micali, and
Gabow [1986] (O(|E||V | log |V |)) and Gabow [1990] (O(|V ||E|+ |V |2 log |V |)).

For more about matchings we refer to the book of Lovász and Plummer [1986].

Application 5.3: Optimal pairing. In several practical situations one has to find an
‘optimal pairing’, for example, when scheduling crews for airplanes. Also if one has to
assign bus seats optimally to the participants of an organized tour, or to accommodate the
participants most satisfactorily in two-bed hotel rooms, one has to solve a maximum-weight
perfect matching problem.

Application 5.4: Airline timetabling. A European airline company has for its European
flights a number of airplanes available. Each plane can make on any day two return flights to
European destinations (not necessarily the same destinations). The profit one makes on any
flight depends on the departure and arrival times of the flight (also due to intercontinental
connections). The company wants to make a timetable so that it can be performed by
the available fleet and so that the total profit is maximized. Assume that the number of
destinations to be reached is equal to twice the number of airplanes available.

To solve this problem, consider the complete graph with vertex set all possible destina-
tions. For each edge of this graph, connecting destinations B and C say, one calculates the
profit that will be made if one and the same air plane will make its flights to B and C (in
one order or the other). So one determines the optimum schedule for the flights to B and C
so that the two return flights can be done by the same airplane and so that the total profit
on the two flights is maximized.

Now a timetable yielding maximum profit is found by determining a maximum-weight

Section 5.3. Weighted matching algorithm 89

perfect matching in this graph.

Application 5.5: Chinese postman problem. The Chinese postman problem, first
studied by Guan [1960], consists of the following. Given a connected graph G = (V,E) and
a length function l : E → Q+, find a minimum-length tour T that traverses each edge at
least once.

It is not difficult to see that if each vertex of G has an even degree, then the optimal
tour traverses each edge exactly once. But if the graph has vertices of odd degree, certain
edges have to be traversed more than once. To find such edges we can proceed as follows.

First determine the set U of vertices of odd degree. Note that |U | is even. For each pair
u, u′ of vertices in U determine the distance d(u, u′) between u and u′ in the graph G (taking
l as length). Consider the complete graph H = (U,E′) on U . Determine a minimum-weight
perfect matching M in H, taking d as weight function. For each edge uu′ in M we can
determine a path Pu,u′ in G of length d(u, u′). It can be shown that any two different such
paths do not have any edge in common (assuming that each edge has positive length) —
see Exercise 5.13. Let Ẽ be the set of edges occurring in the Pu,u′ (uu′ ∈ M). Then there
exists a tour T so that each edge e ∈ E \ Ẽ is traversed exactly once and each edge e ∈ Ẽ is
traversed exactly twice. This tour T is a shortest ‘Chinese postman tour’ (Exercise 5.14).

Application 5.6: Christofides’ approximative algorithm for the traveling sales-

man problem. Christofides [1976] designed the following algorithm to find a short travel-
ing salesman tour in a graph (generally not the shortest however). The traveling salesman
problem is the problem, given a finite set V and a ‘length’ function l : V ×V → Q+, to find
a shortest traveling salesman tour. A traveling salesman tour (or Hamiltonian circuit) is a
circuit in the complete graph on V traversing each vertex exactly once.

Suppose that the length function is symmetric (that is, l(u, v) = l(v, u) for all u, v ∈ V)
and satisfies the triangle inequality:

(22) l(u,w) ≤ l(u, v) + l(v, w)

for all u, v, w ∈ V . Then a reasonably short traveling salesman tour can be found as follows.

First determine a shortest spanning tree S (with the greedy algorithm). Next, let U be
the set of vertices that have odd degree in S. Find a shortest perfect matching M on U ,
taking l as weight function. Now ES ∪M forms a set of edges such that each vertex has
even degree. (If an edge occurs both in ES and in M , we take it as two parallel edges.) So
we can make a cycle T such that each edge in ES ∪M is traversed exactly once. Then T
traverses each vertex at least once. By inserting shortcuts we obtain a traveling salesman
tour T ′ with length(T ′) ≤length(T).

How far away is the length of T ′ from the length of a shortest traveling salesman tour?
Let ρ be the length of a shortest traveling salesman tour. It is not difficult to show that:

(23) (i) length(S) ≤ ρ;
(ii) length(M) ≤ 1

2ρ.

(Exercise 5.18.) Hence

90 Chapter 5. Nonbipartite matching

(24) length(T ′) ≤length(T) =length(S)+length(M) ≤ 3
2ρ.

So the tour obtained with Christofides’ algorithm is not longer than 3
2 times the optimal

tour.
The factor 3

2 seems quite large, but it is the smallest factor for which a polynomial-time
method is known. Don’t forget moreover that it is a worst-case bound, and that in practice
(or on average) the algorithm might have a much better performance.

Exercises

5.8. Find with the weighted matching algorithm a minimum-weight perfect matching in
the following weighted graphs:

(i)

1

1

1
3

4

2

7

5

6

(ii)

0

0

0

0

1

6

50

0

1

2

4

1

8

5

6

7

3

5.9. Derive Corollary 5.5b from Corollary 5.5a.

5.10. A collection Ω of subsets of a finite set V is called cross-free if:

(25) if X,Y ∈ Ω, then X ⊆ Y , or Y ⊆ X, or X ∩ Y = ∅, or X ∪ Y = V .

Show that if Ω is cross-free, then |Ω| ≤ 4|V |.

5.11. Find a shortest Chinese postman route in the graph in Figure 5.2.

5.12. Find a shortest Chinese postman route in the map of Figure 5.3.

5.13. Show that the paths found in the algorithm for the Chinese postman problem pairwise
do not have any edge in common (if each edge has positive length).

Section 5.4. The matching polytope 91

2

6

5

9

4 3
1

3

2 1

8

3

3

3

6

2 3

3

3

4

5

3
4

3

4
5

3

5
4

1

2

2

Figure 5.2

5.14. Show that the tour found in Application 5.5 is indeed a shortest Chinese postman
tour.

5.15. Apply Christofides’ algorithm to the table in Exercise 1.8.

5.16. Let G = (V,E) be a graph and let T ⊆ V with |T | even. Call a subset F of E a
T -join if T is equal to the set of vertices of odd degree in the graph (V, F).

Derive from Corollary 5.5a that a minimum-weight T -join can be found in polynomial
time.

5.17. Let G = (V,E) be a graph and let l : E → Q be a length function such that each
circuit has nonnegative length. Let s, t ∈ V .

Derive from the minimum-weight perfect matching algorithm an algorithm to find a
minimum-length s− t path in G.

5.18. Show (23).

5.4. The matching polytope

The weighted matching algorithm of Edmonds [1965a] gives as a side result a charac-
terization of the perfect matching polytope Pperfect matching(G) of any graph G. This
is Edmonds’ matching polytope theorem.

The perfect matching polytope of a graphG = (V,E), denoted by Pperfect matching(G),
is the convex hull of the incidence vectors of the perfect matchings in G.18 That is,

18For any finite set X and any subset Y of X, the incidence vector or incidence function of a
subset Y of X is the vector χY ∈ RX defined by: χY

x
:= 1 if x ∈ Y and χY

x
:= 0 otherwise.

92 Chapter 5. Nonbipartite matching

Figure 5.3. Part of the Xuhui district of Shanghai

(26) Pperfect matching(G) =conv.hull{χM | M perfect matching in G}.

So Pperfect matching(G) is a polytope in RE.

In Section 3.6 we saw that for a bipartite graph G = (V,E), the perfect matching
polytope is fully determined by the following set of inequalities:

(27) (i) xe ≥ 0 for each e ∈ E;
(ii)

∑

e∋v xe = 1 for each v ∈ V .

These inequalities are not enough for, say, K3: taking x(e) := 1
2
for each edge e of K3

gives a vector x satisfying (27) but not belonging to the perfect matching polytope
of K3.

Edmonds [1965a] showed that it is enough to add the following set of inequalities:

(28)
∑

e∈δ(U)

xe ≥ 1 for each odd subset U of V .

It is clear that for any perfect matching M in G the incidence vector χM satisfies
(28). So clearly, Pperfect matching(G) is contained in the polyhedron Q defined by (27)
and (28). The essence of Edmonds’ theorem is that one does not need more.

In order to show Edmonds’ theorem, we derive from Edmonds’ algorithm the
following theorem, where Podd(V) denotes the collection of odd subsets of V :

Theorem 5.6. Let G = (V,E) be a graph and let w : E → Q be a ‘weight’ function.
Then the minimum weight of a perfect matching is equal to the maximum value of
∑

X∈Podd(V) π(X) where π ranges over all functions π : Podd(V) → Q satisfying (17).

Section 5.4. The matching polytope 93

Proof. We may assume that w is nonnegative: if µ is the minimum value of w(e) over
all edges e, decreasing each w(e) by µ decreases both the maximum and the minimum
by 1

2
|V |µ.
The fact that the minimum is not smaller than the maximum follows from (18).

Equality follows from the fact that in the algorithm the final perfect matching and
the final function π have equality throughout in (18).

This implies:

Corollary 5.6a (Edmonds’ perfect matching polytope theorem). The perfect match-
ing polytope of any graph G = (V,E) is determined by (27) and (28).

Proof. By Theorem 5.6 and LP-duality, for any weight function w ∈ QE, the min-
imum weight of a perfect matching is equal to the minimum of wTx taken over the
polytope determined by (27) and (28). Hence the two polytopes coincide, by Theorem
2.1.

From this one can derive Edmonds’ matching polytope theorem, characterizing
the matching polytope of a graph G = (V,E), denoted by Pmatching(G), which is the
convex hull of the incidence vectors of the matchings in G. That is,

(29) Pmatching(G) =conv.hull{χM | M matching in G}.

Again, Pmatching(G) is a polytope in RE.

Corollary 5.6b (Edmonds’ matching polytope theorem). For any graph G = (V,E)
the matching polytope is determined by:

(30) (i) xe ≥ 0 for each e ∈ E;
(ii)

∑

e∋v xe ≤ 1 for each v ∈ V ;
(iii)

∑

e⊂U xe ≤ ⌊1
2
|U |⌋ for each U ⊆ V with |U | odd.

Proof. Left to the reader (Exercise 5.21).

This in turn has the following consequence:

Corollary 5.6c. Let G = (V,E) be a graph and let w : E → Q+. Then the maximum
weight of a matching is equal to the minimum value of

(31)
∑

v∈V

yv +
∑

U⊆V

zU⌊
1

2
|U |⌋,

94 Chapter 5. Nonbipartite matching

where y ∈ QV
+ and z ∈ Q

Podd(V)
+ satisfy

∑

v∈e yv +
∑

U∈Podd(V),e⊆U zU ≥ w(e) for each
edge e.

Proof. Directly with LP-duality from Corollary 5.6b.

In fact, Cunningham and Marsh’ theorem shows that if w is integer-valued, we
can restrict y and z to integer vectors — see Section 5.5.

Exercises

5.19. Show that for any graph G = (V,E), if the inequalities (30)(i)(ii) fully determine the
matching polytope, then G is bipartite.

5.20. Show that the perfect matching polytope of a graph G = (V,E) is also determined
by the following inequalities:

(32) xe ≥ 0 for each e ∈ E;
∑

e∈δ(U)

xe ≥ 1 for each odd subset U of V ;

∑

e∈E

xe = 1
2 |V |.

5.21. Derive Edmonds’ matching polytope theorem from Edmonds’ perfect matching poly-
tope theorem.

5.22. Derive from Edmonds matching polytope theorem the linear inequalities determining
the convex hull of all symmetric permutation matrices.

5.23. Let G = (V,E) be a graph. Show that the convex hull of the incidence vectors of
matchings of size k is equal to the intersection of the matching polytope of G with
the hyperplane {x | 1Tx = k}.

5.24. Let G = (V,E) be a graph. Show that the convex hull of the incidence vectors of
matchings of size at least k and at most l is equal to the intersection of the matching
polytope of G with the set {x | k ≤ 1Tx ≤ l}.

5.5. The Cunningham-Marsh formula

Cunningham and Marsh [1978] showed a more general result, which generalizes both
Edmonds’ matching polytope theorem and the Tutte-Berge formula. We give a direct
proof.

Theorem 5.7 (Cunningham-Marsh formula). In Corollary 5.6c, if w is integer, we
can take y and z integer.

Section 5.5. The Cunningham-Marsh formula 95

Proof. We must give a matching M and integer values yv, zU as required with w(M)
equal to (31).

Let T be equal to the maximum weight of a matching and let M be the set of
matchings M of weight T . We prove the theorem by induction on T . We may assume
that G is the complete graph on V . Let G,w be a counterexample to the theorem
with (fixing V and T)

∑

e∈E w(e) as large as possible.

First assume that there exists a vertex u of G covered by every matching M ∈ M.
Let w′ be obtained from w by decreasing w(e) by 1 for each edge e incident with u
with w(e) ≥ 1. Then the maximum of w′(M) over all matchings M is equal to T − 1,
since each M ∈ M contains an edge e incident with u with w(e) ≥ 1. Hence, by
induction, there exist y′v, z

′
U as required for w′. Now increasing y′u by 1 and leaving

all other values of y′v, z
′
U invariant, gives yv, zU as required for w.

So we may assume that for each vertex v there exists a matching M ∈ M not
covering v. We show that for each three distinct vertices a, b, c ∈ V one has

(33) w(ac) ≥ min{w(ab), w(bc)}.

Indeed, by the maximality of
∑

e∈E w(e) there exists a matching M ∈ M containing
ac. (Otherwise we could increase the weight of ac without increasing T , contradicting
the maximality of

∑

e∈E w(e).) Moreover, there exists a matching M ′ ∈ M not
covering b. Let P be the component ofM∪M ′ containing ac. At least one component,
Q say, of P \ {ac} does not contain b. By symmetry of a and c we may assume that
Q contains a. Then M△(Q ∪ {ac}) and M ′△(Q ∪ {ab}) are matchings again. Now
w(M△(Q∪{ac})) ≤ T = w(M), and so w(Q∩M ′) ≤ w(Q∩M) +w(ac). Moreover,
w(M ′△(Q ∪ {ab})) ≤ T = w(M ′), and so w(Q ∩M) + w(ab) ≤ w(Q ∩M ′). Hence
w(ab) ≤ w(ac), proving (33).

For each natural number n ≥ 1 let Gn be the graph on V with as edges all e ∈ E
with w(e) ≥ n, and let Kn be the set of components of Gn. Consider some n and
some U ∈ Kn.

By (33), G|U is a complete graph. We show that each M ∈ M contains exactly
⌊1
2
|U |⌋ edges that are in EU (= set of edges contained in U).

Suppose to the contrary that U contains two vertices a and b such that a and b are
not covered by any edge in M∩EU . If a or b is not covered by M we could replace the
edge in M incident with a or b (if any) by the edge ab, thereby increasing the weight
— a contradiction. So we may assume that ac, bd ∈ M for some c, d 6∈ U . By (33),
w(cd) ≥ min{w(ac), w(ad)} ≥ min{w(ac), w(ab), w(bd)} = min{w(ac), w(bd)}. Since
w(ab) > max{w(ac), w(bd)} this implies w(ab) + w(cd) > w(ac) + w(bd). Therefore,
replacing ac and bd in M by ab and cd would increase the weight — a contradiction.
So |M ∩ EU | = ⌊1

2
|U |⌋.

For each U ⊆ V with |U | > 1, define zU as the number of natural numbers n ≥ 1
for which U ∈ Kn. Then

∑

U⊇e zU ≥ w(e) for each edge e (since e is in w(e) graphs
Gn). Moreover, choose M ∈ M arbitrarily. Then

96 Chapter 5. Nonbipartite matching

(34)
∑

U⊆V

zU⌊
1

2
|U |⌋ =

∞
∑

n=1

∑

U∈Kn

⌊1
2
|U |⌋ =

∞
∑

n=1

∑

U∈Kn

|M ∩ EU |

=
∑

e∈M

(number of n, U with e ⊆ U ∈ Kn) =
∑

e∈M

w(e).

Exercises

5.25. Derive the Tutte-Berge formula from the Cunningham-Marsh formula (Theorem 5.7).

5.26. Derive Edmonds’ matching polytope theorem from the Cunningham-Marsh formula
(Theorem 5.7).

97

6. Problems, algorithms, and

running time

6.1. Introduction

Probably most of the readers will have some intuitive idea about what is a problem
and what is an algorithm, and what is meant by the running time of an algorithm. Al-
though for the greater part of this course this intuition will be sufficient to understand
the substance of the matter, in some cases it is important to formalize this intuition.
This is particularly the case when we deal with concepts like NP and NP-complete.

The class of problems solvable in polynomial time is usually denoted by P. The
class NP, that will be described more precisely below, is a class of problems that
might be larger (and many people believe it is larger). It includes most combinatorial
optimization problems, including all problems that are in P. That is: P⊆NP. In
particular, NP does not mean: “non-polynomial time”. The letters NP stand for
“nondeterministic polynomial-time”. The class NP consists, roughly speaking, of all
those questions with the property that for any input that has a positive answer, there
is a ‘certificate’ from which the correctness of this answer can be derived in polynomial
time.

For instance, the question:

(1) ‘Given a graph G, is G Hamiltonian?’

belongs to NP. If the answer is ‘yes’, we can convince anyone that this answer is
correct by just giving a Hamiltonian circuit in G as a certificate. With this certificate,
the answer ‘yes’ can be checked in polynomial time — in fact: trivially. Here it is
not required that we are able to find the certificate in polynomial time. The only
requirement is that there exists a certificate which can be checked in polynomial
time.

Checking the certificate in polynomial time means: checking it in time bounded
by a polynomial in the original input. In particular, it implies that the certificate
itself has size bounded by a polynomial in the original input.

To elucidate the meaning of NP, it is not known if for any graph G for which
question (1) has a negative answer, there is a certificate from which the correctness of
this answer can be derived in polynomial time. So there is an easy way of convincing
‘your boss’ that a certain graph is Hamiltonian (just by exhibiting a Hamiltonian
circuit), but no easy way is known for convincing this person that a certain graph is
non-Hamiltonian.

Within the class NP there are the “NP-complete” problems. These are by defi-
nition the hardest problems in the class NP: a problem Π in NP is NP-complete if

98 Chapter 6. Problems, algorithms, and running time

every problem in NP can be reduced to Π, in polynomial time. It implies that if one
NP-complete problem can be proved to be solvable in polynomial time, then each
problem in NP can be solved in polynomial time. In other words: then P=NP would
follow.

Surprisingly, there are several prominent combinatorial optimization problems
that are NP-complete, like the traveling salesman problem and the problem of finding
a maximum clique in a graph. This pioneering eye-opener was given by Cook [1971]
and Karp [1972].

Since that time one generally sets the polynomially solvable problems against the
NP-complete problems, although there is no proof that these two concepts really are
distinct. For almost every combinatorial optimization problem one has been able
either to prove that it is solvable in polynomial time, or that it is NP-complete. But
theoretically it is still a possibility that these two concepts are just the same! Thus
it is unknown which of the two diagrams in Figure 6.1 applies.

NP

NP-c

P

NP-c P=NP

Figure 6.1

Below we make some of the notions more precise. We will not elaborate all tech-
nical details fully, but hope that the reader will be able to see the details with not
too much effort. For precise discussions we refer to the books by Aho, Hopcroft, and
Ullman [1974], Garey and Johnson [1979], and Papadimitriou [1994].

6.2. Words

If we use the computer to solve a certain graph problem, we usually do not put a
picture of the graph in the computer. (We are not working with analog computers,
but with digital computers.) Rather we put some appropriate encoding of the problem
in the computer, by describing it by a sequence of symbols taken from some fixed
finite ‘alphabet’ Σ. We can take for Σ for instance the ASCII set of symbols or the
set {0, 1}. It is convenient to have symbols like (,) , { , } and the comma in Σ, and
moreover some symbol like meaning: ‘blank’. Let us fix one alphabet Σ.

Section 6.2. Words 99

We call any ordered finite sequence of elements from Σ a word. The set of all
words is denoted by Σ∗.

e

d

b

c

a

Figure 6.2

It is not difficult to encode objects like rational numbers, vectors, matrices, graphs,
and so on, as words. For instance, the graph given in Figure 6.2 can be encoded, as
usual, by the word:

(2) ({a, b, c, d, e}, {{a, b}, {a, c}, {b, c}, {c, d}, {d, e}, {e, a}}).

A function f defined on a finite set X can be encoded by giving the set of pairs
(x, f(x)) with x ∈ X. For instance, the following describes a function defined on the
edges of the graph above:

(3)
{({a, b}, 32), ({a, c},−17), ({b, c}, 5/7), ({c, d}, 6), ({d, e},−1), ({e, a},−9)}.

A pair of a graph and a function can be described by the word (w, v), where w is the
encoding of the graph and v is the encoding of the function.

The size of a word w is the number of symbols used in w, counting multiplicities.
(So the word abaa32bc has size 8.) The size is important when we make estimates on
the running time of algorithms.

Note that in encoding numbers (integers or rational numbers), the size depends
on the number of symbols necessary to encode these numbers. Thus if we encounter
a problem on a graph with numbers defined on the edges, then the size of the input
is the total number of bits necessary to represent this structure. It might be much
larger than just the number of nodes and edges of the graph, and much smaller than
the sum of all numbers occurring in the input.

Although there are several ways of choosing an alphabet and encoding objects by
words over this alphabet, any way chosen is quite arbitrary. We will be dealing with
solvability in polynomial time in this chapter, and for that purpose most encodings
are equivalent. Below we will sometimes exploit this flexibility.

100 Chapter 6. Problems, algorithms, and running time

6.3. Problems

What is a problem? Informally, it is a question or a task, for instance, “Does this given
graph have a perfect matching?” or “Find a shortest traveling salesman tour in this
graph!”. In fact there are two types of problems: problems that can be answered by
‘yes’ or ‘no’ and those that ask you to find an object with certain prescribed properties.
We here restrict ourselves to the first type of problems. From a complexity point of
view this is not that much of a restriction. For instance, the problem of finding a
shortest traveling salesman tour in a graph can be studied by the related problem:
Given a graph, a length function on the edges, and a rational number r, does there
exist a traveling salesman tour of length at most r? If we can answer this question
in polynomial time, we can find the length of a shortest tour in polynomial time, for
instance, by binary search.

So we study problems of the form: Given a certain object (or sequence of objects),
does it have a certain property? For instance, given a graph G, does it have a perfect
matching?

As we encode objects by words, a problem is nothing but: given a word w, does
it have a certain property? Thus the problem is fully described by describing the
“certain property”. This, in turn, is fully described by just the set of all words
that have the property. Therefore we have the following mathematical definition: a
problem is any subset Π of Σ∗.

If we consider any problem Π ⊆ Σ∗, the corresponding ‘informal’ problem is:

(4) Given word w, does w belong to Π?

In this context, the word w is called an instance or the input.

6.4. Algorithms and running time

An algorithm is a list of instructions to solve a problem. The classical mathematical
formalization of an algorithm is the Turing machine. In this section we will describe
a slightly different concept of an algorithm (the ‘Thue system’) that is useful for our
purposes (explaining NP-completeness). In Section 6.10 below we will show that it is
equivalent to the notion of a Turing machine.

A basic step in an algorithm is: replace subword u by u′. It means that if word
w is equal to tuv, where t and v are words, we replace w by the word tu′v. Now
by definition, an algorithm is a finite list of instructions of this type. It thus is fully
described by a sequence

(5) ((u1, u
′
1), . . . , (un, u

′
n)),

where u1, u
′
1, . . . , un, u

′
n are words. We say that word w′ follows from word w if there

Section 6.5. The class NP 101

exists a j ∈ {1, . . . , n} such that w = tujv and w′ = tu′
jv for certain words t and v, in

such a way that j is the smallest index for which this is possible and the size of t is as
small as possible. The algorithm stops at word w if w has no subword equal to one of
u1, . . . , un. So for any word w, either there is a unique word w′ that follows from w,
or the algorithm stops at w. A (finite or infinite) sequence of words w0, w1, w2, . . . is
called allowed if each wi+1 follows from wi and, if the sequence is finite, the algorithm
stops at the last word of the sequence. So for each word w there is a unique allowed
sequence starting with w. We say that A accepts w if this sequence is finite.

For reasons of consistency it is important to have the ‘empty space’ at both sides
of a word as part of the word. Thus instead of starting with a word w, we start with
w , where is a symbol indicating space.

Let A be an algorithm and let Π ⊆ Σ∗ be a problem. We say that A solves Π if
Π equals the set of words accepted by A. Moreover, A solves Π in polynomial-time if
there exists a polynomial p(x) such that for any word w ∈ Σ∗: if A accepts w, then
the allowed sequence starting with w contains at most p(size(w)) words.

This definition enables us indeed to decide in polynomial time if a given word w
belongs to Π. We just take w0 := w, and next, for i = 0, 1, 2, . . ., we choose ‘the first’
subword uj in wi and replace it by u′

j (for some j ∈ {1, . . . , n}) thus obtaining wi+1.
If within p(size(w)) iterations we stop, we know that w belongs to Π, and otherwise
we know that w does not belong to Π.

Then P denotes the set of all problems that can be solved by a polynomial-time
algorithm.

6.5. The class NP

We mentioned above that NP denotes the class of problems for which a positive
answer has a ‘certificate’ from which the correctness of the positive answer can be
derived in polynomial time. We will now make this more precise.

The class NP consists of those problems Π ⊆ Σ∗ for which there exist a problem
Π′ ∈P and a polynomial p(x) such that for any w ∈ Σ∗:

(6) w ∈ Π if and only if there exists a word v such that (w, v) ∈ Π′ and such
that size(v) ≤ p(size(w)).

So the word v acts as a certificate showing that w belongs to Π. With the polynomial-
time algorithm solving Π′, the certificate proves in polynomial time that w belongs
to Π.

As examples, the problems

(7) Π1 := {G | G is a graph having a perfect matching} and
Π2 := {G | G is a Hamiltonian graph}

102 Chapter 6. Problems, algorithms, and running time

(encoding G as above) belong to NP, since the problems

(8) Π′
1 := {(G,M) | G is a graph and M is a perfect matching in G}

and
Π′

2 := {(G,H) | G is a graph and H is a Hamiltonian circuit in
G}

belong to P.
Similarly, the problem

(9) TSP := {(G, l, r) | G is a graph, l is a ‘length’ function on the
edges of G and r is a rational number such that G has a
Hamiltonian tour of length at most r}

(‘the traveling salesman problem’) belongs to NP, since the problem

(10) TSP′ := {(G, l, r,H) | G is a graph, l is a ‘length’ function on the
edges of G, r is a rational number, and H is a Hamiltonian
tour in G of length at most r}

belongs to P.
Clearly, P⊆NP, since if Π belongs to P, then we can just take the empty string

as certificate for any word w to show that it belongs to Π. That is, we can take
Π′ := {(w,) | w ∈ Π}. As Π ∈P, also Π′ ∈P.

The class NP is apparently much larger than the class P, and there might be not
much reason to believe that the two classes are the same. But, as yet, nobody has
been able to show that they really are different! This is an intriguing mathematical
question, but besides, answering the question might also have practical significance.
If P=NP can be shown, the proof might contain a revolutionary new algorithm,
or alternatively, it might imply that the concept of ‘polynomial-time’ is completely
useless. If P 6=NP can be shown, the proof might give us more insight in the reasons
why certain problems are more difficult than other, and might guide us to detect and
attack the kernel of the difficulties.

6.6. The class co-NP

By definition, a problem Π ⊆ Σ∗ belongs to the class co-NP if the ‘complementary’
problem Π := Σ∗ \ Π belongs to NP.

For instance, the problem Π1 defined in (7) belongs to co-NP, since the problem

(11) Π′′
1 := {(G,W) | G is a graph and W is a subset of the vertex set

of G such that the graph G −W has more than |W | odd
components}

Section 6.7. NP-completeness 103

belongs to P. This follows from Tutte’s ‘1-factor theorem’ (Corollary 5.1a): a graph G
has no perfect matching if and only if there is a subset W of the vertex set of G with
the properties described in (11). (Here, strictly speaking, the complementary problem
Π1 of Π1 consists of all words w that either do not represent a graph, or represent
a graph having no perfect matching. We assume however that there is an easy way
of deciding if a given word represents a graph. Therefore, we might assume that the
complementary problem is just {G | G is a graph having no perfect matching}.)

It is not known if the problems Π2 and TSP belong to co-NP.

Since for any problem Π in P also the complementary problem Π belongs to P,
we know that P⊆co-NP. So P⊆NP∩co-NP. The problems in NP∩co-NP are those for
which there exist certificates both in case the answer is positive and in case the answer
is negative. As we saw above, the perfect matching problem Π1 is such a problem.
Tutte’s theorem gives us the certificates. Therefore, Tutte’s theorem is called a good
characterization.

In fact, there are very few problems known that are proved to belong to NP∩co-NP,
but that are not known to belong to P. Most problems having a good characterization,
have been proved to be solvable in polynomial time. The notable exception for which
this is not yet proved is primality testing (testing if a given natural number is a prime
number).

6.7. NP-completeness

The NP-complete problems are by definition the hardest problems in NP. To be more
precise, we first define the concept of a polynomial-time reduction. Let Π and Π′

be two problems and let A be an algorithm. We say that A is a polynomial-time
reduction of Π′ to Π if A is a polynomial-time algorithm (‘solving’ Σ∗), so that for
any allowed sequence starting with w and ending with v one has: w ∈ Π′ if and only
if v ∈ Π. A problem Π is called NP-complete, if Π ∈NP and for each problem Π′ in
NP there exists a polynomial-time reduction of Π′ to Π.

It is not difficult to see that if Π belongs to P and there exists a polynomial-time
reduction of Π′ to Π, then also Π′ belongs to P. It implies that if one NP-complete
problem can be solved in polynomial time, then each problem in NP can be solved in
polynomial time. Moreover, if Π belongs to NP, Π′ is NP-complete and there exists
a polynomial-time reduction of Π′ to Π, then also Π is NP-complete.

6.8. NP-completeness of the satisfiability problem

We now first show that in fact there exist NP-complete problems. In fact we show
that the so-called satisfiability problem, denoted by SAT, is NP-complete.

To define SAT, we need the notion of a boolean expression. Examples are:

104 Chapter 6. Problems, algorithms, and running time

(12) ((x2 ∧ x3) ∨ ¬(x3 ∨ x5) ∧ x2), ((¬x47 ∧ x2) ∧ x47), ¬(x7 ∧ ¬x7).

Boolean expressions can be defined inductively. First, for each natural number n,
the ‘word’ xn is a boolean expression (using some appropriate encoding of natural
numbers and of subscripts). Next, if v and w are boolean expressions, then also
(v ∧ w), (v ∨ w) and ¬v are boolean expressions. These rules give us all boolean
expressions. (If necessary, we may use other subscripts than the natural numbers.)

Now SAT is a subcollection of all boolean expressions, namely it consists of those
boolean expressions that are satisfiable. A boolean expression f(x1, x2, x3, . . .) is
called satisfiable if there exist α1, α2, α3, . . . ∈ {0, 1} such that f(α1, α2, α3, . . .) = 1,
using the well-known identities

(13) 0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0, 1 ∧ 1 = 1,
0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1,
¬0 = 1,¬1 = 0, (0) = 0, (1) = 1.

Exercise. Let n ≥ 1 be a natural number and let W be a collection of words in
{0, 1}∗ all of length n. Prove that there exists a boolean expression f(x1, . . . , xn) in
the variables x1, . . . , xn such that for each word w = α1 . . . αn in the symbols 0 and 1
one has: w ∈ W if and only if f(α1, . . . , αn) = 1.

The satisfiability problem SAT trivially belongs to NP: we can take as certificate
for a certain f(x1, x2, x3, . . .) to belong to SAT, the equations xi = αi that give f the
value 1. (We only give those equations for which xi occurs in f .)

To show that SAT is NP-complete, it is convenient to assume that Σ = {0, 1}.
This is not that much a restriction: we can fix some order of the symbols in Σ, and
encode the first symbol by 10, the second one by 100, the third one by 1000, and so
on. There is an easy (certainly polynomial-time) way of obtaining one encoding from
the other.

The following result is basic for the further proofs:

Theorem 6.1. Let Π ⊆ {0, 1}∗ be in P. Then there exist a polynomial p(x) and
an algorithm that finds for each natural number n in time p(n) a boolean expression
f(x1, x2, x3, . . .) with the property:

(14) any word α1α2 . . . αn in {0, 1}∗ belongs to Π if and only if the boolean ex-
pression f(α1, . . . , αn, xn+1, xn+2, . . .) is satisfiable.

Proof. Since Π belongs to P, there exists a polynomial-time algorithm A solving Π.
So there exists a polynomial p(x) such that a word w belongs to Π if and only if the
allowed sequence for w contains at most p(size(w)) words. It implies that there exists

Section 6.8. NP-completeness of the satisfiability problem 105

a polynomial q(x) such that any word in the allowed sequence for w has size less than
q(size(w)).

We describe the algorithm meant in the theorem. Choose a natural number n.
Introduce variables xi,j and yi,j for i = 0, 1, . . . , p(n), j = 1, . . . , q(n). Now there exists
(cf. the Exercise above) a boolean expression f in these variables with the following
properties. Any assignment xi,j := αi,j ∈ {0, 1} and yi,j := βi,j ∈ {0, 1} makes f equal
to 1 if and only if the allowed sequence starting with the word w0 := α0,1α0,2 . . . α0,n

is a finite sequence w0, . . . , wk, so that:

(15) (i) αi,j is equal to the jth symbol in the word wi, for each i ≤ k and each
j ≤ size(wi);

(ii) βi,j = 1 if and only if i > k or j ≤ size(wi).

The important point is that f can be found in time bounded by a polynomial in
n. To see this, we can encode the fact that word wi+1 should follow from word wi

by a boolean expression in the ‘variables’ xi,j and xi+1,j , representing the different
positions in wi and wi+1. (The extra variables yi,j and yi+1,j are introduced to indicate
the sizes of wi and wi+1.) Moreover, the fact that the algorithm stops at a word w
also can be encoded by a boolean expression. Taking the ‘conjunction’ of all these
boolean expressions, will give us the boolean expression f .

As a direct consequence we have:

Corollary 6.1a. Theorem 6.1 also holds if we replace P by NP in the first sentence.

Proof. Let Π ⊆ {0, 1}∗ belong to NP. Then, by definition of NP, there exists a
problem Π′ in P and a polynomial r(x) such that any word w belongs to Π if and
only if (w, v) belongs to Π′ for some word v with size(v) ≤ r(size(w)). By properly
re-encoding, we may assume that for each n ∈ N, any word w ∈ {0, 1}∗ belongs to Π
if and only if wv belongs to Π′ for some word v of size r(size(w)). Applying Theorem
6.1 to Π′ gives the corollary.

Now the main result of Cook [1971] follows:

Corollary 6.1b (Cook’s theorem). The satisfiability problem SAT is NP-complete.

Proof. Let Π belong to NP. We describe a polynomial-time reduction of Π to SAT.
Let w = α1 . . . αn ∈ {0, 1}∗. By Corollary 6.1a we can find in time bounded by
a polynomial in n a boolean expression f such that w belongs to Π if and only if
f(α1, . . . , αn, xn+1, . . .) is satisfiable. This is the required reduction to SAT.

106 Chapter 6. Problems, algorithms, and running time

6.9. NP-completeness of some other problems

We next derive from Cook’s theorem some of the results of Karp [1972]. First we
show that the 3-satisfiability problem 3-SAT is NP-complete. Let B1 be the set of
all words x1,¬x1, x2,¬x2, Let B2 be the set of all words (w1 ∨ · · · ∨ wk), where
w1, · · · , wk are words in B1 and 1 ≤ k ≤ 3. Let B3 be the set of all words w1∧ . . .∧wk,
where w1, . . . , wk are words in B2. Again, we say that a word f(x1, x2, . . .) ∈ B3 is
satisfiable if there exists an assignment xi := αi ∈ {0, 1} (i = 1, 2, . . .) such that
f(α1, α2, . . .) = 1 (using the identities (13)).

Now the 3-satisfiability problem 3-SAT is: Given a word f ∈ B3, decide if it is
satisfiable.

Corollary 6.1c. The 3-satisfiability problem 3-SAT is NP-complete.

Proof. We give a polynomial-time reduction of SAT to 3-SAT. Let f(x1, x2, . . .) be a
boolean expression. Introduce a variable yg for each subword g of f that is a boolean
expression.

Now f is satisfiable if and only if the following system is satisfiable:

(16) yg = yg′ ∨ yg′′ (if g = g′ ∨ g′′),
yg = yg′ ∧ yg′′ (if g = g′ ∧ g′′),
yg = ¬yg′ (if g = ¬g′),
yf = 1.

Now yg = yg′ ∨ yg′′ can be equivalently expressed by: yg ∨ ¬yg′ = 1, yg ∨ ¬yg′′ =
1,¬yg ∨ yg′ ∨ yg′′ = 1. Similarly, yg = yg′ ∧ yg′′ can be equivalently expressed by:
¬yg ∨ yg′ = 1,¬yg ∨ yg′′ = 1, yg ∨ ¬yg′ ∨ ¬yg′′ = 1. The expression yg = ¬yg′ is
equivalent to: yg ∨ yg′ = 1,¬yg ∨ ¬yg′ = 1.

By renaming variables, we thus obtain words w1, . . . , wk in B2, so that f is satis-
fiable if and only if the word w1 ∧ . . . ∧ wk is satisfiable.

We next derive that the partition problem PARTITION is NP-complete. This is
the problem: Given a collection C of subsets of a finite set X, is there a subcollection
of C that forms a partition of X?

Corollary 6.1d. The partition problem PARTITION is NP-complete.

Proof. We give a polynomial-time reduction of 3-SAT to PARTITION. Let f =
w1∧ . . .∧wk be a word in B3, where w1, . . . , wk are words in B2. Let x1, . . . , xm be the
variables occurring in f . Make a bipartite graph G with colour classes {w1, . . . , wk}
and {x1, . . . , xm}, by joining wi and xj by an edge if and only if xj or ¬xj occurs in
wi. Let X be the set of all vertices and edges of G.

Let C ′ be the collection of all sets {wi}∪E ′, where E ′ is a nonempty subset of the

Section 6.9. NP-completeness of some other problems 107

edge set incident with wi. Let C ′′ be the collection of all sets {xj}∪E ′
j and {xj}∪E ′′

j ,
where E ′

j is the set of all edges {wi, xj} so that xj occurs in wi and where E ′′
j is the

set of all edges {wi, xj} so that ¬xj occurs in wi.
Now f is satisfiable if and only if the collection C ′ ∪ C ′′ contains a subcollection

that partitions X. Thus we have a reduction of 3-SAT to PARTITION.

We derive the NP-completeness of the directed Hamiltonian cycle problem DI-
RECTED HAMILTONIAN CYCLE: Given a directed graph, does it have a directed
Hamiltonian cycle?

Corollary 6.1e. DIRECTED HAMILTONIAN CYCLE is NP-complete.

Proof.We give a polynomial-time reduction of PARTITION to DIRECTED HAMIL-
TONIAN CYCLE. Let C = {C1, . . . , Cm} be a collection of subsets of the set X =
{x1, . . . , xk}. Introduce ‘vertices’ r0, r1, . . . , rm, s0, s1, . . . , sk.

For each i = 1, . . . ,m we do the following. Let Ci = {xj1 , . . . , xjt}. We construct a
directed graph on the vertices ri−1, ri, sjh−1, sjh (for h = 1, . . . , t) and 3t new vertices,
as in Figure 6.3. Moreover, we make arcs from rm to s0 and from sk to r0.

s

-1

j jt
s-1

r
i

t -1

r

2
j

i

j -11
j

s s jt -1 tj -1-1 s
2

s s
1 j

s

Figure 6.3

Let D be the directed graph arising. Then it is not difficult to check that there
exists a subcollection C ′ of C that partitions X if and only if D has a directed Hamil-
tonian cycle C. (Take: (ri−1, ri) ∈ C ⇐⇒ Ci ∈ C ′.)

From this we derive the NP-completeness of the undirected Hamiltonian cycle
problem UNDIRECTED HAMILTONIAN CYCLE: Given a graph, does it have a
Hamiltonian cycle?

Corollary 6.1f. UNDIRECTED HAMILTONIAN CYCLE is NP-complete.

Proof. We give a polynomial-time reduction of DIRECTED HAMILTONIAN CY-
CLE to UNDIRECTED HAMILTONIAN CYCLE. Let D be a directed graph. Re-
place each vertex v by three vertices v′, v′′, v′′′, and make edges {v′, v′′} and {v′′, v′′′}.
Moreover, for each arc (v1, v2) of D, make an edge {v′1, v′′′2 }. This makes the undi-
rected graph G. One easily checks that D has a directed Hamiltonian cycle if and

108 Chapter 6. Problems, algorithms, and running time

only if G has an (undirected) Hamiltonian cycle.

This trivially implies the NP-completeness of the traveling salesman problem TSP:
Given a complete graph G = (V,E), a ‘length’ function l on E, and a rational r, does
there exist a Hamiltonian cycle of length at most r?

Corollary 6.1g. The traveling salesman problem TSP is NP-complete.

Proof. We give a polynomial-time reduction of UNDIRECTED HAMILTONIAN
CYCLE to TSP. Let G be a graph. Let G′ be the complete graph on V . Let l(e) := 0
for each edge e of G and let l(e) := 1 for each edge of G′ that is not an edge of G.
Then G has a Hamiltonian cycle if and only if G′ has a Hamiltonian cycle of length
at most 0.

6.10. Turing machines

In Section 6.4 we gave a definition of ‘algorithm’. How adequate is this definition?
Can any computer program be modelled after that definition?

To study this question, we need to know what we understand by a ‘computer’.
Turing [1937] gave the following computer model, now called a Turing machine or a
one-tape Turing machine.

A Turing machine consists of a ‘processor’ that can be in a finite number of ‘states’
and of a ‘tape’, of infinite length (in two ways). Moreover, there is a ‘read-write head’,
that can read symbols on the tape (one at a time). Depending on the state of the
processor and the symbol read, the processor passes to another (or the same) state,
the symbol on the tape is changed (or not) and the tape is moved one position ‘to
the right’ or ‘to the left’.

The whole system can be described by just giving the dependence mentioned in
the previous sentence. So, mathematically, a Turing machine is just a function

(17) T : M × Σ → M × Σ× {+1,−1}.

Here M and Σ are finite sets: M is interpreted as the set of states of the processor,
while Σ is the set of symbols that can be written on the tape. The function T
describes an ‘iteration’: T (m,σ) = (m′, σ′,+1) should mean that if the processor is
in state m and the symbol read on the tape is σ, then the next state will be m′, the
symbol σ is changed to the symbol σ′ and the tape is moved one position to the right.
T (m,σ) = (m′, σ′,−1) has a similar meaning — now the tape is moved one position
to the left.

Thus if the processor is in state m and has the word w′α′σα′′w′′ on the tape,
where the symbol indicated by σ is read, and if T (m,σ) = (m′, σ′,+1), then next the

Section 6.10. Turing machines 109

processor will be in state m′ and has the word w′α′σ′α′′w′′ on the tape, where the
symbol indicated by α′′ is read. Similarly if T (m,σ) = (m′, σ′,−1).

We assume that M contains a certain ‘start state’ 0 and a certain ‘halting state’
∞. Moreover, Σ is assumed to contain a symbol meaning ‘blank’. (This is necessary
to identify the beginning and the end of a word on the tape.)

We say that the Turing machine T accepts a word w ∈ (Σ\{ })∗ if, when starting
in state 0 and with word w on the tape (all other symbols being blank), so that
the read-write head is reading the first symbol of w, then after a finite number of
iterations, the processor is in the halting state ∞. (If w is the empty word, the
symbol read initially is the blank symbol .)

Let Π be the set of words accepted by T . So Π is a problem. We say that T solves
Π. Moreover, we say that T solves Π in polynomial time if there exists a polynomial
p(x) such that if T accepts a word w, it accepts w in at most p(size(w)) iterations.

It is not difficult to see that the concept of algorithm defined in Section 6.4 above
is at least as powerful as that of a Turing machine. We can encode any state of the
computer model (processor+tape+read-write head) by a word (w′,m,w′′). Here m is
the state of the processor and w′w′′ is the word on the tape, while the first symbol of
w′′ is read. We define an algorithm A by:

(18) replace subword ,m, σ by σ′,m′, whenever T (m,σ) = (m′, σ′,+1) and m 6=
∞;
replace subword α,m, σ by m′, ασ′, whenever T (m,σ) = (m′, σ′,−1) and
m 6= ∞.

To be precise, we should assume here that the symbols indicating the states in M
do not belong to Σ. Moreover, we assume that the symbols (and) are not in Σ.
Furthermore, to give the algorithm a start, it contains the tasks of replacing subword
α by the word (, 0, α , and subword α by α) (for any α in Σ \ { }). Then, when
starting with a word w, the first two iterations transform it to the word (, 0, w). After
that, the rules (18) simulate the Turing machine iterations. The iterations stop as
soon as we arrive at state ∞.

So T accepts a word w if and only if A accepts w — in (about) the same number
of iterations. That is, T solves a problem Π (in polynomial time) if and only if A
solves Π (in polynomial time).

This shows that the concept of ‘algorithm’ defined in Section 6.4 is at least as
powerful as that of a Turing machine. Conversely, it is not hard (although technically
somewhat complicated) to simulate an algorithm by a Turing machine. But how
powerful is a Turing machine?

One could think of several objections against a Turing machine. It uses only one
tape, that should serve both as an input tape, and as a memory, and as an output
tape. We have only limited access to the information on the tape (we can shift only
one position at a time). Moreover, the computer program seems to be implemented in

110 Chapter 6. Problems, algorithms, and running time

the ‘hardware’ of the computer model; the Turing machine solves only one problem.
To counter these objections, several other computer models have been proposed

that model a computer more realistically: multi-tape Turing machines, random access
machines (RAM’s), the universal Turing machine. However, from a polynomial-time
algorithmic point of view, these models all turn out to be equivalent. Any problem
that can be solved in polynomial time by any of these computer models, can also
be solved in polynomial time by some one-tape Turing machine, and hence by an
algorithm in the sense of Section 6.4. We refer to Aho, Hopcroft, and Ullman [1974]
and Papadimitriou [1994] for an extensive discussion.

111

7. Cliques, stable sets, and

colourings

7.1. Introduction

We have seen in Chapter 5 that in any graph G = (V,E), a matching of maximum
cardinality can be found in polynomial time. Similarly, an edge-cover of minimum
cardinality can be found in polynomial time.

On the other hand, it is NP-complete to find a maximum-cardinality stable set in
a graph. That is, determining α(G) is NP-complete. To be more precise, the problem
COCLIQUE is:

(1) given: a graph G and a natural number k,
decide: if α(G) ≥ k.

Then:

Theorem 7.1. The problem COCLIQUE is NP-complete.

Proof. We reduce SAT to COCLIQUE. Let C1 ∧ · · · ∧ Ck be a boolean expres-
sion in the variables x1, . . . , xn, where each expression is a disjunction of the literals
x1,¬x1, . . . , xn,¬xn. Consider the graph G = (V,E) with V := {(σ, i) | σ is a literal
in Ci} and E := {{(σ, i), (τ, j)} | i = j or σ = ¬τ}. Then the expression is satisfiable
if and only if G has a stable set of size k.

Since by Gallai’s theorem Theorem 3.1, α(G) = |V | − τ(G), also determining the
vertex-cover number τ(G) is NP-complete.

A clique in a graph G = (V,E) is a subset C of V such that u and w are adjacent
for any two distinct u, w in C. The clique number of G, denoted by ω(G), is the
maximum cardinality of any clique in G.

Observe that a subset C of V is a clique in G if and only if C is a stable set in the
complementary graph G. So finding a maximum-cardinality clique in G is equivalent
to finding a maximum-cardinality stable set in G, and ω(G) = α(G). As determining
α(G) is NP-complete, also determining ω(G) is NP-complete.

A (vertex-)colouring of a graph G = (V,E) is a partition of V into stable sets
C1, . . . , Ck. The sets C1, . . . , Ck are called the colours of the colouring. The (vertex-
) colouring number, or (vertex-)chromatic number, of G, denoted by χ(G), is the
minimum number of colours in any vertex-colouring of G. A graph G is called k-
colourable if χ(G) ≤ k. Again, it is NP-complete to decide if a graph is k-colourable.
That is, let VERTEX-COLOURING be the problem:

112 Chapter 7. Cliques, stable sets, and colourings

(2) given: a graph G and a natural number k,
decide: if χ(G) ≤ k.

Theorem 7.2. The problem VERTEX-COLOURING is NP-complete.

Proof. We show that COCLIQUE can be reduced to VERTEX-COLOURING. Let
G = (V,E) be an undirected graph and let k ∈ Z+. We want to decide if α(G) ≥ k.
To this end, let V ′ be a copy of V and let C be a set of size k, where V , V ′, and C
are disjoint. Make a graph H with vertex set V ∪V ′∪C as follows. A pair of vertices
in V is adjacent in H if and only if it is adjacent in G. The sets V ′ and C are cliques
in H. Each vertex in V is adjacent to each vertex in V ′ ∪C, except to its copy in V ′.
No vertex in V ′ is adjacent to any vertex in C.

This defines the graph H. Then α(G) ≥ k if and only if χ(H) ≤ |V |+ 1.

Well-known is the four-colour conjecture (4CC), stating that χ(G) ≤ 4 for each
planar graph G. This conjecture was proved by Appel and Haken [1977] and Appel,
Haken, and Koch [1977], and is now called the four-colour theorem (4CT).

In fact, it is NP-complete to decide if a planar graph is 3-colourable. [Note that
one can decide in polynomial time if a graph G is 2-colourable, as bipartiteness can
be checked in polynomial time.]

These NP-completeness results imply that if NP 6=co-NP, then one may not ex-
pect a min-max relation characterizing the stable set number α(G), the vertex-cover
number τ(G), the clique number ω(G), or the colouring number χ(G) of a graph G.

There is a trivial upper bound on the colouring number:

(3) χ(G) ≤ ∆(G) + 1,

where ∆(G) denotes the maximum valency of G. Brooks [1941] sharpened this in-
equality as follows:

Theorem 7.3 (Brooks’ theorem). For any connected graph G one has χ(G) ≤ ∆(G),
except if G = Kn or G = C2n+1 for some n ≥ 1.19

Another inequality relates the clique number and the colouring number:

(4) ω(G) ≤ χ(G).

This is easy, since in any clique all vertices should have different colours.
But there are several graphs which have strict inequality in (4). We mention

the odd circuits C2k+1, with 2k + 1 ≥ 5: then ω(C2k+1) = 2 and χ(C2k+1) = 3.

19Here Ck denotes the circuit with k vertices.

Section 7.1. Introduction 113

Moreover, for the complement C2k+1 of any such graph we have: ω(C2k+1) = k and
χ(C2k+1) = k + 1.

It was a conjecture of Berge [1963] that these graphs are crucial, which was proved
in 2002 by Chudnovsky, Robertson, Seymour, and Thomas: 20

Strong perfect graph theorem: Let G be a graph. If ω(G) < χ(G) then G
contains Cn or Cn, for some odd n ≥ 5, as an induced subgraph.

Another conjecture is due to Hadwiger [1943]. Since there exist graphs with
ω(G) < χ(G), it is not true that if χ(G) ≥ n then G contains the complete graph
Kn on n vertices as a subgraph. However, Hadwiger conjectured the following, where
a graph H is called a minor of a graph G if H arises from some subgraph of G by
contracting some (possible none) edges.

Hadwiger’s conjecture: If χ(G) ≥ n then G contains Kn as a minor.

In other words, for each n, the graph Kn is the only graph G with the property that
G is not (n− 1)-colourable and each proper minor of G is (n− 1)-colourable.

Hadwiger’s conjecture is trivial for n = 1, 2, 3, and was shown by Hadwiger for
n = 4 (see Exercise 7.8). As planar graphs do not contain K5 as a minor, Hadwiger’s
conjecture for n = 5 implies the four-colour theorem. In fact, Wagner [1937] showed
that Hadwiger’s conjecture for n = 5 is equivalent to the four-colour conjecture.
Recently, Robertson, Seymour, and Thomas [1993] showed that Hadwiger’s conjecture
is true also for n = 6, by showing that in that case it is equivalent to the four-colour
theorem. For n ≥ 7 Hadwiger’s conjecture is unsettled.

Application 7.1: Map colouring. A well-known application of colouring the vertices of
a graph is that of colouring the countries in a map in such a way that adjacent countries
obtain different colours. So the four-colour theorem implies that if each country is connected,
then the map can be coloured using not more than four colours. (One should not consider
countries as ‘adjacent’ if they have a common boundary of measure 0 only.)

There are several other cases where colouring a map amounts to finding a minimum
vertex-colouring in a graph. For instance, consider a map of the Paris Métro network
(Figure 7.1).

Suppose now that you want to print a coloured map of the network, indicating each of
the 13 lines by a colour, in such a way that lines that cross each other or meet each other
in a station, are indicated by different colours and in such a way that a minimum number
of colours is used. This easily reduces to a graph colouring problem.

Application 7.2: Storage of goods, etc. Suppose you are the director of a circus and
wish to transport your animals in a number of carriages, in such a way that no two of the
animals put into one carriage eat each other, and in such a way that you use a minimum

20Let G = (V,E) be a graph and let V ′ ⊆ V . Then the subgraph of G induced by V ′, denoted by
G|V ′ is the graph (V ′, E′), where E′ equals the set of all edges in E contained in V ′. The graph
G|V ′ is called an induced subgraph of G.

114 Chapter 7. Cliques, stable sets, and colourings

1

2

3

3

4

4

5

5

6

2

7

7
13

12

11

9

10

12
13

8
7

13

10

19

8

6

11

1

10

12
11

13

8
9

2
3
4
5
6
7

Figure 7.1. The Paris Métro lines

number of carriages.

This trivially reduces to a graph colouring problem. A similar problem is obtained if
you have to store a number of chemicals in a minimum number of rooms of a storehouse,
in such a way that no two of the chemicals stored in one room react upon each other in an
unwanted way.

This problem may also occur when assigning multiple-bed rooms to school boys on a
school trip.

Application 7.3: Assigning frequencies to radio stations, car phones, etc. Suppose
one has to assign frequencies to radio stations in a certain area. Certain pairs of radio
stations that are too close to each other cannot be assigned the same frequency as it would
cause mutual interference. Such pairs of radio stations form the edge set of a graph G, with
vertex set the set of radio stations. The chromatic number of G is equal to the minimum
number of different frequencies that one needs in order to assign a frequency to each of the
stations.

The problem occurs also when assigning frequencies to car phones, where often in a very
short time new frequencies should be determined.

Exercises

Section 7.2. Edge-colourings of bipartite graphs 115

7.1. Determine ω(G) and χ(G) for the graph G obtained from the Paris Métro map given
in Application 7.1.

7.2. Colour the map of Figure 7.2 (from the April 1975 issue of Scientific American).

Figure 7.2

7.3. Show that if G is a bipartite graph, then ω(G) = χ(G).

7.4. Derive from Kőnig’s edge cover theorem (Corollary 3.3a) that if G is the complement
of a bipartite graph, then ω(G) = χ(G).

7.5. Derive Kőnig’s edge cover theorem (Corollary 3.3a) from the strong perfect graph
theorem.

7.6. Let H be a bipartite graph and let G be the complement of the line-graph of H.
Derive from Kőnig’s matching theorem (Theorem 3.3) that ω(G) = χ(G).

7.7. Derive Kőnig’s matching theorem (Theorem 3.3) from the strong perfect graph the-
orem.

7.8. Let G = (V,E) be a simple graph such that no minor of G is isomorphic to K4. Show
that χ(G) ≤ 3.

[Hint: One may assume that G is not a forest or a circuit. Then G has a circuit not
covering all vertices of G. As G has no K4-minor, G is not 3-connected, that is, G
has a vertex cut set of size less than 3; then χ(G) ≤ 3 follows by induction.]

7.2. Edge-colourings of bipartite graphs

For any graph G = (V,E), an edge-colouring is a partition Π = {M1, . . . ,Mp} of the
edge set E, where each Mi is a matching. Each of these matchings is called a colour.

116 Chapter 7. Cliques, stable sets, and colourings

Define the edge-colouring number or edge-chromatic number χ′(G) by

(5) χ′(G) := min{|Π| | Π is an edge-colouring of G}.

So χ′(G) = χ(L(G)), where L(G) is the line graph of G.

Let ∆(G) denote the maximum degree of (the vertices of) G. Clearly,

(6) χ′(G) ≥ ∆(G),

since at each vertex v, the edges incident with v should have different colours. Again
the triangle K3 has strict inequality. Kőnig [1916] showed that for bipartite graphs
the two numbers are equal.

Theorem 7.4 (Kőnig’s edge-colouring theorem). For any bipartite graph G = (V,E)
one has

(7) χ′(G) = ∆(G).

That is, the edge-colouring number of a bipartite graph is equal to its maximum de-
gree.

Proof. First notice that the theorem is easy if ∆(G) ≤ 2. In that case, G consists of
a number of vertex-disjoint paths and even circuits.

In the general case, colour as many edges of G as possible with ∆(G) colours,
without giving the same colour to two intersecting edges. If all edges are coloured we
are done, so suppose some edge e = {u, w} is not coloured. At least one colour, say
red, does not occur among the colours given to the edges incident with u. Similarly,
there is a colour, say blue, not occurring at w. (Clearly, red6=blue, since otherwise we
could give edge e the colour red.)

Let H be the subgraph of G having as edges all red and blue edges of G, together
with the edge e. Now ∆(H) = 2, and hence χ′(H) = ∆(H) = 2. So all edges
occurring in H can be (re)coloured with red and blue. In this way we colour more
edges of G than before. This contradicts the maximality assumption.

This proof also gives a polynomial-time algorithm to find an edge-colouring with
∆(G) colours.

We remark here that Vizing [1964] proved that for general simple graphs G one
has

(8) ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Here ‘simple’ cannot be deleted, as is shown by the graph G with three vertices, where

Section 7.2. Edge-colourings of bipartite graphs 117

any two vertices are connected by two parallel edges: then ∆(G) = 4 while χ′(G) = 6.

A theorem ‘dual’ to Kőnig’s edge-colouring theorem was also shown by Kőnig.
Note that the edge-colouring number χ′(G) of a graph G is the minimum number of
matchings needed to cover the edges of a bipartite graph. Dually, one can define:

(9) ξ(G) := the maximum number of pairwise disjoint edge covers in G.

So, in terms of colours, ξ(G) is the maximum number of colours that can be used in
colouring the edges of G in such a way that at each vertex all colours occur. Hence,
if δ(G) denotes the minimum degree of G, then

(10) ξ(G) ≤ δ(G).

The triangle K3 again is an example having strict inequality. For bipartite graphs
however:

Corollary 7.4a. For any bipartite graph G = (V,E) one has

(11) ξ(G) = δ(G).

That is, the maximum number of pairwise disjoint edge covers is equal to the minimum
degree.

Proof. One may derive from G a bipartite graph H, each vertex of which has degree
δ(G) or 1, by repeated application of the following procedure:

(12) for any vertex v of degree larger than δ(G), add a new vertex u, and replace
one of the edges incident with v, {v, w} say, by {u, w}.

So there is a one-to-one correspondence between the edges of the final graphH and
the edges of G. Since H has maximum degree δ(G), by Theorem 7.4 the edges of H
can be coloured with δ(G) colours such that no two edges of the same colour intersect.
So at any vertex of H of degree δ(G) all colours occur. This gives a colouring of the
edges of G with δ(G) colours such that at any vertex of G all colours occur.

Application 7.4: Scheduling classes. Suppose we have n classes and m teachers. In the
following scheme it is indicated by an X which classes should be taught by which teachers
(one lesson of one hour a day):

118 Chapter 7. Cliques, stable sets, and colourings

class: 1 2 3 4 5 6

teacher: a X X X
b X X X X
c X X X
d X X
e X X X X
f X X X X
g X X X X

The question is: What is the minimum timespan in which all lessons can be scheduled?

Theorem 7.4 tells us that all lessons can be scheduled within a timespan of 4 hours.
Indeed, make a bipartite graph G with colour classes T := set of teachers and C := set of
classes, where t ∈ T and c ∈ C are connected if and only if teacher t should teach class c;
that is, if there is an X in position (t, c) in the scheme.

In the above example G will have maximum degree ∆(G) equal to 4. Hence according to
Theorem 7.4, the edge-colouring number χ′(G) of G is also equal to 4. So we can colour the
edges of G by 4 colours so that no two edges of the same colour have a vertex in common.
That is, we can colour the X’s in the scheme by 4 colours so that there are no two crosses
of the same colour in any row or column. If every colour represent one hour, we obtain a
schedule spanning 4 hours.

This application can be extended to the case where teachers can give more than one
lesson a day to a class. In that case we obtain a bipartite graph with multiple edges.

For any k-edge-colouring of a graph G = (V,E), we can assume that any two colours
differ by at most 1 in size (if they differ more, one can exchange the two colours on one of the
path components of the union of the two colours, to bring their cardinalities closer together).
That is, each colour has size ⌊|E|/k⌋ or ⌈|E|/k⌉. It implies that there is a schedule in which
no more than ⌈|E|/k⌉ lessons are scheduled simultaneously. So the number of classrooms
needed is ⌈|E|/k⌉, which is clearly best possible if we want to schedule |E| lessons within k
hours.

Exercises

7.9. Determine a schedule for the following scheduling problems:

(i)

X X X X

X X X X

X X X X

X X X X

X X X X

Section 7.2. Edge-colourings of bipartite graphs 119

(ii)

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

(iii)

1 2 3 5 9 12 15 164 6 7 8 10 11 13 14 17 18

J

L

R

S

T

W

X

Z

V

U

Q

P

O

M

N

K

I

G

H

F

E

C

D

B

A

Y

(Here the slots to be scheduled are indicated by open cells.)

120 Chapter 7. Cliques, stable sets, and colourings

7.10. Let G be the line-graph of some bipartite graph H. Derive from Kőnig’s edge-
colouring theorem (Theorem 7.4) that ω(G) = χ(G).

7.11. Derive Kőnig’s edge-colouring theorem (Theorem 7.4) from the strong perfect graph
theorem.

7.12. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be partitions of a finite set X such that
|A1| = · · · = |An| = |B1| = · · · = |Bn| = k. Show that A and B have k pairwise
disjoint common transversals.

7.13. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of subsets of a finite set X.

(i) Let k ∈ N. Suppose that X can be partitioned into k partial SDR’s of A, and
that X also can be partitioned into k partial SDR’s of B. Derive that X can be
partitioned into k common partial SDR’s for A and B.

(ii) Show that the minimum number of common partial SDR’s of A and B needed
to cover X is equal to

(13) ⌈max
Y⊆X

max{ |Y |
|{i|Ai ∩ Y 6= ∅}| ,

|Y |
|{i|Bi ∩ Y 6= ∅}|}⌉.

(Hint: Use Exercise 3.8.)

7.14. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of subsets of a finite set X
and let k ∈ N. Suppose that X has a partition (Y1, . . . , Yk) such that each Yi is an
SDR of A. Suppose moreover that X has a partition (Z1, . . . , Zk) such that each Zi

is an SDR of B. Derive that X has a partition (X1, . . . , Xk) such that each Xi is an
SDR both of A and of B.

7.15. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of subsets of a finite set X
and let k ∈ N. Suppose that X has a partition (Y1, . . . , Yn) such that |Yi| = k and
Yi ⊆ Ai for i = 1, . . . , n. Suppose moreover that X has a partition (Z1, . . . , Zn) such
that |Zi| = k and Zi ⊆ Bi for i = 1, . . . , n. Derive that X has a partition (X1, . . . , Xk)
such that each Xi is an SDR both of A and of B.

7.16. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families of subsets of a finite set and
let k be a natural number. Prove that A and B have k pairwise disjoint common
SDR’s if and only if for all I, J ⊆ {1, . . . , n}:

(14)
∣

∣

⋃

i∈I

Ai ∩
⋃

j∈J

Bj

∣

∣ ≥ k(|I|+ |J | − n).

(Hint: Use Exercise 7.15.)

7.17. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of subsets of a finite set X.

(i) Let k ∈ N. Suppose that A has k pairwise disjoint SDR’s and that also B
has k pairwise disjoint SDR’s. Derive that X can be partitioned into k subsets
X1, . . . , Xk such that each Xi contains an SDR of A and contains an SDR of B.

Section 7.3. Partially ordered sets 121

(ii) Show that the maximum number k for which there exists a partition as in (i) is
equal to

(15) ⌊ min
∅6=I⊆{1,...,n}

min{
∣

∣

⋃

i∈I Ai

∣

∣

|I| ,

∣

∣

⋃

i∈I Bi

∣

∣

|I| }⌋.

(Hint: Use Exercise 3.7.)

7.3. Partially ordered sets

A partially ordered set is a pair (X,≤) where X is a set and where ≤ is a relation on
X satisfying (for all x, y, z ∈ X):

(16) (i) x ≤ x;
(ii) if x ≤ y and y ≤ x then x = y;
(iii) if x ≤ y and y ≤ z then x ≤ z.

A subset C of X is called a chain if for all x, y ∈ C one has x ≤ y or y ≤ x. A subset
A of X is called an antichain if for all x, y ∈ A with x 6= y one has x 6≤ y and y 6≤ x.
Note that if C is a chain and A is an antichain then

(17) |C ∩ A| ≤ 1.

First we observe the following easy min-max relation:

Theorem 7.5. Let (X,≤) be a partially ordered set, with X finite. Then the mini-
mum number of antichains needed to cover X is equal to the maximum cardinality of
any chain.

Proof. The fact that the maximum cannot be larger than the minimum follows easily
from (17). To see that the two numbers are equal, define for any element x ∈ X the
height of x as the maximum cardinality of any chain in X with maximum x. For any
i ∈ N, let Ai denote the set of all elements of height i.

Let k be the maximum height of the elements ofX. Then A1, . . . , Ak are antichains
covering X, and moreover there exists a chain of size k.

Dilworth [1950] proved that the same theorem also holds when we interchange the
words ‘chain’ and ‘antichain’:

Theorem 7.6 (Dilworth’s decomposition theorem). Let (X,≤) be a partially ordered
set, with X finite. Then the minimum number of chains needed to cover X is equal
to the maximum cardinality of any antichain.

122 Chapter 7. Cliques, stable sets, and colourings

Proof.We apply induction on |X|. The fact that the maximum cannot be larger than
the minimum follows easily from (17). To see that the two numbers are equal, let α
be the maximum cardinality of any antichain and let A be an antichain of cardinality
α. Define

(18) A↓ := {x ∈ X | ∃y ∈ A : x ≤ y},
A↑ := {x ∈ X | ∃y ∈ A : x ≥ y}.

Then A↓ ∪ A↑ = X (since A is a maximum antichain) and A↓ ∩ A↑ = A.

First assume A↓ 6= X and A↑ 6= X. Then by induction A↓ can be covered with α
chains. Since A ⊆ A↓, each of these chains contains exactly one element in A. For
each x ∈ A, let Cx denote the chain containing x. Similarly, there exist α chains C ′

x

(for x ∈ A) covering A↑, where C ′
x contains x. Then for each x ∈ A, Cx ∪C ′

x forms a
chain in X, and moreover these chains cover X.

So we may assume that for each antichain A of cardinality α one has A↓ = X or
A↑ = X. It means that each antichain A of cardinality α is either the set of minimal
elements of X or the set of maximal elements of X. Now choose a minimal element
x and a maximal element y of X such that x ≤ y. Then the maximum cardinality of
an antichain in X \{x, y} is equal to α−1 (since each antichain in X of cardinality α
contains x or y). By induction, X \ {x, y} can be covered with α− 1 chains. Adding
the chain {x, y} yields a covering of X with α chains.

Application 7.5: Project scheduling. Suppose you have to perform a project consisting
of several jobs. Each job takes one time-unit, say one hour. Certain jobs have to be done
before other jobs; this relation is given by a partial order on the jobs. Assuming that you
have sufficient workers, the time required to finish the project is equal to the size γ of the
longest chain. Indeed, by Theorem 7.5, the jobs can be split into γ antichains A1, . . . , Aγ ;
in fact, these antichains can be chosen such that if x ∈ Ai and y ∈ Aj and x < y then i < j.
As in each of these antichains, the jobs can be done simultaneously, we obtain a feasible
schedule.

This is an application quite similar to PERT-CPM (Application 1.4).

Application 7.6: Bungalow assignment. Suppose you are the manager of a bungalow
park, with bungalows that can be rented out during the holiday season. There have been
made a number of reservations, each for a connected period of some weeks, like in Figure
7.3. If the number of reservations during any of the weeks in the holiday season is not larger
than the total number of bungalows available, then there exists an allocation of customers to
bungalows, in such a way that no renter has to switch bungalows during his/her stay. This
rule well-known to bungalow park managers, is a special case of Dilworth’s decomposition
theorem.

Indeed, one can make a partial order as follows. Let X be the set of reservations made,
and for any x, y ∈ X let x < y if the last day for reservation x is earlier than or equal to
the first day of reservation y.

Then the maximum size of any antichain of (X,≤) is equal to the maximum number n

Section 7.3. Partially ordered sets 123

Figure 7.3

of reservations made for any week in the season. By Dilworth’s decomposition theorem, X
can be split into n chains. Each chain now gives a series of reservations that can be assigned
to one and the same bungalow.

A similar problem occurs when assigning hotel rooms to hotel guests.

Application 7.7: Terminal and platform assignment. A similar problem as in Appli-
cation 7.6 occurs when one has to assign airplanes to terminals at an airport, or trains or
buses to platforms in a train or bus station. The model has to be adapted however, if one
requires a periodic assignment; this occurs for instance if the trains or buses run a periodic
timetable, say with period one hour.

Exercises

7.18. Let (X,≤) be a partially ordered set. Call a chain maximal if it is not contained
in any other chain. Prove that the maximum number of pairwise disjoint maximal
chains is equal to the minimum cardinality of a set intersecting all maximal chains.

7.19. Derive Kőnig’s edge cover theorem from Dilworth’s decomposition theorem.

7.20. Let G = (V,E) be a bipartite graph, with colour classes V1 and V2, with |V1| = |V2| =
n. Let k be a natural number. Derive from Dilworth’s decomposition theorem that
the edges of G can be covered by k perfect matchings if and only if for each vertex
cover W ⊆ V the number of edges contained in W is at most k(|W | − n).

7.21. Let I = (I1, . . . , In) be a family of intervals on R, in such a way that each x ∈ R

is contained in at most k of these intervals. Show that I can be partitioned into k
classes I1, . . . , Ik so that each Ij consists of pairwise disjoint intervals.

7.22. Let D = (V,A) be an acyclic directed graph and let s and t be vertices of D such that
each arc of D occurs in at least one s− t path. Derive from Dilworth’s decomposition
theorem that the minimum number of s− t paths needed to cover all arcs is equal to
the maximum cardinality of δout(U), where U ranges over all subsets of V satisfying
s ∈ U, t 6∈ U and δin(U) = ∅.

124 Chapter 7. Cliques, stable sets, and colourings

7.23. A graph G = (V,E) is called a comparability graph if there exists a partial order ≤
on V such that for all u,w in V with u 6= w one has:

(19) {u,w} ∈ E ⇔ u ≤ w or w ≤ u.

(i) Show that if G is a comparability graph, then ω(G) = χ(G).

(ii) Show that if G is the complement of a comparability graph, then ω(G) = χ(G).

(Hint: Use Dilworth’s decomposition theorem (Theorem 7.6).)

7.24. Let (X,≤) be a partially ordered set, withX finite. Let C and A denote the collections
of chains and antichains in (X,≤), respectively. Let w : X → Z+ be a ‘weight’
function.

(i) Show that the maximum weight w(C) of any chain is equal to the minimum value
of

∑

A∈A λ(A), where the λ(A) range over all nonnegative integers satisfying

(20)
∑

A∈A,x∈A

λ(A) = w(x)

for each x ∈ X.

(ii) Show that the maximum weight w(A) of any antichain is equal to the mini-
mum value of

∑

C∈C λ(C), where the λ(C) range over all nonnegative integers
satisfying

(21)
∑

C∈C,x∈C

λ(C) = w(x)

for each x ∈ X.

(iii) Derive that the convex hull of the incidence vectors of antichains (as vectors in
RX) is equal to the set of all vectors f ∈ RX

+ satisfying f(C) ≤ 1 for each chain
C.

[For any finite setX and any subset Y ofX, define the incidence vector χY ∈ RX

of Y as:

(22)
χY
x := 1 if x ∈ Y ;

:= 0 if x 6∈ Y .]

(iv) Derive also that the convex hull of the incidence vectors of chains (as vectors
in RX) is equal to the set of all vectors f ∈ RX

+ satisfying f(A) ≤ 1 for each
antichain A.

7.25. Derive Dilworth’s decomposition theorem (Theorem 7.6) from the strong perfect
graph theorem.

Section 7.4. Perfect graphs 125

7.4. Perfect graphs

We now consider a general class of graphs, the ‘perfect’ graphs, that turn out to unify
several results in combinatorial optimization, in particular, min-max relations and
polyhedral characterizations.

As we saw before, the clique number ω(G) and the colouring number χ(G) of a
graph G = (V,E) are related by the inequality:

(23) ω(G) ≤ χ(G).

There are graphs that have strict inequality; for instance, the circuit C5 on five
vertices.

Having equality in (23) does not say that much about the internal structure of a
graph: any graph G = (V,E) can be extended to a graph G′ = (V ′, E ′) satisfying
ω(G′) = χ(G′), simply by adding to G a clique of size χ(G), disjoint from V .

However, if we require that equality in (23) holds for each induced subgraph of
G, we obtain a much more powerful condition. The idea for this was formulated by
Berge [1963]. He defined a graph G = (V,E) te be perfect if ω(G′) = χ(G′) holds for
each induced subgraph G′ of G.

Several classes of graphs could be shown to be perfect, and Berge [1961,1963]
observed the important phenomenon that for several classes of graphs that were shown
to be perfect, also the class of complementary graphs is perfect. (The complement
or the complementary graph G of a graph G = (V,E) is the graph with vertex set
V , where any two distinct vertices in V are adjacent in G if and only if they are
nonadjacent in G.)

Berge therefore conjectured that the complement of any perfect graph is perfect
again. This conjecture was proved by Lovász [1972b], and his perfect graph theorem
forms the kernel of perfect graph theory. It has several other theorems in graph theory
as consequence. Lovász [1972a] gave the following stronger form of the conjecture,
which we show with the elegant linear-algebraic proof found by Gasparian [1996].

Theorem 7.7. A graph G is perfect if and only if ω(G′)α(G′) ≥ |V (G′)| for each
induced subgraph G′ of G.

Proof. Necessity is easy, since if G is perfect, then ω(G′) = χ(G′) for each induced
subgraph G′ of G, and since χ(G′)α(G′) ≥ |V (G′)| for any graph G′.

To see sufficiency, suppose to the contrary that there exists an imperfect graph G
satisfying the condition, and choose such a graph with |V (G)| minimal. So χ(G) >
ω(G), while χ(G′) = ω(G′) for each induced subgraph G′ 6= G of G.

Let ω := ω(G) and α := α(G). We can assume that V (G) = {1, . . . , n}.
We first construct

(24) stable sets C0, . . . , Cαω such that each vertex is covered by exactly α of the

126 Chapter 7. Cliques, stable sets, and colourings

Ci.

Let C0 be any stable set in G of size α. By the minimality of G, we know that for
each v ∈ C0, the subgraph of G induced by V (G) \ {v} is perfect, and that hence its
colouring number is at most ω (as its clique number is at most ω); therefore V (G)\{v}
can be partitioned into ω stable sets. Doing this for each v ∈ C0, we obtain stable
sets as in (24).

Now for each i = 0, . . . , αω, there exists a clique Ki of size ω with Ki ∩ Ci = ∅.
Otherwise, the subgraph G′ of G induced by V (G) \ Ci would have ω(G′) < ω, and
hence it has colouring number at most ω − 1. Adding Ci as a colour would give an
ω-vertex colouring of G, contradicting the assumption that χ(G) > ω(G).

Then, if i 6= j with 0 ≤ i, j ≤ αω, we have |Kj ∩ Ci| = 1. This follows from the
fact that Kj has size ω and intersects each Ci in at most one vertex, and hence, by
(24), it intersects αω of the Ci. As Kj ∩ Cj = ∅, we have that |Kj ∩ Ci| = 1 if i 6= j.

Now consider the (αω + 1) × n incidence matrices M = (mi,j) and N = (ni,j)
of C0, . . . , Cαω and K0, . . . , Kαω respectively. So M and N are 0, 1 matrices, with
mi,j = 1 ⇔ j ∈ Ci, and ni,j = 1 ⇔ j ∈ Ki, for i = 0, . . . , αω and j = 1, . . . , n. By
the above, MNT = J − I, where J is the (αω+1)× (αω+1) all-1 matrix, and I the
(αω+1)× (αω+1) identity matrix. As J − I has rank αω+1, we have n ≥ αω+1.
This contradicts the condition given in the theorem.

This implies:

Corollary 7.7a ((Lovász’s) perfect graph theorem). The complement of a perfect
graph is perfect again.

Proof. Directly from Theorem 7.7, as the condition given in it is maintained under
taking the complementary graph.

In fact, Berge [1963] also made an even stronger conjecture, which was proved
in 2002 by Chudnovsky, Robertson, Seymour, and Thomas (we mentioned this in
Section 7.1 in a different but equivalent form):

Strong perfect graph theorem. A graph G is perfect if and only if G does not
contain any odd circuit C2k+1 with k ≥ 2 or its complement as an induced subgraph.

We now show how several theorems we have seen before follow as consequences
from the perfect graph theorem. First observe that trivially, any bipartite graph G is
perfect. This implies Kőnig’s edge cover theorem (Theorem 3.3a):

Corollary 7.7b (Kőnig’s edge cover theorem). The complement of a bipartite graph
is perfect. Equivalently, the edge cover number of any bipartite graph (without isolated
vertices) is equal to its stable set number.

Section 7.4. Perfect graphs 127

Proof. Directly from the perfect graph theorem. Note that if G is a bipartite graph,
then its cliques have size at most 2; hence χ(G) is equal to the edge cover number of
G if G has no isolated vertices.

Note moreover that the class of complements of bipartite graphs is closed under
taking induced subgraphs. Hence the second statement in the Corollary indeed is
equivalent to the first.

We saw in Section 3.3 that by Gallai’s theorem (Theorem 3.1), Kőnig’s edge cover
theorem directly implies Kőnig’s matching theorem (Theorem 3.3), saying that the
matching number of a bipartite graph G is equal to its vertex cover number. That is,
the stable set number of the line graph L(G) of G is equal to the minimum number
of cliques of L(G) that cover all vertices of L(G). As this is true for any induced
subgraph of L(G) we know that the complement L(G) of the line graph L(G) of any
bipartite graph G is perfect.

Hence with the perfect graph theorem we obtain Kőnig’s edge-colouring theorem
(Theorem 7.4):

Corollary 7.7c (Kőnig’s edge-colouring theorem). The line graph of a bipartite graph
is perfect. Equivalently, the edge-colouring number of any bipartite graph is equal to
its maximum degree.

Proof. Again directly from Kőnig’s matching theorem and the perfect graph theorem.

We can also derive Dilworth’s decomposition theorem (Theorem 7.6) easily from
the perfect graph theorem. Let (V,≤) be a partially ordered set. Let G = (V,E) be
the graph with:

(25) uv ∈ E if and only if u < v or v < u.

Any graph G obtained in this way is called a comparability graph.
As Theorem 7.5 we saw the following easy ‘dual’ form of Dilworth’s decomposition

theorem:

Theorem 7.8. In any partially ordered set (V,≤), the maximum size of any chain
is equal to the minimum number of antichains needed to cover V .

Proof. For any v ∈ V define the height of v as the maximum size of any chain in V
with maximum element v. Let k be the maximum height of any element v ∈ V . For
i = 1, . . . , k let Ai be the set of elements of height i. Then A1, . . . , Ak are antichains
covering V , and moreover, there is a chain of size k, since there is an element of height
k.

128 Chapter 7. Cliques, stable sets, and colourings

Equivalently, we have ω(G) = χ(G) for any comparability graph. As the class of
comparability graphs is closed under taking induced subgraphs we have:

Corollary 7.8a. Any comparability graph is perfect.

Proof. Directly from Theorem 7.8.

So by the perfect graph theorem:

Corollary 7.8b. The complement of any comparability graph is perfect.

Proof. Directly from Corollary 7.8a and the perfect graph theorem (Corollary 7.7a).

That is:

Corollary 7.8c (Dilworth’s decomposition theorem). In any partially ordered set
(V,≤), the maximum size of any antichain is equal to the minimum number of chains
needed to cover V .

Proof. Directly from Corollary 7.8b.

A further application of the perfect graph theorem is to ‘chordal graphs’, which
we describe in the next section.

We note here that it was shown with the help of the ‘ellipsoid method’ that
there exists a polynomial-time algorithm for finding a maximum-size clique and a
minimum vertex-colouring in any perfect graph (Grötschel, Lovász, and Schrijver
[1981]). However no combinatorial polynomial-time algorithm is known for these
problems.

Exercises

7.26. Show that the graph obtained from the Paris Métro network (see Application 7.1) is
perfect.

7.27. Show that Theorem 7.7 is implied by the strong perfect graph theorem.

7.5. Chordal graphs

We finally consider a further class of perfect graphs, the ‘chordal graphs’ (or ‘rigid
circuit graphs’ or ‘triangulated graphs’). A graph G is called chordal if each circuit
in G of length at least 4 has a chord. (A chord is an edge connecting two vertices of
the circuit that do not form two neighbours in the circuit.)

Section 7.5. Chordal graphs 129

For any set A of vertices let N(A) denote the set of vertices not in A that are
adjacent to at least one vertex in A. Call a vertex v simplicial if N({v}) is a clique
in G.

Dirac [1961] showed the following basic property of chordal graphs:

Theorem 7.9. Each chordal graph G contains a simplicial vertex.

Proof. We may assume that G has at least two nonadjacent vertices a, b. Let A
be a maximal nonempty subset of V such that G|A is connected and such that
A∪N(A) 6= V . Such a subset A exists as G|{a} is connected and {a}∪N({a}) 6= V .

Let B := V \(A∪N(A)). Then each vertex v in N(A) is adjacent to each vertex in
B, since otherwise we could increase A by v. Moreover, N(A) is a clique, for suppose
that u, w ∈ N(A) are nonadjacent. Choose v ∈ B. Let P be a shortest path in
A ∪N(A) connecting u and w. Then P ∪ {u, v, w} would form a circuit of length at
least 4 without chords, a contradiction.

Now inductively we know that G|B contains a vertex v that is simplicial in G|B.
Since N(A) is a clique and since each vertex in B is connected to each vertex in N(A),
v is also simplicial in G.

This implies a result of Hajnal and Surányi [1958]:

Theorem 7.10. The complement of any chordal graph is perfect.

Proof. Let G = (V,E) be a chordal graph. Since the class of chordal graphs is closed
under taking induced subgraphs, it suffices to show ω(G) ≥ χ(G).

By Theorem 7.1, G has a simplicial vertex v. So K := {v} ∪ N({v}) is a clique.
Let G′ be the subgraph of G induced by V \K. By induction we have ω(G′) = χ(G′).

Now ω(G) ≥ ω(G′) + 1, since we can add v to any clique of G′. Similarly, χ(G) ≤
χ(G′) + 1, since we can add K to any colouring of G′. Hence ω(G) ≥ χ(G).

With Lovász’s perfect graph theorem, this implies the result of Berge [1960]:

Corollary 7.10a. Any chordal graph is perfect.

Proof. Directly from Theorem 7.10 and the perfect graph theorem (Corollary 7.7a).

We can characterize chordal graphs in terms of subtrees of a tree T . Let S be a
collection of nonempty subtrees of a tree T . The intersection graph of S is the graph
with vertex set S, where two vertices S, S ′ are adjacent if and only if they intersect
(in at least one vertex).

The class of graphs obtained in this way coincides with the class of chordal graphs.
To see this, we first show the following elementary lemma:

130 Chapter 7. Cliques, stable sets, and colourings

Lemma 7.1. Let S be a collection of pairwise intersecting subtrees of a tree T . Then
there is a vertex of T contained in all subtrees in S.

Proof. By induction on |V T |. If |V T | = 1 the lemma is trivial, so assume |V T | ≥ 2.
Let t be an end vertex of T . If there exists a subtree in S consisting only of t, the
lemma is trivial. Hence we may assume that each subtree in S containing t also
contains the neighbour of t. So deleting t from T and from all subtrees in S gives the
lemma by induction.

Then:

Theorem 7.11. A graph is chordal if and only if it is isomorphic to the intersection
graph of a collection of subtrees of some tree.

Proof. Necessity. LetG = (V,E) be chordal. By Theorem 7.9, G contains a simplicial
vertex v. By induction, the subgraphG−v ofG is the intersection graph of a collection
S of subtrees of some tree T . Let S ′ be the subcollection of S corresponding to the
set N of neighbours of v in G. As N is a clique, S ′ consists of pairwise intersecting
subtrees. Hence, by Lemma 7.1 these subtrees have a vertex t of T in common. Now
we extend T and all subtrees in S ′ with a new vertex t′ and a new edge tt′. Moreover,
we introduce a new subtree {t′} representing v. In this way we obtain a subtree
representation for G.

Sufficiency. Let G be the intersection graph of some collection S of subtrees
of some tree T . Suppose that G contains a chordless circuit Ck with k ≥ 4. Let
Ck be the intersection graph of S1, . . . , Sk ∈ S, with S1 and S2 intersecting. Then
S1, S2, S3∪· · ·∪Sk are three subtrees of T that are pairwise intersecting. So by Lemma
7.1, T has a vertex v contained in each of these three subtrees. So v ∈ S1 ∩ S2 ∩ Si

for some i ∈ {3, . . . , k}. This yields a chord in Ck.

This theorem enables us to interpret the perfectness of chordal graphs in terms of
trees:

Corollary 7.11a. Let S be a collection of nonempty subtrees of a tree T . Then
the maximum number of pairwise vertex-disjoint trees in S is equal to the minimum
number of vertices of T intersecting each tree in S.

Proof. Directly from Theorems 7.10 and 7.11, using Lemma 7.1.

Similarly we have:

Corollary 7.11b. Let S be a collection of subtrees of a tree T . Let k be the max-
imum number of times that any vertex of T is covered by trees in S. Then S can
be partitioned into subcollections S1, . . . ,Sk such that each S i consists of pairwise

Section 7.5. Chordal graphs 131

vertex-disjoint trees.

Proof. Directly from Corollary 7.10a and Theorem 7.11, again using Lemma 7.1.

Exercises

7.28. Show that a graph G = (V,E) is chordal if and only if each induced subgraph has a
simplicial vertex.

7.29. Show that a graph is an interval graph if and only if it is chordal and its complement
is a comparability graph.

7.30. Derive from the proof of Theorem 7.9 that each chordal graph is either a clique or
contains two nonadjacent simplicial vertices.

7.31. Let G be a chordal graph. Derive from the proof of Theorem 7.9 that each vertex
v that is nonadjacent to at least one vertex w 6= v, is nonadjacent to at least one
simplicial vertex w 6= v.

7.32. Show that a graph G = (V,E) is chordal if and only if the edges of G can be oriented
so as to obtain a directed graph D = (V,A) with the following properties:

(26) (i)D is acyclic;
(ii)if (u, v) and (u,w) belong to A then (v, w) or (w, v) belongs to A.

132 Chapter 8. Integer linear programming and totally unimodular matrices

8. Integer linear programming and

totally unimodular matrices

8.1. Integer linear programming

Many combinatorial optimization problems can be described as maximizing a linear
function cTx over the integer vectors in some polyhedron P = {x | Ax ≤ b}. (A
vector x ∈ Rn is called integer if each component is an integer, i.e., if x belongs to
Zn.)

So this type of problems can be described as:

(1) max{cTx | Ax ≤ b; x ∈ Zn}.

Such problems are called integer linear programming problems. They consist of max-
imizing a linear function over the intersection P ∩Zn of a polyhedron P with the set
Zn of integer vectors.

Example. Consider a graph G = (V,E). Then the problem of finding a matching
of maximum cardinality can be described as follows. Let A be the V × E incidence
matrix of G. So the rows of A are indexed by the vertices of G, while the columns of
A are indexed by the edges of G and for any v ∈ V and e ∈ E:

(2) Av,e := 1 if v ∈ e;
:= 0 if v 6∈ e.

Now finding a maximum-cardinality matching is equivalent to:

(3) maximize
∑

e∈E

xe

subject to
∑

e∋v

xe ≤ 1 for each v ∈ V ,

xe ≥ 0 for each e ∈ E,
xe ∈ Z for each e ∈ E.

This is the same as:

(4) max{1Tx | x ≥ 0;Ax ≤ 1; x integer},

where 1 denotes an all-one vector, of appropriate size.

Section 8.1. Integer linear programming 133

Clearly, always the following holds:

(5) max{cTx | Ax ≤ b; x integer} ≤ max{cTx | Ax ≤ b}.

The above example, applied to the graph K3 shows that strict inequality can hold.
This implies, that generally one will have strict inequality in the following duality
relation:

(6) max{cTx | Ax ≤ b; x integer} ≤ min{yT b | y ≥ 0; yTA = cT ; y integer}.

A polytope P is called integer if each of its vertices is an integer vector. Clearly,
if a polytope P = {x | Ax ≤ b} is integer, then the LP-problem

(7) max{cTx | Ax ≤ b}

has an integer optimum solution. So in that case,

(8) max{cTx | Ax ≤ b; x integer} = max{cTx | Ax ≤ b}.

In Exercise 8.5 below we shall see that in a sense also the converse holds.

No polynomial-time algorithm is known to exist for solving an integer linear pro-
gramming problem in general. In fact, the general integer linear programming prob-
lem is NP-complete, and it is conjectured that no polynomial-time algorithm exists.

However, for special classes of integer linear programming problems, polynomial-
time algorithms have been found. These classes often come from combinatorial prob-
lems, like the matching problem above.

Exercises

8.1. Let P be a polytope. Prove that the set conv.hull(P ∩ Zn) is again a polytope.

8.2. Let P = {x | Ax ≤ b} be a polyhedron, where A is a rational matrix. Show that the
set conv.hull(P ∩ Zn) is again a polyhedron.

8.3. Let G = (V,E) be a graph. Describe the problem of finding a vertex cover of minimum
cardinality as an integer linear programming problem.

8.4. Let G = (V,E) be a graph. Describe the problem of finding a clique (= complete
subgraph) of maximum cardinality as an integer linear programming problem.

8.5. Show that a polytope P is integer if and only if for each vector c, the linear program-
ming problem max{cTx | Ax ≤ b} has an integer optimum solution.

134 Chapter 8. Integer linear programming and totally unimodular matrices

8.2. Totally unimodular matrices

Total unimodularity of matrices turns out to form an important tool in studying
integer vectors in polyhedra.

A matrix A is called totally unimodular if each square submatrix of A has determi-
nant equal to 0, +1, or −1. In particular, each entry of a totally unimodular matrix
is 0, +1, or −1.

A link between total unimodularity and integer linear programming is given by
the following fundamental result.

Theorem 8.1. Let A be a totally unimodular m × n matrix and let b ∈ Zm. Then
each vertex of the polyhedron

(9) P := {x | Ax ≤ b}

is an integer vector.

Proof. Let A have order m × n. Let z be a vertex of P . By Theorem 2.2, the
submatrix Az has rank n. So Az has a nonsingular n× n submatrix A′. Let b′ be the
part of b corresponding to the rows of A that occur in A′.

Since, by definition, Az is the set of rows ai of A for which aiz = bi, we know
A′z = b′. Hence z = (A′)−1b′. However, since | detA′| = 1, all entries of the matrix
(A′)−1 are integer. Therefore, z is an integer vector.

As a direct corollary we have a similar result for polyhedra in general (not neces-
sarily having vertices). Define a polyhedron P to be integer if for each vector c for
which

(10) max{cTx | x ∈ P}

is finite, the maximum is attained by some integer vector. So:

(11) if P = {x | Ax ≤ b} where A is an m×n matrix of rank n, then P is integer
if and only if each vertex of P is integer.

Then we have:

Corollary 8.1a. Let A be a totally unimodular m× n matrix and let b ∈ Zm. Then
the polyhedron

(12) P := {x | Ax ≤ b}

is an integer polyhedron.

Section 8.2. Totally unimodular matrices 135

Proof. Let x∗ be an optimum solution of (10). Choose integer vectors d′, d′′ ∈ Zn

such that d′ ≤ x∗ ≤ d′′. Consider the polyhedron

(13) Q := {x ∈ Rn | Ax ≤ b; d′ ≤ x ≤ d′′}.

So Q is bounded.

Moreover, Q is the set of all vectors x satisfying

(14)

A
−I
I

 x ≤

b
−d′

d′′

 .

Now the matrix here is again totally unimodular (this follows easily from the total
unimodularity of A). Hence by Theorem 8.1, Q is an integer polytope. This implies
that the linear programming problem max{cTx | x ∈ Q} is attained by some integer
vector x̃.

But then x̃ is also an optimum solution for the original LP-problem max{cTx |
Ax ≤ b}. Indeed, x̃ satisfies Ax̃ ≤ b, as x̃ belongs to Q. Moreover,

(15) cT x̃ ≥ cTx∗ = max{cTx | Ax ≤ b},

implying that x̃ is an optimum solution.

It follows that each linear programming problem with integer data and totally
unimodular constraint matrix has integer optimum primal and dual solutions:

Corollary 8.1b. Let A be a totally unimodular m × n matrix, let b ∈ Zm and let
c ∈ Zn. Then both problems in the LP-duality equation:

(16) max{cTx | Ax ≤ b} = min{yT b | y ≥ 0; yTA = cT}

have integer optimum solutions (if the optima are finite).

Proof. Directly from Corollary 8.1a, using the fact that with A also the matrix

(17)

−I
AT

−AT

is totally unimodular.

Hoffman and Kruskal [1956] showed, as we shall see below, that the above property

136 Chapter 8. Integer linear programming and totally unimodular matrices

more or less characterizes total unimodularity.

To derive this result, define an m× n matrix A to be unimodular if it has rank m
and each m×m submatrix has determinant equal to 0, +1, or −1. It is easy to see
that a matrix A is totally unimodular if and only if the matrix [I A] is unimodular.

We follow the proof of Hoffman and Kruskal’s result given by Veinott and Dantzig
[1968]. As a preparation one first shows:

Theorem 8.2. Let A be an integer m× n matrix of rank m. Then A is unimodular
if and only if for each integer vector b the polyhedron

(18) P = {x | x ≥ 0;Ax = b}

is integer.

Proof. Necessity. First suppose that A is unimodular. Let b be an integer vector.
Let D be the matrix

(19) D :=

−I
A

−A

 and f :=

0
b

−b

 .

Note that the system x ≥ 0, Ax = b is the same as Dx ≤ f .

Since D has rank n, we know that for each c ∈ Rn, the linear programming
problem

(20) max{cTx | x ≥ 0;Ax = b} = max{cTx | Dx ≤ f}

is attained by a vertex z of P (if the optima are finite).

Now consider the matrix Dz. By definition, this is the submatrix of D consisting
of those rows Di of D which have equality in Dz ≤ f .

Clearly, Dz contains all rows of D that are in A and in −A. Since A has rank m,
this implies that Dz contains a nonsingular n×n matrix B that fully contains A and
moreover, part of −I. Since A is unimodular, detB equals +1 or −1. Let f ′ be the
part of f corresponding to B. So Bz = f ′, and hence z = B−1f ′. As | detB| = 1, it
follows that z is an integer vector.

Sufficiency. Suppose that P = {x | x ≥ 0;Ax = b} is integer, for each choice of
an integer vector b. Let B be an m×m nonsingular submatrix of A. We must show
that detB equals +1 or −1.

Without loss of generality, we may assume that B consists of the first m columns
of A.

It suffices to show that B−1v is an integer vector for each choice of an integer
vector v. (This follows from the fact that then B−1 itself is an integer matrix, and

Section 8.2. Totally unimodular matrices 137

hence (detB)−1=det(B−1) is an integer. This implies that detB equals +1 or −1.)
So let v be an integer vector. Then there exists an integer vector u ∈ Rm such

that

(21) z := u+B−1v > 0.

Define

(22) b := Bz.

So b = Bz = Bu+ BB−1v = Bu+ v is an integer vector.
Let z′ arise from z by adding zero-components to z so as to obtain a vector in Rn.

So

(23) z′ =

(

z
0

)

,

where 0 is the all-zero vector in Rn−m.
Then z′ is a vertex of the polyhedron P (since z′ ∈ P and since there are n linearly

independent rows in the matrix D for which Dz ≤ f holds with equality).
So z′ is integer, and hence

(24) B−1v = z − u

is an integer vector.

This gives the result of Hoffman and Kruskal [1956]:

Corollary 8.2a (Hoffman-Kruskal theorem). Let A be an integer m × n matrix.
Then A is totally unimodular if and only if for each integer vector b the polyhedron

(25) P = {x | x ≥ 0;Ax ≤ b}

is integer.

Proof. Necessity. Directly from Corollary 8.1a.

Sufficiency. Let P be an integer polyhedron, for each choice of an integer vector
b. We show that, for each choice of b ∈ Zm, each vertex z of the polyhedron

(26) Q := {z | z ≥ 0; [I A]z = b}.

is integer. Indeed, z can be decomposed as

138 Chapter 8. Integer linear programming and totally unimodular matrices

(27) z =

(

z′

z′′

)

,

where z′ ∈ Rm and z′′ ∈ Rn. So z′ = b− Az′′.

Then z′′ is a vertex of P . [This follows from the fact that if z′′ would be equal to
1
2
(v + w) for two other points v, w in P , then

(28) z′ = b− Az′′ =
1

2
(b− Av) +

1

2
(b− Aw).

Hence

(29) z =

(

z′

z′′

)

=
1

2

(

b− Av
v

)

+
1

2

(

b− Aw
w

)

.

This contradicts the fact that z is a vertex of Q.]

So, by assumption, z′′ is integer. Hence also z′ = b− Az′′ is integer, and hence z
is integer.

So for each choice of b in Zm, the polyhedron Q is integer. Hence, by Theorem
8.2, the matrix [I A] is unimodular. This implies that A is totally unimodular.

Exercises

8.6. Show that an integer matrix A is totally unimodular if and only if for all integer
vectors b and c, both sides of the linear programming duality equation

(30) max{cTx | x ≥ 0;Ax ≤ b} = min{yT b | y ≥ 0; yTA ≥ cT }

are attained by integer optimum solutions x and y (if the optima are finite).

8.7. Give an example of an integer matrix A and an integer vector b such that the poly-
hedron P := {x | Ax ≤ b} is integer, while A is not totally unimodular.

8.8. Let A be a totally unimodular matrix. Show that the columns of A can be split
into two classes such that the sum of the columns in one class, minus the sum of the
columns in the other class, gives a vector with entries 0, +1, and −1 only.

8.9. Let A be a totally unimodular matrix and let b be an integer vector. Let x be an
integer vector satisfying x ≥ 0;Ax ≤ 2b. Show that there exist integer vectors x′ ≥ 0
and x′′ ≥ 0 such that Ax′ ≤ b, Ax′′ ≤ b and x = x′ + x′′.

Section 8.3. Totally unimodular matrices from bipartite graphs 139

8.3. Totally unimodular matrices from bipartite

graphs

Let A be the V × E incidence matrix of a graph G = (V,E) (cf. (2)). The matrix
A generally is not totally unimodular. E.g., if G is the complete graph K3 on three
vertices, then the determinant of A is equal to +2 or −2.

However, the following can be proved:

Theorem 8.3. Graph G is bipartite if and only if its incidence matrix A is totally
unimodular.

Proof. Sufficiency. Let A be totally unimodular. Suppose G is not bipartite. Then
G contains an odd circuit, say with vertices v1, . . . , vk and edges e1, . . . , ek. The sub-
matrix of A on the rows indexed by v1, . . . , vk and the columns indexed by e1, . . . , ek,
is of type

(31)

1 1 0 · · · · · · 0 0
0 1 1 · · · · · · 0 0
0 0 1 · · · · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · · · · 1 1
1 0 0 · · · · · · 0 1

,

up to permutation of rows and columns.

It is not difficult to see that matrix (31) has determinant 2. This contradicts the
total unimodularity of A.

Necessity. Let G be bipartite. Let B be a square submatrix of A, of order t × t,
say. We show that detB equal 0 or ±1 by induction on t. If t = 1, the statement is
trivial.

So let t > 1. We distinguish three cases.

Case 1. B has a column with only 0’s. Then detB=0.

Case 2. B has a column with exactly one 1. In that case we can write (possibly
after permuting rows or columns):

(32) B =

(

1 bT

0 B′

)

,

for some matrix B′ and vector b, where 0 denotes the all-zero vector in Rt−1. By the
induction hypothesis, detB′ ∈ {0,±1}. Hence, by (32), detB ∈ {0,±1}.

140 Chapter 8. Integer linear programming and totally unimodular matrices

Case 3. Each column of B contains exactly two 1’s. Then, since G is bipartite,
we can write (possibly after permuting rows):

(33) B =

(

B′

B′′

)

,

in such a way that each column of B′ contains exactly one 1 and each column of
B′′ contains exactly one 1. So adding up all rows in B′ gives the all-one vector, and
also adding up all rows in B′′ gives the all-one vector. Therefore, the rows of B are
linearly dependent, and hence detB=0.

As direct corollaries of this theorem, together with Corollary 8.1b, we obtain some
theorems of Kőnig. First:

Corollary 8.3a (Kőnig’s matching theorem). Let G be a bipartite graph. Then the
maximum cardinality of a matching in G is equal to the minimum cardinality of a
vertex cover in G.

Proof. Clearly, the maximum cannot be larger than the minimum. To see that
equality holds, let A be the V × E incidence matrix of G. Then by Corollary 8.1b,
both optima in the LP-duality equation

(34) max{1Tx | x ≥ 0;Ax ≤ 1} = min{yT1 | y ≥ 0; yTA ≥ 1}

are attained by integer optimum solutions x∗ and y∗.

Since x∗ is an integer vector satisfying x ≥ 0;Ax ≤ 1, x∗ is a {0, 1} vector. Let
M be the set of edges e of G for which x∗

e = 1. Then M is a matching, since Ax∗ ≤ 1

holds, implying that for each vertex v there is at most one edge e with x∗
e = 1.

Moreover, the cardinality |M | of M satisfies |M | = 1Tx∗. So |M | is equal to the
maximum in (34).

On the other hand, as vector y∗ attains the minimum in (34), it should be a {0, 1}
vector. (If some component would be 2 or larger, we could reduce it to 1, without
violating yTA ≥ 1 but decreasing yT1. This contradicts the fact that y∗ attains the
minimum.)

Let W be the set of vertices of G for which y∗v = 1. Then W is a vertex cover,
since y∗TA ≥ 1 holds, implying that for each edge e of G there is at least one vertex
v with y∗v = 1. Moreover, the cardinality |W | of W satisfies |W | = y∗T1. So |W | is
equal to the minimum in (34).

One similarly derives:

Corollary 8.3b (Kőnig’s edge cover theorem). Let G be a bipartite graph. Then the

Section 8.3. Totally unimodular matrices from bipartite graphs 141

maximum cardinality of a stable set in G is equal to the minimum cardinality of an
edge cover in G.

Proof. Similar to the proof of Corollary 8.1a (now with AT instead of A).

One can also derive weighted versions of these two min-max relations. Let X be
some finite set and let w : X → R be a ‘weight’ function on X. The weight w(Y) of
some subset Y ⊆ X is, by definition:

(35) w(Y) :=
∑

x∈Y

w(x).

Then:

Corollary 8.3c. Let G = (V,E) be a bipartite graph and let w : E → Z+ be a weight
function on E. Then:

(i) The maximum weight of a matching in G is equal to the minimum value of
∑

v∈V f(v), where f ranges over all functions f : V → Z+ such that f(u) +
f(v) ≥ w({u, v}) for each edge {u, v} of G;

(ii) The minimum weight of an edge cover in G is equal to the maximum value of
∑

v∈V f(v), where f ranges over all functions f : V → Z+ such that f(u) +
f(v) ≤ w({u, v}) for each edge {u, v} of G.

Proof. The statements are equivalent to both sides in

(36) max{wTx | x ≥ 0;Ax ≤ 1} = min{yT1 | y ≥ 0; yTA ≥ w}

and in

(37) min{wTx | x ≥ 0;Ax ≥ 1} = max{yT1 | y ≥ 0; yTA ≤ w}

having integer optimum solutions. These facts follow from Theorem 8.3 and Corollary
8.1b.

Similarly one has min-max relations for the maximum weight of a stable set and
the minimum weight of a vertex cover in bipartite graphs (cf. Exercises 8.10 and 8.11).

Another corollary is as follows. For any finite set X and any subset Y of X, define
the incidence vector χY ∈ RX of Y as:

(38) χY
x := 1 if x ∈ Y ;

:= 0 if x 6∈ Y .

142 Chapter 8. Integer linear programming and totally unimodular matrices

Now let G = (V,E) be a graph. The matching polytope Pmatching(G) of G is, by
definition, the convex hull (in RE) of the incidence vectors of all matchings in G.
That is:

(39) Pmatching(G) = conv.hull{χM | M matching in G}.

Now with Theorem 8.3 we can give the linear inequalities describing Pmatching(G):

Corollary 8.3d. If G is bipartite, the matching polytope Pmatching(G) of G is equal
to the set of vectors x in RE satisfying:

(40) (i) xe ≥ 0 for each e ∈ E;

(ii)
∑

e∋v

xe ≤ 1 for each v ∈ V .

Proof. Let Q be the polytope defined by (40). Clearly, Pmatching(G) ⊆ Q, since the
incidence vector χM of any matching M satisfies (40).

To see that Q ⊆ Pmatching(G), observe that Q satisfies

(41) Q = {x | x ≥ 0;Ax ≤ 1},

where A is the incidence matrix of A.

Since A is totally unimodular (Theorem 8.3), we know that Q is integer, i.e., that
each vertex of Q is an integer vector (Corollary 8.1a). So Q is the convex hull of the
integer vectors contained in Q. Now each integer vector in Q is equal to the incidence
vector χM of some matching M in G. So Q must be contained in Pmatching(G).

Again, one cannot delete the bipartiteness condition here, as for any odd circuit
there exists a vector satisfying (40) but not belonging to the matching polytope
Pmatching(G).

Similarly, let the perfect matching polytope Pperfect matching(G) of G be defined as
the convex hull of the incidence vectors of the perfect matchings in G. Then we have:

Corollary 8.3e. If G is bipartite, the perfect matching polytope Pperfect matching(G) of
G is equal to the set of vectors x in RE satisfying:

(42) (i) xe ≥ 0 for each e ∈ E;

(ii)
∑

e∋v

xe = 1 for each v ∈ V .

Proof. Similarly as above.

Section 8.4. Totally unimodular matrices from directed graphs 143

Exercises

8.10. Give a min-max relation for the maximum weight of a stable set in a bipartite graph.

8.11. Give a min-max relation for the minimum weight of a vertex cover in a bipartite
graph.

8.12. Let G = (V,E) be a nonbipartite graph. Show that the inequalities (40) are not
enough to define the matching polytope of G.

8.13. The edge cover polytope Pedge cover(G) of a graph is the convex hull of the incidence
vectors of the edge covers in G. Give a description of the linear inequalities defining
the edge cover polytope of a bipartite graph.

8.14. The stable set polytope Pstable set(G) of a graph is the convex hull of the incidence
vectors of the stable sets in G. Give a description of the linear inequalities defining
the stable set polytope of a bipartite graph.

8.15. The vertex cover polytope Pvertex cover(G) of a graph is the convex hull of the incidence
vectors of the vertex covers in G. Give a description of the linear inequalities defining
the vertex cover polytope of a bipartite graph.

8.16. Derive from Corollary 8.3e that for each doubly stochastic matrix M there exist
permutation matrices P1, . . . , Pm and reals λ1, . . . , λm ≥ 0 such that λ1+ · · ·+λm = 1
and

(43) M = λ1P1 + · · ·λmPm.

(A matrixM is called doubly stochastic if each row sum and each column sum is equal
to 1. A matrix P is called a permutation matrix if it is a {0, 1} matrix, with in each
row and in each column exactly one 1.)

8.4. Totally unimodular matrices from directed graphs

A second class of totally unimodular matrices can be derived from directed graphs.
Let D = (V,A) be a directed graph. The V × A incidence matrix M of D is defined
by:

(44) Mv,a := +1 if a leaves v,
:= −1 if a enters v,
:= 0 otherwise.

So each column of M has exactly one +1 and exactly one −1, while all other entries
are 0.

Now we have:

144 Chapter 8. Integer linear programming and totally unimodular matrices

Theorem 8.4. The incidence matrix M of any directed graph D is totally unimodu-
lar.

Proof. Let B be a square submatrix of M , of order t say. We prove that detB ∈
{0,±1} by induction on t, the case t = 1 being trivial.

Let t > 1. We distinguish three cases.

Case 1. B has a column with only zeros. Then detB = 0.

Case 2. B has a column with exactly one nonzero. Then we can write (up to
permuting rows and columns):

(45) B =

(

±1 bT

0 B′

)

,

for some vector b and matrix B′.
Now by our induction hypothesis, detB′ ∈ {0,±1}, and hence detB ∈ {0,±1}.
Case 3. Each column of B contains two nonzeros. Then each column of B

contains one +1 and one −1, while all other entries are 0. So the rows of B add up
to an all-zero vector, and hence detB = 0.

The incidence matrix M of a directed graph D = (V,A) relates to flows and
circulations in D. Indeed, any vector x ∈ RA can be considered as a function defined
on the arcs of D. Then the condition

(46) Mx = 0

is just the ‘flow conservation law’. That is, it says:

(47)
∑

a∈δout(v)

x(a) =
∑

a∈δin(v)

x(a) for each v ∈ V .

So we can derive from Theorem 8.4:

Corollary 8.4a. Let D = (V,A) be a directed graph and let c : A → Z and d : A → Z.
If there exists a circulation x on A with c ≤ x ≤ d, then there exists an integer
circulation x on A with c ≤ x ≤ d.

Proof. If there exists a circulation x with c ≤ x ≤ d, then the polytope

(48) P := {x | c ≤ x ≤ d;Mx = 0}

is nonempty. So it has at least one vertex x∗. Then, by Corollary 8.1a, x∗ is an
integer circulation satisfying c ≤ x∗ ≤ d.

Section 8.4. Totally unimodular matrices from directed graphs 145

In fact, one can derive Hoffman’s circulation theorem— see Exercise 8.17. Another
theorem that can be derived is the max-flow min-cut theorem.

Corollary 8.4b (max-flow min-cut theorem). Let D = (V,A) be a directed graph,
let s and t be two of the vertices of D, and let c : A → R+ be a ‘capacity’ function
on A. Then the maximum value of an s− t flow subject to c is equal to the minimum
capacity of an s− t cut.

Proof. Since the maximum clearly cannot exceed the minimum, it suffices to show
that there exists an s − t flow x ≤ c and an s − t cut, the capacity of which is not
more than the value of x.

Let M be the incidence matrix of D and let M ′ arise from M by deleting the rows
corresponding to s and t. So the condition M ′x = 0 means that the flow conservation
law should hold in any vertex v 6= s, t.

Let w be the row of M corresponding to vertex s. So wa = +1 if arc a leaves s
and wa = −1 if arc a enters s, while wa = 0 for all other arcs a.

Now the maximum value of an s− t flow subject to c is equal to

(49) max{wTx | 0 ≤ x ≤ c;M ′x = 0}.

By LP-duality, this is equal to

(50) min{yT c | y ≥ 0; yT + zTM ′ ≥ w}.

The inequality system in (50) is:

(51) (yT zT)

(

I I
0 M ′

)

≥ (0 w).

The matrix here is totally unimodular, by Theorem 8.4.
Since w is an integer vector, this implies that the minimum (50) is attained by

integer vectors y and z.
Now define

(52) W := {v ∈ V \ {s, t} | zv ≤ −1} ∪ {s}.

So W is a subset of V containing s and not containing t.
It suffices now to show that

(53) c(δout(W)) ≤ yT c,

since yT c is not more than the maximum flow value (49).

146 Chapter 8. Integer linear programming and totally unimodular matrices

To prove (53) it suffices to show that

(54) if a = (u, v) ∈ δout(W) then ya ≥ 1.

Define z̃r := −1, z̃s := 0, and z̃u = zu for all other u. Then yT + z̃TM ≥ 0. Hence
for all a = (u, v) ∈ δout(W) one has ya + z̃u − z̃v ≥ 0, implying ya ≥ z̃v − z̃u ≥ 1. This
proves (54).

Similarly as in Corollary 8.4a it follows that if all capacities are integers, then
there exists a maximum integer flow.

Next define a matrix to be an interval matrix if each entry is 0 or 1 and each row
is of type

(55) (0, . . . , 0, 1, . . . , 1, 0, . . . , 0).

Corollary 8.4c. Each interval matrix is totally unimodular.

Proof. Let M be an interval matrix and let B be a t × t submatrix of M . Then B
is again an interval matrix. Let N be the t× t matrix given by:

(56) N :=

1 −1 0 · · · · · · 0 0
0 1 −1 · · · · · · 0 0
0 0 1 · · · · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · · · · 1 −1
0 0 0 · · · · · · 0 1

.

Then the matrix N · BT is a {0,±1} matrix, with at most one +1 and at most one
−1 in each column.

So it is a submatrix of the incidence matrix of some directed graph. Hence by
Theorem 8.4, det(N · BT) ∈ {0,±1}. Moreover, detN = 1. So detB = detBT ∈
{0,±1}.

Exercises

8.17. Derive Hoffman’s circulation theorem (Theorem 4.6) from Theorem 8.4.

8.18. Derive Dilworth’s decomposition theorem (Theorem 7.6) from Theorem 8.4.

8.19. Let D = (V,A) be a directed graph and let T = (V,A′) be a directed spanning tree
on V .

Section 8.4. Totally unimodular matrices from directed graphs 147

Let C be the A′ × A matrix defined as follows. Take a′ ∈ A′ and a = (u, v) ∈ A,
and define Ca′,a := +1 if a′ occurs in forward direction in the u − v path in T and
Ca′,a := −1 if a′ occurs in backward direction in the u − v path in T . For all other
a′ ∈ A′ and a ∈ A set Ca′,a := 0.

(i) Prove that C is totally unimodular.

(Hint: Use a matrix similar to matrix N in Corollary 8.4c.)

(ii) Show that interval matrices and incidence matrices of directed graphs are special
cases of such a matrix C.

148 Chapter 9. Multicommodity flows and disjoint paths

9. Multicommodity flows and

disjoint paths

9.1. Introduction

The problem of finding a maximum flow from one ‘source’ s to one ‘sink’ t is highly
tractable. There is a very efficient algorithm, which outputs an integer maximum
flow if all capacities are integer. Moreover, the maximum flow value is equal to
the minimum capacity of a cut separating s and t. If all capacities are equal to 1,
the problem reduces to finding arc-disjoint paths. Some direct transformations give
similar results for vertex capacities and for vertex-disjoint paths.

Often in practice however, one is not interested in connecting only one pair of
source and sink by a flow or by paths, but several pairs of sources and sinks simulta-
neously. One may think of a large communication or transportation network, where
several messages or goods must be transmitted all at the same time over the same
network, between different pairs of terminals. A recent application is the design of
very large-scale integrated (VLSI) circuits, where several pairs of pins must be inter-
connected by wires on a chip, in such a way that the wires follow given ‘channels’ and
that the wires connecting different pairs of pins do not intersect each other.

Mathematically, these problems can be formulated as follows. First, there is the
multicommodity flow problem (or k-commodity flow problem):

(1) given: a directed graph G = (V,E), pairs (s1, t1), . . . , (sk, tk) of vertices of G, a
‘capacity’ function c : E → Q+, and ‘demands’ d1, . . . , dk,

find: for each i = 1, . . . , k, an si − ti flow xi ∈ QE
+ so that xi has value di and so

that for each arc e of G:

k
∑

i=1

xi(e) ≤ c(e).

The pairs (si, ti) are called the commodities or the nets. (We assume si 6= ti through-
out.)

If we require each xi to be an integer flow, the problem is called the integer
multicommodity flow problem or integer k-commodity flow problem. (To distinguish
from the integer version of this problem, one sometimes adds the adjective fractional
to the name of the problem if no integrality is required.)

The problem has a natural analogue to the case where G is undirected. We replace
each undirected edge e = {v, w} by two opposite arcs (v, w) and (w, v) and ask for
flows x1, . . . , xk of values d1, . . . , dk, respectively, so that for each edge e = {v, w} of
G:

Section 9.1. Introduction 149

(2)
k

∑

i=1

(xi(v, w) + xi(w, v)) ≤ c(e).

Thus we obtain the undirected multicommodity flow problem or undirected k-commodity
flow problem. Again, we add integer if we require the xi to be integer flows.

If all capacities and demands are 1, the integer multicommodity flow problem is
equivalent to the arc- or edge-disjoint paths problem:

(3) given: a (directed or undirected) graph G = (V,E), pairs (s1, t1), . . . , (sk, tk) of
vertices of G,

find: pairwise edge-disjoint paths P1, . . . , Pk where Pi is an si − ti path (i =
1, . . . , k).

Related is the vertex-disjoint paths problem:

(4) given: a (directed or undirected) graph G = (V,E), pairs (s1, t1), . . . , (sk, tk) of
vertices of G,

find: pairwise vertex-disjoint paths P1, . . . , Pk where Pi is an si − ti path (i =
1, . . . , k).

We leave it as an exercise (Exercise 9.1) to check that the vertex-disjoint paths
problem can be transformed to the directed edge-disjoint paths problem.

The (fractional) multicommodity flow problem can be easily described as one of
solving a system of linear inequalities in the variables xi(e) for i = 1, . . . , k and
e ∈ E. The constraints are the flow conservation laws for each flow xi separately,
together with the inequalities given in (1). Therefore, the fractional multicommod-
ity flow problem can be solved in polynomial time with any polynomial-time linear
programming algorithm.

In fact, the only polynomial-time algorithm known for the fractional multicom-
modity flow problem is any general linear programming algorithm. Ford and Fulker-
son [1958] designed an algorithm based on the simplex method, with column genera-
tion — see Section 9.6.

The following cut condition trivially is a necessary condition for the existence of
a solution to the fractional multicommodity flow problem (1):

(5) for each W ⊆ V the capacity of δoutE (W) is not less than the demand of
δoutR (W),

where R := {(s1, t1), . . . , (sk, tk)}. However, this condition is in general not sufficient,
even not in the two simple cases given in Figure 9.1 (taking all capacities and demands
equal to 1).

One may derive from the max-flow min-cut theorem that the cut condition is

150 Chapter 9. Multicommodity flows and disjoint paths

s =t

2

12

t

1s

2=t1s s2=t1

Figure 9.1

sufficient if s1 = s2 = · · · = sk (similarly if t1 = t2 = · · · = tk) — see Exercise 9.3.
Similarly, in the undirected case a necessary condition is the following cut condi-

tion:

(6) for each W ⊆ V, the capacity of δE(W) is not less than the demand of
δR(W)

(taking R := {{s1, t1}, . . . , {sk, tk}}). In the special case of the edge-disjoint paths
problem (where all capacities and demands are equal to 1), the cut condition reads:

(7) for each W ⊆ V, |δE(W)| ≥ |δR(W)|.

Figure 9.2 shows that this condition again is not sufficient.

=s

1t
t

1

=s2
4s 4

t3

t2=s3

Figure 9.2

However, Hu [1963] showed that the cut condition is sufficient for the existence
of a fractional multicommodity flow, in the undirected case with k = 2 commodities.
He gave an algorithm that yields a half-integer solution if all capacities and demands
are integer. This result was extended by Rothschild and Whinston [1966]. We discuss
these results in Section 9.2.

Similar results were obtained by Okamura and Seymour [1981] for arbitrary k,
provided that the graph is planar and all terminals si, ti are on the boundary of the
unbounded face — see Section 9.5.

Section 9.1. Introduction 151

The integer multicommodity flow problem is NP-complete, even in the undirected
case with k = 2 commodities and all capacities equal to 1, with arbitrary demands
d1, d2 (Even, Itai, and Shamir [1976]). This implies that the undirected edge-disjoint
paths problem is NP-complete, even if |{{s1, t1}, . . . , {sk, tk}}| = 2.

In fact, the disjoint paths problem is NP-complete in all modes (directed/undirected,
vertex/edge disjoint), even if we restrict the graph G to be planar (D.E. Knuth (see
Karp [1975]), Lynch [1975], Kramer and van Leeuwen [1984]). For general directed
graphs the arc-disjoint paths problem is NP-complete even for k = 2 ‘opposite’ com-
modities (s, t) and (t, s) (Fortune, Hopcroft, and Wyllie [1980]).

On the other hand, it is a deep result of Robertson and Seymour [1995] that
the undirected vertex-disjoint paths problem is polynomially solvable for any fixed
number k of commodities. Hence also the undirected edge-disjoint paths problem is
polynomially solvable for any fixed number k of commodities.

Robertson and Seymour observed that if the graph G is planar and all termi-
nals si, ti are on the boundary of the unbounded face, there is an easy ‘greedy-type’
algorithm for the vertex-disjoint paths problem — see Section 9.4.

It is shown by Schrijver [1994] that for each fixed k, the k disjoint paths problem
is solvable in polynomial time for directed planar graphs. For the directed planar arc-
disjoint version, the complexity is unknown. That is, there is the following research
problem:

Research problem. Is the directed arc-disjoint paths problem polynomially solvable
for planar graphs with k = 2 commodities? Is it NP-complete?

Application 9.1: Multicommodity flows. Certain goods or messages must be trans-
ported through the same network, where the goods or messages may have different sources
and sinks.

This is a direct special case of the problems described above.

Application 9.2: VLSI-routing. On a chip certain modules are placed, each containing
a number of ’pins’. Certain pairs of pins should be connected by an electrical connection
(a ‘wire’) on the chip, in such a way that each wire follows a certain (very fine) grid on the
chip and that wires connecting different pairs of pins are disjoint.

Determining the routes of the wires clearly is a special case of the disjoint paths prob-
lem.

Application 9.3: Routing of railway stock. An extension of Application 4.5 is as
follows. The stock of the railway company NS for the Amsterdam–Vlissingen line now
consists of two types (1 and 2 say) of units, with a different number of seats s1 and s2 and
different length l1 and l2. All units (also of different types) can be coupled with each other.

Again there is a schedule given, together with for each segment a minimum number of
seats and a maximum length of the train. Moreover, the price pi of buying any unit of type
i is given.

Now the company wishes to determine the minimum costs of buying units of the two

152 Chapter 9. Multicommodity flows and disjoint paths

types so that the schedule can be performed and so that the total cost is minimized.
This can be considered as a ‘min-cost integer multicommodity circulation problem’.

That is we make the directed graph D as in Application 4.5. For each arc a corresponding
to a segment we define d(a) to be the minimum number of seats that should be offered on
that segment, and c(a) to be the maximum length possible at that segment. For all other
arcs a we define d(a) := 0 and c(a) := ∞.

One should find two integer-valued circulations f1 and f2 in D such that

(8) s1f1(a) + s2f2(a) ≥ d(a) and l1f1(a) + l2f2(a) ≤ c(a)

for each arc a and such that the sum
∑

(p1f1(a) + p2f2(a)) is minimized, where a ranges
over all ‘overnight’ arcs. Then fi(a) denotes the number of units of type i that should go
on segment a.

Again several variations are possible, incorporating for instance the kilometer costs and
maximum capacities of stock areas.

Exercises

9.1. Show that each of the following problems (a), (b), (c) can be reduced to problems
(b), (c), (d), respectively:

(a) the undirected edge-disjoint paths problem,

(b) the undirected vertex-disjoint paths problem,

(c) the directed vertex-disjoint paths problem,

(d) the directed arc-disjoint paths problem.

9.2. Show that the undirected edge-disjoint paths problem for planar graphs can be re-
duced to the directed arc-disjoint paths problem for planar graphs.

9.3. Derive from the max-flow min-cut theorem that the cut condition (5) is sufficient for
the existence of a fractional multicommodity flow if s1 = · · · = sk.

9.4. Show that if the undirected graph G = (V,E) is connected and the cut condition (7)
is violated, then it is violated by some W ⊆ V for which both W and V \W induce
connected subgraphs of G.

9.5. (i) Show with Farkas’ lemma: the fractional multicommodity flow problem (1) has
a solution if and only if for each ‘length’ function l : E → Q+ one has:

(9)

k
∑

i=1

di · distl(si, ti) ≤
∑

e∈E

l(e)c(e).

(Here distl(s, t) denotes the length of a shortest s− t path with respect to l.)

(ii) Interprete the cut condition (5) as a special case of this condition.

Section 9.2. Two commodities 153

9.2. Two commodities

Hu [1963] gave a direct combinatorial method for the undirected two-commodity flow
problem and he showed that in this case the cut condition suffices. In fact, he showed
that if the cut condition holds and all capacities and demands are integer, there exists
a half-integer solution. We first give a proof of this result due to Sakarovitch [1973].

Consider a graph G = (V,E), with commodities {s1, t1} and {s2, t2}, a capacity
function c : E → Z+ and demands d1 and d2.

Theorem 9.1 (Hu’s two-commodity flow theorem). The undirected two-commodity
flow problem, with integer capacities and demands, has a half-integer solution if and
only if the cut condition (6) is satisfied.

Proof. Suppose that the cut condition holds. Orient the edges of G arbitrarily,
yielding the directed graph D = (V,A). For any a ∈ A we denote by c(a) the
capacity of the underlying undirected edge.

Define for any x ∈ RA and any v ∈ V :

(10) f(x, v) :=
∑

a∈δout(v)

x(a)−
∑

a∈δin(v)

x(a).

So f(x, v) is the ‘net loss’ of x in vertex v.

By the max-flow min-cut theorem there exists a function x′ : A → Z satisfying:

(11) f(x′, s1) = d1, f(x
′, t1) = −d1, f(x

′, s2) = d2, f(x
′, t2) = −d2,

f(x′, v) = 0 for each other vertex v,
|x′(a)| ≤ c(a) for each arc a of D.

This can be seen by extending the undirected graph G by adding two new vertices s′

and t′ and four new edges {s′, s1}, {t1, t′} (both with capacity d1) and {s′, s2}, {t2, t′}
(both with capacity d2) as in Figure 9.3.

1

t’

s

1

G

t
2

s’

s2 t

Figure 9.3

154 Chapter 9. Multicommodity flows and disjoint paths

Then the cut condition for the two-commodity flow problem implies that the
minimum capacity of any s′− t′ cut in the extended graph is equal to d1+ d2. Hence,
by the max-flow min-cut theorem, there exists an integer-valued s′ − t′ flow in the
extended graph of value d1 + d2. This gives x

′ satisfying (11).
Similarly, the max-flow min-cut theorem implies the existence of a function x′′ :

A → Z satisfying:

(12) f(x′′, s1) = d1, f(x
′′, t1) = −d1, f(x

′′, s2) = −d2, f(x
′′, t2) = d2,

f(x′′, v) = 0 for each other vertex v,
|x′′(a)| ≤ c(a) for each arc a of D.

To see this we extend G with vertices s′′ and t′′ and edges {s′′, s1}, {t1, t′′} (both with
capacity d1) and {s′′, t2}, {s2, t′′} (both with capacity d2) (cf. Figure 9.4).

G

t2s1

s"

1ts2

t"

Figure 9.4

After this we proceed as above.
Now consider the vectors

(13) x1 :=
1
2
(x′ + x′′) and x2 :=

1
2
(x′ − x′′).

Since f(x1, v) =
1
2
(f(x′, v) + f(x′′, v)) for each v, we see from (11) and (12) that x1

satisfies:

(14) f(x1, s1) = d1, f(x1, t1) = −d1, f(x1, v) = 0 for all other v.

So x1 gives a half-integer s1 − t1 flow in G of value d1. Similarly, x2 satisfies:

Section 9.2. Two commodities 155

(15) f(x2, s2) = d2, f(x2, t2) = −d2, f(x2, v) = 0 for all other v.

So x2 gives a half-integer s2 − t2 flow in G of value d2.

Moreover, x1 and x2 together satisfy the capacity constraint, since for each edge
a of D:

(16) |x1(a)|+ |x2(a)| = 1
2
|x′(a) + x′′(a)|+ 1

2
|x′(a)− x′′(a)|

= max{|x′(a)|, |x′′(a)|} ≤ c(a).

(Note that 1
2
|α + β|+ 1

2
|α− β| = max{|α|, |β|} for all reals α, β.)

So we have a half-integer solution to the two-commodity flow problem.

This proof also directly gives a polynomial-time algorithm for finding a half-integer
flow.

The cut condition is not enough to derive an integer solution, as is shown by
Figure 9.5 (taking all capacities and demands equal to 1).

t

1 2

12s

s t

Figure 9.5

Moreover, as mentioned, the undirected integer two-commodity flow problem is NP-
complete (Even, Itai, and Shamir [1976]).

However, Rothschild and Whinston [1966] showed that an integer solution exists
if the cut condition holds, provided that the following Euler condition is satisfied:

(17)
∑

e∈δ(v) c(e) ≡ 0 (mod 2) if v 6= s1, t1, s2, t2,

≡ d1 (mod 2) if v = s1, t1,
≡ d2 (mod 2) if v = s2, t2.

(Equivalently, the graph obtained from G by replacing each edge e by c(e) parallel
edges and by adding di parallel edges connecting si and ti (i = 1, 2), should be an
Eulerian graph.)

Theorem 9.2. If all capacities and demands are integer and the cut condition and
the Euler condition are satisfied, then the undirected two-commodity flow problem has
an integer solution.

156 Chapter 9. Multicommodity flows and disjoint paths

Proof. If the Euler condition holds, we can take x′ in the proof of Theorem 9.1 so
that the following further condition is satisfied:

(18) x′(a) ≡ c(a) (mod 2) for each a ∈ A.

To see this, let x′ satisfy (11) and let

(19) A′ := {a ∈ A | x′(a) 6≡ c(a) (mod 2)}.

Then each vertex v is incident with an even number δ of arcs in A′, since

(20) δ ≡ f(x′, v)− f(c, v) ≡ 0 (mod 2),

by (11) and (17). So if A′ 6= ∅ then A′ contains an (undirected) circuit. Increasing
and decreasing x′ by 1 on the arcs along this circuit (depending on whether the arc
is forward or backward), we obtain a function again satisfying (11). Repeating this,
we finally obtain a function x′ satisfying (18).

Similarly, we can take x′′ so that

(21) x′′(a) ≡ c(a) (mod 2) for each a ∈ A.

Conditions (18) and (21) imply that x′(a) ≡ x′′(a) (mod 2) for each a ∈ A.
Hence x1 =

1
2
(x′ + x′′) and x2 =

1
2
(x′ − x”) are integer vectors.

This proof directly yields a polynomial-time algorithm for finding the integer
solution.

Exercises

9.6. Derive from Theorem 9.1 the following max-biflow min-cut theorem of Hu: Let G =
(V,E) be a graph, let s1, t1, s2, t2 be distinct vertices, and let c : E → Q+ be a
capacity function. Then the maximum value of d1+d2 so that there exist si− ti flows
xi of value di (i = 1, 2), together satisfying the capacity constraint, is equal to the
minimum capacity of a cut both separating s1 and t1 and separating s2 and t2.

9.7. Derive from Theorem 9.1 that the cut condition suffices to have a half-integer solu-
tion to the undirected k-commodity flow problem (with all capacities and demands
integer), if there exist two vertices u and w so that each commodity {si, ti} intersects
{u,w}. (Dinits (cf. Adel’son-Vel’skĭı, Dinits, and Karzanov [1975]).)

9.8. Derive the following from Theorem 9.2. Let G = (V,E) be a Eulerian graph and
let s1, t1, s2, t2 be distinct vertices. Then the maximum number t of pairwise edge-
disjoint paths P1, . . . , Pt, where each Pj connects either s1 and t1 or s2 and t2, is

Section 9.3. Disjoint paths in acyclic directed graphs 157

equal to the minimum cardinality of a cut both separating s1 and t1 and separating
s2 and t2.

9.3. Disjoint paths in acyclic directed graphs

Fortune, Hopcroft, and Wyllie [1980] showed that the vertex-disjoint paths problem
is NP-complete for directed graphs, even when fixing the number of paths to k = 2.

On the other hand they proved that if D is acyclic, then for each fixed k, the k
vertex-disjoint paths problem can be solved in polynomial time. (A directed graph is
called acyclic if it does not contain any directed circuit.)

The algorithm is contained in the proof of the following theorem:

Theorem 9.3. For each fixed k there exists a polynomial-time algorithm for the k
vertex-disjoint paths problem for acyclic directed graphs.

Proof. Let D = (V,A) be an acyclic digraph and let s1, t1, . . . , sk, tk be vertices of
D, all distinct. In order to solve the vertex-disjoint paths problem we may assume
that each si is a source and each ti is a sink. (Here a source is a vertex with indegree
0, and a sink is a vertex with outdegree 0.)

Make an auxiliary digraph D′ = (V ′, A′) as follows. The vertex set V ′ consists of
all k-tuples (v1, . . . , vk) of distinct vertices of D. In D′ there is an arc from (v1, . . . , vk)
to (w1, . . . , wk) if and only if there exists an i ∈ {1, . . . , k} such that:

(22) (i) vj = wj for all j 6= i;
(ii) (vi, wi) is an arc of D;
(iii) for each j 6= i there is no directed path in D from vj to vi.

Now the following holds:

(23) D contains k vertex-disjoint directed paths P1, . . . , Pk such that Pi runs
from si to ti (i = 1, . . . , k)
⇐⇒ D′ contains a directed path P from (s1, . . . , sk) to (t1, . . . , tk).

To see =⇒, let Pi follow the vertices vi,0, vi,1, . . . , vi,pi for i = 1, . . . , k. So vi,0 = si
and vi,pi = ti for each i. Choose j1, . . . , jk such that 0 ≤ ji ≤ pi for each i and such
that:

(24) (i) D′ contains a directed path from (s1, . . . , sk) to (v1,j1 , . . . , vk,jk),
(ii) j1 + · · ·+ jk is as large as possible.

Let I := {i | ji < pi}. If I = ∅ we are done, so assume I 6= ∅. Then by the
definition of D′ and the maximality of j1+ · · ·+ jk there exists for each i ∈ I an i′ 6= i

158 Chapter 9. Multicommodity flows and disjoint paths

such that there is a directed path in D from vi′,ji′ to vi,ji . Since ti′ is a sink we know
that vi′,ji′ 6= si′ and that hence i′ belongs to I. So each vertex in {vi,ji | i ∈ I} is
end vertex of a directed path in D starting at another vertex in {vi,ji | i ∈ I}. This
contradicts the fact that D is acyclic.

To see ⇐= in (23), let P be a directed path from (s1, . . . , sk) to (t1, . . . , tk) in D′.
Let P follow the vertices (v1,j, . . . , vk,j) for j = 0, . . . , t. So vi,0 = si and vi,t = ti
for i = 1, . . . , k. For each i = 1, . . . , k let Pi be the path in D following vi,j for
j = 0, . . . , t, taking repeated vertices only once. So Pi is a directed path from si to ti.

Moreover, P1, . . . , Pk are pairwise disjoint. For suppose that P1 and P2 (say) have
a vertex in common. That is v1,j = v2,j′ for some j 6= j′. Without loss of generality,
j < j′ and v1,j 6= v1,j+1. By definition of D′, there is no directed path in D from v2,j
to v1,j. However, this contradicts the facts that v1,j = v2,j′ and that there exists a
directed path in D from v2,j to v2,j′ .

One can derive from this that for fixed k also the k arc-disjoint paths problem is
solvable in polynomial time for acyclic directed graphs (Exercise 9.9).

Application 9.4: Routing airplanes. This application extends Application 4.1. The
data are similar, except that legal rules now prescribe the exact day of the coming week at
which certain airplanes should be at the home basis for maintenance.

Again at Saturday 18.00h the company determines the exact routing for the next week.
One can make the same directed graph as in Application 4.1. Now however it is prescribed
that some of the paths Pi should start at a certain (c, t) (where c is the city where airplane
ai will be first after Saturday 18.00h) and that they should traverse the arc corresponding
to maintenance on a prescribed day of the coming week (for instance Wednesday).

Now if for each airplane ai which should be home for maintenance next week we can
find this path Pi such that it traverses the for that plane required maintenance arc and in
such a way that paths found for different airplanes are arc disjoint, then it is easy to see
that these paths can be extended to paths P1, . . . , Pn such that each arc is traversed exactly
once.

As the directed graph D is acyclic, the problem can be solved with the algorithm
described in the proof of Theorem 9.3, provided that the number of airplanes that should
be home for maintenance the coming week is not too large.

Exercises

9.9. Derive from Theorem 9.3 that for each fixed k the k arc-disjoint paths problem is
solvable in polynomial time for acyclic directed graphs.

9.10. Show that for fixed k, the following problem is solvable in polynomial time:

(25) given:an acyclic directed graph D = (V,A), pairs s1, t1, . . . , sk, tk of
vertices, and subsets A1, . . . , Ak of A;

find:pairwise arc-disjoint directed paths P1, . . . , Pk, where Pi runs from
si to ti and traverses only arcs in Ai (i = 1, . . . , k).

Section 9.4. Vertex-disjoint paths in planar graphs 159

9.4. Vertex-disjoint paths in planar graphs

Finding disjoint paths in planar graphs is of interest not only for planar communica-
tion or transportation networks, but especially also for the design of VLSI-circuits.
The routing of wires should follow certain channels on layers of the chip. On each
layer, these channels form a planar graph.

Unfortunately, even for planar graphs disjoint paths problems are in general hard.
However, for some special cases, polynomial-time algorithms have been found. Such
algorithms can be used, for example, as subroutines when solving any hard problem
by decomposition. In Sections 9.4 and 9.5 we discuss some of these algorithms.

LetG = (V,E) be a planar graph, embedded in the plane R2 and let {s1, t1}, . . . , {sk, tk}
be pairwise disjoint pairs of vertices. Robertson and Seymour [1986] observed that
there is an easy greedy-type algorithm for the vertex-disjoint paths problem if all
vertices s1, t1, . . . , sk, tk belong to the boundary of one face I of G. That is, there
exists a polynomial-time algorithm for the following problem:21

(26) given: a planar graphG = (V,E) embedded in R2, a face I ofG, pairs {s1, t1}, . . . , {sk, tk}
of vertices on bd(I),

find: pairwise vertex-disjoint paths P1, . . . , Pk in G, where Pi connects si and ti
(i = 1, . . . , k).

In fact, we may assume without loss of generality that I is the unbounded face.
Let us first describe the simple intuitive idea of the method, by explaining the

recursive step in the ‘ideal’ case where G is connected and where bd(I) is a simple
circuit.

We say that {s, t} and {s′, t′} cross (around I) if s, s′, t, t′ are distinct and occur
in this order cyclically around bd(I), clockwise or anti-clockwise (see Figure 9.6).

r

s

r’s’

r

s

s’r’

Figure 9.6

If any {si, ti} and {sj, tj} cross around I (for some i 6= j), problem (26) clearly
has no solution. So we may assume that no pair of commodities crosses. This implies
that there exists an i so that at least one of the si − ti paths along bd(I) does not
contain any sj or tj for j 6= i: just choose i so that the shortest si − ti path along
bd(I) is shortest among all i = 1, . . . , k.

21bd(I) denotes the boundary of I.

160 Chapter 9. Multicommodity flows and disjoint paths

Without loss of generality, i = k. Let Q be the shortest sk − tk path along bd(I).
Delete from G all vertices in Q, together with all edges incident with them. De-
note the new graph by G′. Next solve the vertex-disjoint paths problem for input
G′, {s1, t1}, . . . , {sk−1, tk−1}. If this gives a solution P1, . . . , Pk−1, then P1, . . . , Pk−1, Q
forms a solution to the original problem (trivially).

If the reduced problem turns out to have no solution, then the original problem
also has no solution. This follows from the fact that if P1, . . . , Pk−1, Pk would be
a solution to the original problem, we may assume without loss of generality that
Pk = Q, since we can ‘push’ Pk ‘against’ the border bd(I). Hence P1, . . . , Pk−1 would
form a solution to the reduced problem.

Although this might give a suggestive sketch of the algorithm, it is not completely
accurate, since the ideal situation need not be preserved throughout the iteration
process. Even if we start with a highly connected graph, after some iterations the
reduced graph might have cut vertices or be disconnected. So one should be more
precise.

Let us call a sequence (v1, . . . , vn) of vertices of a connected planar graphG a border
sequence if it is the sequence of vertices traversed when following the boundary of G
clockwise. Thus the graph in Figure 9.7 has border sequence (a, b, c, d, e, c, f, c, g, b).

c

d

e
f

h

g

b

a

Figure 9.7

In fact, each cyclic permutation of a border sequence is again a border sequence.
Note that no border sequence will contain . . . r . . . s . . . r . . . s . . . for any two dis-

tinct vertices. Hence for any two vertices s and t on the boundary of G there is a
unique sequence

(27) P (s, t) = (s, w1, . . . , wt, t)

with the properties that P (s, t) is part of a border sequence of G and that w1, . . . , wt

all are distinct from s and t. Trivially, the vertices in P (s, t) contain an s− t path.
We say that two disjoint pairs {s, t} and {s′, t′} cross (aroundG) if . . . s . . . s′ . . . t . . . t′ . . .

or . . . s . . . t′ . . . t . . . s′ . . . occur in some border sequence of G. So the following cross-
freeness condition is a necessary condition for (26) to have a solution:

Section 9.4. Vertex-disjoint paths in planar graphs 161

(28) No two disjoint commodities {si, ti}, {sj , tj} cross (around the same com-
ponent of G).

Now the algorithm can be described more precisely as follows. First check the cross-
freeness condition. If it is violated, (26) has no solution. If it is satisfied, apply the
following iterative step:

(29) Check for each i = 1, . . . , k if si and ti belong to the same component of G.
If not, the problem has no solution.
If so, choose i ∈ {1, . . . , k} for which the shortest among P (si, ti) and
P (ti, si) is as short as possible. Without loss of generality, i = k and
P (sk, tk) is shortest. Take for Pk any sk − tk path using the vertices in
P (sk, tk) only.
If k = 1, stop. If k > 1, let G′ be the graph obtained from G by deleting
all vertices occurring in P (sk, tk). Repeat this iterative step for G′ and
{s1, t1}, . . . , {sk−1, tk−1}.
If it gives a solution P1, . . . , Pk−1, then P1, . . . , Pk−1, Pk is a solution to
the original problem. If it gives no solution, the original problem has no
solution.

We leave it as a (technical) exercise to show the correctness of this algorithm. (The
correctness can be derived also from the proof of Theorem 9.4 below.) It clearly is
a polynomial-time method. Recently, Ripphausen-Lipa, Wagner, and Weihe [1997]
found a linear-time algorithm.

Moreover, the method implies a characterization by means of a cut condition for
the existence of a solution to (26). A simple closed curve C in R2 is by definition
a one-to-one continuous function from the unit circle to R2. We will identify the
function C with its image.

We say that C separates the pair {s, t} if each curve connecting s and t intersects
C. Now the following cut condition clearly is necessary for the existence of a solution
to the vertex-disjoint paths problem in planar graphs:

(30) each simple closed curve in R2 intersects G at least as often as it separates
pairs {s1, t1}, . . . , {sk, tk}.

Robertson and Seymour [1986] showed with this method:

Theorem 9.4. Let G = (V,E) be a planar graph embedded in R2 and let {s1, t1}, . . . , {sk, tk}
be pairs of vertices on the boundary of G. Then there exist pairwise vertex-disjoint
paths P1, . . . , Pk where Pi connects si and ti (i = 1, . . . , k) if and only if the cross-
freeness condition (28) and the cut condition (30) hold.

Proof. Necessity of the conditions is trivial. We show sufficiency by induction on k,

162 Chapter 9. Multicommodity flows and disjoint paths

the case k = 0 being trivial. Let k > 1 and let (28) and (30) be satisfied. Suppose
paths P1, . . . , Pk as required do not exist. Trivially, {s1, t1}, . . . , {sk, tk} are pairwise
disjoint (otherwise there would exist a simple closed curve C with |C ∩ G| = 1 and
intersecting two commodities, thus violating the cut condition).

The induction is based on the iterative step (29). To simplify the argument, we
first show that we may assume that G is 2-connected.

First, we may assume that G is connected, as we can decompose G into its compo-
nents. (If some si and ti would belong to different components, there trivially exists
a closed curve C violating the cut condition.)

Knowing that G is connected, the case k = 1 is trivial. So we may assume that
k ≥ 2. Suppose G contains a cut vertex v. We may assume that each component
of G − v intersects {s1, t1, . . . , sk, tk} (otherwise we could delete it from G without
violating the cut condition). This implies that we can extend G planarly by an edge
e connecting some vertices u′ and u′′ in different components of G− v, in such a way
that u′ ∈ {si′ , ti′} and u′′ ∈ {si′′ , ti′′} for some i′ 6= i′′ and that s1, t1, . . . , sk, tk are still
on the boundary of G∪ e. The cut condition holds for G∪ e (a fortiori), but pairwise
vertex-disjoint si− ti paths (i = 1, . . . , k) do not exist in G∪ e (since we cannot make
use of edge e, as i′ 6= i′′). Repeating this we end up with a 2-connected graph.

If G is 2-connected, the boundary of G is a simple circuit. Now we apply the itera-
tive step (29). That is, we find, without loss of generality, that the path P (sk, tk) from
sk to tk clockwise along the boundary of G does not contain any s1, t1, . . . , sk−1, tk−1.
Let Pk be the corresponding sk − tk path.

Again, let G′ be the graph obtained from G by deleting all vertices in Pk, together
with all edges incident with them. Let I and I ′ denote the unbounded faces of G and
G′, respectively (we take I and I ′ as open regions). So I ⊆ I ′.

Now G′ does not contain pairwise vertex-disjoint si − ti paths (i = 1, . . . , k − 1),
since by assumption G does not contain pairwise vertex-disjoint si − ti paths (i =
1, . . . , k). Hence, by the induction hypothesis, there exists a simple closed curve C
with |C ∩G′| smaller than the number of pairs {s1, t1}, . . . , {sk−1, tk−1} separated by
C. We may assume that C traverses each of the connected regions I ′, I and I ′ \ I
at most once. That is, each of C ∩ I ′, C ∩ I and C ∩ (I ′ \ I) is connected (possibly
empty).

If C∩(I ′\I) is empty, then C∩G = C∩G′ and hence C violates the cut condition
also for G. If C ∩ I is empty, then C does not separate any {si, ti} except for those
intersected by C. Then C cannot violate the cut condition for G′.

If both C∩I and C∩(I ′\I) are nonempty, we may assume that |C∩G| = |C∩G′|+1
and that C separates {sk, tk} (since each face of G contained in I ′ is incident with at
least one vertex on Pk). It follows that C violates the cut condition for G.

Application 9.5: VLSI-routing. The VLSI-routing problem asks for the routes that
wires should make on a chip so as to connect certain pairs of pins and so that wires con-
necting different pairs of pins are disjoint.

Since the routes that the wires potentially can make form a graph, the problem to be

Section 9.4. Vertex-disjoint paths in planar graphs 163

1 2

3
4

11 12 1

7

13

9

16

15

1411

5 6
7

8

10

6 5

14

9

3

11
4 13

8

1016
15 2

12

Figure 9.8

solved can be modeled as a disjoint paths problem. Consider an example of such a problem
as in Figure 9.8 — relatively simple, since generally the number of pins to be connected
is of the order of several thousands. The grey areas are ‘modules’ on which the pins are
located. Points with the same label should be connected.

1 2

3
4

11 12 1

7

13

9

16

15

1411

5 6
7

8

10

6 5

14

9

3

11
4 13

8

1016
15 2

12

Figure 9.9

In the example, the graph is a ‘grid graph’, which is typical in VLSI-design since it
facilitates the manufacturing of the chip and it ensures a certain minimum distance between
disjoint wires. But even for such graphs the disjoint paths problem is NP-complete.

Now the following two-step approach was proposed by Pinter [1983]. First choose the
‘homotopies’ of the wires; for instance like in Figure 9.9. That is, for each i one chooses a
curve Ci in the plane connecting the two vertices i, in such a way that they are pairwise
disjoint, and such that the modules are not traversed (Figure 9.9).

164 Chapter 9. Multicommodity flows and disjoint paths

Second, try to find disjoint paths P1, . . . , Pk in the graph such that Pi is homotopic to
Ci, in the space obtained from the plane by taking out the rectangles forming the modules;
that is, the paths Pi should be obtained from the curves Ci by shifting Ci over the surface,
but not over any module, fixing the end points of the curve. In Figure 9.10 such a solution
is given.

1 2

3
4

11 12 1

7

13

9

16

15

1411

5 6
7

8

10

6 5

14

9

3

11
4 13

8

1016
15 2

12

Figure 9.10

It was shown by Leiserson and Maley [1985] that this second step can be performed
in polynomial time. So the hard part of the problem is the first step: finding the right
topology of the layout.

Cole and Siegel [1984] proved a Menger-type cut theorem characterizing the existence of
a solution in the second step. That is, if there is no solution for the disjoint paths problem
given the homotopies, there is an ‘oversaturated’ cut: a curve D connecting two holes in
the plane and intersecting the graph less than the number of times D necessarily crosses
the curves Ci.

This can be used in a heuristic practical algorithm for the VLSI-routing problem: first
guess the homotopies of the solution; second try to find disjoint paths of the guessed ho-
motopies; if you find them you can stop; if you don’t find them, the oversaturated cut will
indicate a bottleneck in the chosen homotopies; amend the bottleneck and repeat.

Similar results hold if one wants to pack trees instead of paths (which is generally
the case at VLSI-design), and the result can be extended to any planar graph (Schrijver
[1991]). As a theoretical consequence one has that for each fixed number of modules, the
planar VLSI-routing problem can be solved in polynomial time.

Exercises

9.11. Extend the algorithm and Theorem 9.4 to the directed case.

9.12. Extend the algorithm and Theorem 9.4 to the following vertex-disjoint trees problem:

Section 9.5. Edge-disjoint paths in planar graphs 165

(31) given:a planar graph G = (V,E), sets R1, . . . , Rk of vertices on the
boundary of G,

find:pairwise vertex-disjoint subtrees T1, . . . , Tk of G so that Ti covers
Ri (i = 1, . . . , k).

9.13. Extend the algorithm and Theorem 9.4 to the following problem:

(32) given:a planar graph G = (V,E), pairs {s1, t1}, . . . , {sk, tk} of vertices
on the boundary of G, subgraphs G1, . . . , Gk of G,

find:pairwise vertex-disjoint paths P1, . . . , Pk where Pi connects si and
ti and where Pi is in Gi (i = 1, . . . , k).

9.14. (i) Reduce the edge-disjoint paths problem where all commodities are on the bound-
ary of a planar graph so that the cross-freeness condition is satisfied, to the
vertex-disjoint paths problem(26).

(ii) Show that the cut condition (7) is sufficient in this case of the edge-disjoint
paths problem.

9.5. Edge-disjoint paths in planar graphs

The trivially necessary cross-freeness condition for the commodities if they are on
the boundary of a planar graph, turned out to be of great help in handling the
vertex-disjoint paths problem: it gives an ordering of the commodities, allowing us to
handling them one by one.

As we saw in Exercise 9.14, the edge-disjoint analogue can be handled in the same
way if the cross-freeness condition holds. In that case, the cut condition (7) is again
sufficient. However, Figure 9.5 shows that without cross-freeness, the cut condition
is not sufficient. That simple example shows that we may not hope for many other
interesting cases where the cut condition is sufficient.

In fact, the complexity of the edge-disjoint paths problem for planar graphs with
all commodities on the boundary, is open. Therefore, we put:

Research problem. Is the undirected edge-disjoint paths problem polynomially
solvable for planar graphs with all commodities on the boundary? Is it
NP-complete?

Okamura and Seymour [1981] showed that the problem is polynomially solvable
if we pose the following Euler condition:

(33) the graph (V,E ∪ {{s1, t1}, . . . , {sk, tk}}) is Eulerian.

(We have parallel edges if some {si, ti} coincide or form an edge of G.) Moreover,
they showed that with the Euler condition, the cut condition is a sufficient condition.
(Thus we have an analogue to Rothschild and Whinston’s theorem (Theorem 9.2).)

166 Chapter 9. Multicommodity flows and disjoint paths

We here observe that the Euler condition (33) implies that for each U ⊆ V :

(34) |δE(U)| ≡ number of i with |U ∩ {si, ti}| = 1 (mod 2).

Theorem 9.5 (Okamura-Seymour theorem). Let G = (V,E) be a planar graph and
let {s1, t1}, . . . , {sk, tk} be pairs of vertices on the boundary of G such that the Euler
condition (33) holds. Then the edge-disjoint paths problem has a solution if and only
if the cut condition holds.

Proof. Necessity of the cut condition being trivial, we show sufficiency. The cut
condition implies that |R| ≤ |E| (assuming that each r ∈ R consists of two distinct
vertices), since

(35) 2|R| =
∑

v∈V

degR(v) ≤
∑

v∈V

degE(v) = 2|E|.

So we can consider a counterexample with 2|E| − |R| minimal. Then

(36) G is 2-connected.

Indeed, if G is disconnected, we can deal with the components separately. Suppose
next that G is connected and has a cut vertex v. We may assume that for no r =
st ∈ R, the vertices s and t belong to different components of G− v, since otherwise
we can replace r by sv and vt, without violating the Euler or cut condition. For any
component K of G − v consider the graph induced by K ∪ {v}. Again, the Euler
and cut conditions hold (with respect to those nets contained in K ∪ {v}). So by the
minimality of 2|E| − |R|, we know that paths as required exist in K ∪ {v}. As this is
the case for each component of G − v, we have paths as required in G. This proves
(36).

Let C be the circuit formed by the outer boundary of G. If some r ∈ R has the
same ends as some edge e of G, we can delete e from G and r from R, and obtain a
smaller counterexample. So no such r exists.

Call a subset X of V tight if dE(X) = dR(X). Then

(37) there exists a tight subsetX of V such that δE(X) intersects EC in precisely
two edges.

Indeed, if there is no tight set X with ∅ 6= X 6= V , we can choose an edge e ∈ EC,
and replace E and R by E \{e} and R∪{e}. This does not violate the cut condition,
and hence would give a smaller counterexample.

So there exists a tight proper nonempty subset X of V . Choose X with |δE(X)|
minimal. Then G[X] and G−X are connected. For suppose that (say) G[X] is not

Section 9.5. Edge-disjoint paths in planar graphs 167

connected. Let K be a component of G[X]. Then

(38) |δE(K)|+ |δE(X \K)| ≥ |δR(K)|+ |δR(X \K)| ≥ |δR(X)|
= |δE(X)| = |δE(K)|+ |δE(X \K)|.

So K is tight, while |δE(K)| < |δE(X)|, contradicting the minimality assumption.
Hence G[X] and G−X are connected, implying (37).

Choose a set X as in (37) with |X| minimal. Let e be one of the two edges in EC
that belong to δE(X). Say e = uw with u 6∈ X and w ∈ X.

Since dR(X) = dE(X) ≥ 2, we know δR(X) 6= ∅. For each r ∈ δR(X), let sr be
the vertex in r ∩X, and tr the vertex in r \X. Choose r ∈ δR(X) such that tr is as
close as possible to u in the graph C −X.

Since sr and tr are nonadjacent, we know that {sr, tr} 6= {u, w}. So we can
choose v ∈ {u, w} \ {sr, tr}. Let R′ := (R \ {r}) ∪ {srv, vtr}. Trivially the Euler
condition is maintained. We show that also the cut condition is maintained, yielding
a contradiction as 2|E| − |R′| < 2|E| − |R| and as a solution for R′ yields a solution
for R.

To see that the cut condition is maintained, suppose to the contrary that there is
a Y ⊆ V satisfying

(39) dE(Y) < dR′(Y).

By choosing Y under the additional condition that dE(Y) is as small as possible, we
have that G[Y] and G−Y are connected. So δE(Y) has two edges on C. By symmetry
we can assume that tr 6∈ Y . By the Euler condition, (39) implies dE(Y) ≤ dR′(Y)−2.
So

(40) dR′(Y) ≥ dE(Y) + 2 ≥ dR(Y) + 2 ≥ dR′(Y).

Hence we have equality throughout. So δR′(Y) contains both srv and vtr, that is,
sr, tr 6∈ Y and v ∈ Y . Moreover, dE(Y) = dR(Y).

By the choice of r, there is no pair r′ in R connecting X \ Y and Y \ X (since
then tr′ ∈ Y \X, and hence tr′ is closer than tr to u in C −X). This implies

(41) dR(X ∩ Y) + dR(X ∪ Y) = dR(X) + dR(Y).

Moreover,

(42) dE(X ∩ Y) + dE(X ∪ Y) ≤ dE(X) + dE(Y).

As the cut condition holds for X ∩ Y and X ∪ Y , we have equality in (42), and
therefore X ∩ Y is tight. Since sr ∈ X \ Y , we know |X ∩ Y | < |X|. So by the

168 Chapter 9. Multicommodity flows and disjoint paths

minimality of X we have X ∩Y = ∅. So w 6∈ Y , hence u = v ∈ Y . Then edge e = uw
connects X \ Y and Y \X, contradicting equality in (42).

Clearly, this method gives a polynomial-time algorithm for finding the paths,
since we can determine a minimum-cardinality cut containing e′ and e′′, for any pair
of edges e′, e′′ on the boundary of G (cf. Exercise 9.16).

Becker and Mehlhorn [1986] and Matsumoto, Nishizeki, and Saito [1985] gave
implementations with running time of order O(|E|2). Recently, Wagner and Weihe
[1995] found a linear-time algorithm.

Exercises

9.15. Let G = (V,E) be a finite subgraph of the rectangular grid graph in R2, such that
each bounded face of G is a square of area 1. Let {s1, t1}, . . . , {sk, tk} be pairs of
vertices on the boundary of G such that each vertex of (V,E∩{{s1, t1}, . . . , {sk, tk}})
has degree even and at most 4. A cut is called a 1-bend cut if it is the set of edges
crossed by the union of some horizontal and some vertical half-line with one common
end vertex.

Show that the cut condition holds whenever it holds for all 1-bend cuts.

9.16. Let G be a planar graph and let e′ and e′′ be edges on the boundary of G. Reduce
the problem of finding a minimum-cardinality cut containing e′ and e′′ to a shortest
path problem.

9.6. A column generation technique for multicom-

modity flows

The fractional multicommodity flow problem (1) asks for flows x1, . . . , xk of given
values d1, . . . , dk such that the total amount of flow through any arc e does not
exceed the capacity of e. So it amounts to finding a solution to the following system
of linear inequalities in the k|E| variables xi(e) (i = 1, . . . , k; e ∈ E):

(43) (i)
∑

e∈δout(v)

xi(e)−
∑

e∈δin(v)

xi(e) = 0 (i = 1, . . . , k; v ∈ V, v 6= si, ti),

(ii)
∑

e∈δout(si)

xi(e)−
∑

e∈δin(si)

xi(e) = di (i = 1, . . . , k),

(iii)
k

∑

i=1

xi(e) ≤ c(e) (e ∈ E),

(iv) xi(e) ≥ 0 (i = 1, . . . , k; e ∈ E).

Section 9.6. A column generation technique for multicommodity flows 169

Thus any linear programming method can solve the multicommodity flow problem.
In particular, the problem is solvable in polynomial time.

Since for each fixed i = 1, . . . , k, a solution xi to (43) is an si − ti flow, we can
decompose xi as a nonnegative combination of si−ti paths. That is, there exist si−ti
paths Pi1, . . . , Pini

and nonnegative reals zi1, . . . , zini
satisfying:

(44) (i)

ni
∑

j=1

zijX Pij(e) = xj(e) (e ∈ E),

(ii)

ni
∑

j=1

zij = di.

Here X P denotes the incidence vector of P in QE, that is, X P (e) = 1 if P traverses
e, and = 0 otherwise.

Hence the multicommodity flow problem amounts to finding paths Pij and non-
negative reals zij , where Pij is an si − ti path, such that:

(45) (i)

ni
∑

j=1

zij = di (i = 1, . . . , k),

(ii)
k

∑

i=1

ni
∑

j=1

zijX Pij(e) ≤ c(e) (e ∈ E).

This formulation applies to both the directed and the undirected problems.

Solving (45) again amounts to solving a system of linear inequalities, albeit with
an enormous number of variables: one variable for each i = 1, . . . , k and each si − ti
path.

Ford and Fulkerson [1958] showed that this large number of variables can be
avoided when solving the problem with the simplex method. The variables can be
handled implicitly by using a column generation technique as follows.

First convert the problem to a maximization problem. To this end, add, for each
i = 1, . . . , k, a vertex s′i and an arc s′isi, with capacity equal to di. Then we can
delete the constraint (45)(i), and maximize

∑

i,j zij over the remaining constraints
(replacing si by s′i). If the maximum value is equal to

∑

i di we have a solution to
(45). If the maximum value is less, then (45) has no nonnegative solution zij.

Having this reduction, we see that the problem is equivalent to the following LP-
problem. Let P be the collection of all si − ti paths for all i = 1, . . . , k. Then:

170 Chapter 9. Multicommodity flows and disjoint paths

(46) maximize:
∑

P∈P

zP

subject to: (i)
∑

P∈P

zPX P (e) ≤ c(e) (e ∈ E),

(ii) zP ≥ 0 (P ∈ P).

When solving (46) with the simplex method we first should add a slack variable ze
for each e ∈ E. Thus if A denotes the E × P matrix with the incidence vectors of
all paths in P as its columns (in some order) and w is the vector in RP × RE with
wP = 1 (P ∈ P) and we = 0 (e ∈ E), we solve:

(47)
maximize: wT z
subject to: [A I]z = c,

z ≥ 0.

Now each simplex tableau is completely determined by the set of variables in the
current basis. So knowing subsets P ′ of P and E ′ of E, giving the indices of variables
in the basis, is enough to know implicitly the whole tableau. Note that |P ′|+|E ′| = E.
So although the tableau is exponentially large, it can be represented in a concise way.

Let B be the matrix consisting of those columns of [A I] corresponding to P ′

and E ′. So the rows of B are indexed by E and the columns by P ′ ∪ E ′. The basic
solution corresponding to B is easily computed: the vector B−1c gives the values for
zP if P ∈ P ′ and for ze if e ∈ E ′, while we set zP := 0 if P 6∈ P ′ and ze := 0 if
e 6∈ E ′. (Initially, B = I, that is P ′ = ∅ and E ′ = E, so that zP = 0 for all P ∈ P
and ze = c(e) for all e ∈ E.)

Now we should describe pivoting (that is, finding variables leaving and entering
the basis) and checking optimality. Interestingly, it turns out that this can be done
by solving a set of shortest path problems.

First consider the dual variable corresponding to an edge e. It has value (in the
current tableau):

(48) wBB
−1εe − we = wB(B

−1)e

where as usual wB denotes the part of vector w corresponding to B (that is, corre-
sponding to P ′ and E ′) and where εe denotes the e-th unit basis vector in RE (which
is the column corresponding to e in [A I]). Note that the columns of B−1 are in-
dexed by E; then (B−1)e is the column corresponding to e. Note also that we = 0 by
definition.

Similarly, the dual variable corresponding to a path P in P has value:

(49) wBB
−1X P − wP = [

∑

e∈P

wB(B
−1)e]− 1.

Section 9.6. A column generation technique for multicommodity flows 171

(Note that X P is the column in [A I] corresponding to P .)
In order to pivot, we should identify a negative dual variable. To this end, we

first check if (48) is negative for some edge e. If so, we choose such an edge e and
take ze as the variable entering the basis. Selecting the variable leaving the basis now
belongs to the standard simplex routine. We only have to consider that part of the
tableau corresponding to P ′, E ′ and e. We select an element f in P ′ ∪ E ′ for which
the quotient zf/(B

−1)fe has positive denominator and is as small as possible. Then
zf is the variable leaving the basis.

Suppose next that (48) is nonnegative for each edge e. We consider wB(B
−1)e as

the length l(e) of e. Then for any path P ,

(50)
∑

e∈P

wB(B
−1)e

is equal to the length
∑

e∈P l(e) of P . Hence, finding a dual variable (49) of negative
value is the same as finding a path in P of length less than 1.

Such a path can be found by applying any shortest path algorithm: for each
i = 1, . . . , k, we find a shortest si − ti path (with respect to l). If each of these
shortest paths has length at least 1, we know that all dual variables have nonnegative
value, and hence the current basic solution is optimum.

If we find some si − ti path P of length less than 1, we choose zP as variable
entering the basis. Again selecting a variable leaving the basis is standard: we select
an element f in P ′∪E ′ for which the quotient zf/(B

−1X P)f has positive denominator
and is as small as possible.

This describes pivoting. In order to avoid “cycling”, we apply a lexicographic rule
for selecting the variable leaving the basis. We order the edges of G arbitrarily. Now
in case there is a tie in selecting the f ∈ P ′∪E ′ for which the corresponding quotient
is as small as possible, we choose the f ∈ P ′ ∪ E ′ for which the vector

(B−1)f/(B
−1)fe (if e enters the basis),(51)

(B−1)f/(B
−1X P)f (if P enters the basis),

is lexicographically as small as possible. In Exercise 9.17 we will see that this avoids
cycling.

Exercises

9.17. (i) Apply the lexicographic rule above, and consider a simplex tableau, correspond-
ing to P ′ and E′ say. Show that for each f ∈ P ′ ∪ E′: if zf = 0 then the first
nonzero entry in the vector (B−1)f is positive. (Use induction on the number
of pivot steps performed.)

(ii) Derive from (i) that, when applying the lexicographic rule, at each pivot iter-
ation, if the objective value of the solution does not increase, then the vector
wBB

−1 increases lexicographically.

172 Chapter 9. Multicommodity flows and disjoint paths

(iii) Derive that the lexicographic rule leads to termination of the method.

9.18. Modify the column generation technique to solve the following problem: given a
directed graph G = (V,E), a capacity function c : E → Q+, commodities (s1, t1), . . . ,
(sk, tk) and ‘profits’ p1, . . . , pk ∈ Q+, find vectors x1, . . . , xk in QE and rationals
d1, . . . , dk so that:

(52) (i)xi is an si − ti flow of value di (i = 1, . . . , k),

(ii)
k

∑

i=1

xi(e) ≤ c(e) (e ∈ E),

(iii)
k

∑

i=1

pidi is as large as possible.

9.19. Let Pij and zij > 0 form a solution to the undirected form of (45) and let W ⊆ V be
so that the capacity of δE(W) is equal to the demand of δR(W). Show that each Pij

intersects δE(W) at most once.

9.20. Show that if the multicommodity flow problem has no solution, then Ford and Fulk-
erson’s column generation technique yields a length function l violating (9).

173

10. Matroids

10.1. Matroids and the greedy algorithm

Let G = (V,E) be a connected undirected graph and let w : E → Z be a ‘weight’
function on the edges. In Section 1.4 we saw that a minimum-weight spanning tree
can be found quite straightforwardly with Kruskal’s so-called greedy algorithm.

The algorithm consists of selecting successively edges e1, e2, . . . , er. If edges e1, . . . , ek
have been selected, we select an edge e ∈ E so that:

(1) (i) e 6∈ {e1, . . . , ek} and {e1, . . . , ek, e} is a forest,
(ii) w(e) is as small as possible among all edges e satisfying (i).

We take ek+1 := e. If no e satisfying (1)(i) exists, that is, if {e1, . . . , ek} forms
a spanning tree, we stop, setting r := k. Then {e1, . . . , er} is a spanning tree of
minimum weight.

By replacing ‘as small as possible’ in (1)(ii) by ‘as large as possible’, one obtains
a spanning tree of maximum weight.

It is obviously not true that such a greedy approach would lead to an optimal
solution for any combinatorial optimization problem. We could think of such an
approach to find a matching of maximum weight. Then in (1)(i) we replace ‘forest’
by ‘matching’ and ‘small’ by ‘large’. Application to the weighted graph in Figure 10.1
would give e1 = cd, e2 = ab.

1

3

a b

cd

3

4

Figure 10.1

However, ab and cd do not form a matching of maximum weight.
It turns out that the structures for which the greedy algorithm does lead to an

optimal solution, are the matroids. It is worth studying them, not only because it
enables us to recognize when the greedy algorithm applies, but also because there
exist fast algorithms for ‘intersections’ of two different matroids.

The concept of matroid is defined as follows. Let X be a finite set and let I be a
collection of subsets of X. Then the pair (X, I) is called a matroid if it satisfies the
following conditions:

174 Chapter 10. Matroids

(2) (i) ∅ ∈ I,
(ii) if Y ∈ I and Z ⊆ Y then Z ∈ I,
(iii) if Y, Z ∈ I and |Y | < |Z| then Y ∪ {x} ∈ I for some x ∈ Z \ Y .

For any matroid M = (X, I), a subset Y of X is called independent if Y belongs
to I, and dependent otherwise.

Let Y ⊆ X. A subset B of Y is called a basis of Y if B is an inclusionwise maximal
independent subset of Y . That is, for any set Z ∈ I with B ⊆ Z ⊆ Y one has Z = B.

It is not difficult to see that condition (2)(iii) is equivalent to:

(3) for any subset Y of X, any two bases of Y have the same cardinality.

(Exercise 10.1.) The common cardinality of the bases of a subset Y of X is called the
rank of Y , denoted by rM(Y).

We now show that if G = (V,E) is a graph and I is the collection of forests in
G, then (E, I) indeed is a matroid. Conditions (2)(i) and (ii) are trivial. To see
that condition (3) holds, let E ′ ⊆ E. Then, by definition, each basis Y of E ′ is an
inclusionwise maximal forest contained in E ′. Hence Y forms a spanning tree in each
component of the graph (V,E ′). So Y has |V | − k elements, where k is the number
of components of (V,E ′). So each basis of E ′ has |V | − k elements, proving (3).

A set is called simply a basis if it is a basis of X. The common cardinality of all
bases is called the rank of the matroid. If I is the collection of forests in a connected
graph G = (V,E), then the bases of the matroid (E, I) are exactly the spanning trees
in G.

We next show that the matroids indeed are those structures for which the greedy
algorithm leads to an optimal solution. Let X be some finite set and let I be a
collection of subsets of X satisfying (2)(i) and (ii).

For any weight function w : X → R we want to find a set Y in I maximizing

(4) w(Y) :=
∑

y∈Y

w(y).

The greedy algorithm consists of selecting y1, . . . , yr successively as follows. If y1, . . . , yk
have been selected, choose y ∈ X so that:

(5) (i) y 6∈ {y1, . . . , yk} and {y1, . . . , yk, y} ∈ I,
(ii) w(y) is as large as possible among all y satisfying (i).

We stop if no y satisfying (5)(i) exist, that is, if {y1, . . . , yk} is a basis.
Now:

Theorem 10.1. The pair (X, I) satisfying (2)(i) and (ii) is a matroid if and only if

Section 10.1. Matroids and the greedy algorithm 175

the greedy algorithm leads to a set Y in I of maximum weight w(Y), for each weight
function w : X → R+.

Proof. Sufficiency. Suppose that the greedy algorithm leads to an independent set
of maximum weight for each weight function w. We show that (X, I) is a matroid.

Conditions (2)(i) and (ii) are satisfied by assumption. To see condition (2)(iii),
let Y, Z ∈ I with |Y | < |Z|. Suppose that Y ∪ {z} 6∈ I for each z ∈ Z \ Y .

Consider the following weight function w on X. Let k := |Y |. Define:

(6) w(x) := k + 2 if x ∈ Y ,
w(x) := k + 1 if x ∈ Z \ Y ,
w(x) := 0 if x ∈ X \ (Y ∪ Z).

Now in the first k iterations of the greedy algorithm we find the k elements in
Y . By assumption, at any further iteration, we cannot choose any element in Z \ Y .
Hence any further element chosen, has weight 0. So the greedy algorithm will yield a
basis of weight k(k + 2).

However, any basis containing Z will have weight at least |Z ∩ Y |(k + 2) + |Z \
Y |(k+1) ≥ |Z|(k+1) ≥ (k+1)(k+1) > k(k+2). Hence the greedy algorithm does
not give a maximum-weight independent set.

Necessity. Now let (X, I) be a matroid. Let w : X → R+ be any weight function on
X. Call an independent set Y greedy if it is contained in a maximum-weight basis. It
suffices to show that if Y is greedy, and x is an element in X \Y such that Y ∪{x} ∈ I
and such that w(x) is as large as possible, then Y ∪ {x} is greedy.

As Y is greedy, there exists a maximum-weight basis B ⊇ Y . If x ∈ B then
Y ∪ {x} is greedy again. If x 6∈ B, then there exists a basis B′ containing Y ∪ {x}
and contained in B ∪ {x}. So B′ = (B \ {x′}) ∪ {x} for some x′ ∈ B \ Y . As w(x)
is chosen maximum, w(x) ≥ w(x′). Hence w(B′) ≥ w(B), and therefore B′ is a
maximum-weight basis. So Y ∪ {x} is greedy.

Note that by replacing “as large as possible” in (5) by “as small as possible”, one
obtains an algorithm for finding a minimum-weight basis in a matroid. Moreover,
by ignoring elements of negative weight, the algorithm can be adapted to yield an
independent set of maximum weight, for any weight function w : X → R.

Exercises

10.1. Show that condition (3) is equivalent to condition (2)(iii) (assuming (2)(i) and (ii)).

10.2. Let M = (X, I) be a matroid. Two elements x, y of X are called parallel if {x, y} is
a circuit. Show that if x and y are parallel and Y is an independent set with x ∈ Y ,
then also (Y \ {x}) ∪ {y} is independent.

176 Chapter 10. Matroids

10.3. Let M = (X, I) be a matroid, with X = {x1, . . . , xm}. Define

(7) Y := {xi | rM ({x1, . . . , xi}) > rM ({x1, . . . , xi−1})}.

Prove that Y belongs to I.

10.2. Equivalent axioms for matroids

The definition of the notion of matroid given in the previous section is given by
‘axioms’ in terms of the independent sets. There are several other axioms that char-
acterize matroids. In this section we give a number of them.

Let X be a finite set, and let I be a nonempty down-monotone collection of
subsets of X; that is, if F ∈ I and F ′ ⊆ F , then F ′ ∈ I. Let B be the collection of
inclusionwise maximal sets in I, and let C be the collection of inclusionwise minimimal
sets that are not in I. Finally, for any subset Y of X, define

(8) r(Y) := max{|Z| | Z ⊆ Y, Z ∈ I}.

Obviously, knowing one of the objects I, B, C, r, we know all the other. Moreover,
any nonempty antichain22 B arises in this way from some nonempty down-monotone
collection I of subsets. Similarly, any antichain C consisting of nonempty sets arises
in this way. Finally, r arises in this way if and only if

(9) (i) r(∅) = 0,
(ii) if Z ⊆ Y ⊆ X then r(Z) ≤ r(Y).

We can now characterize when such objects arise from a matroid (X, I). That is,
we obtain the following equivalent characterizations of matroids.

Theorem 10.2. Let I, B, C, and r be as above. Then the following are equivalent:

(i) if F, F ′ ∈ I and |F ′| > |F |, then F ∪ {x} ∈ I for some x ∈ F ′ \ F ;

(ii) if B,B′ ∈ B and x ∈ B′ \B, then (B′ \ {x}) ∪ {y} ∈ B for some y ∈ B \B′;

(iii) if B,B′ ∈ B and x ∈ B′ \B, then (B \ {y}) ∪ {x} ∈ B for some y ∈ B \B′;

(iv) if C,C ′ ∈ C with C 6= C ′ and x ∈ C ∩C ′, then (C ∪C ′) \ {x} contains a set in
C;

(v) if C,C ′ ∈ C, x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x} contains a set in
C containing y;

(vi) for all Y, Z ⊆ X one has

22An antichain is a collection of sets no two of which are contained in each other.

Section 10.2. Equivalent axioms for matroids 177

(10) r(Y ∩ Z) + r(Y ∪ Z) ≤ r(Y) + r(Z).

Proof. (i)⇒(ii): (i) directly implies that all sets in B have the same size. Now let
B,B′ ∈ B and x ∈ B′ \ B. Since B′ \ {x} ∈ I, by (i) there exists a y ∈ B \ B′ such
that B′′ := (B′ \ {x}) ∪ {y} ∈ I. Since |B′′| = |B′|, we know B′′ ∈ B.

(iii)⇒(i): Let F, F ′ form a counterexample to (i) with |F ∩F ′| as large as possible.
Consider sets B,B′ in B with F ⊆ B and F ′ ⊆ B′.

As F, F ′ is a counterexample, we know F 6⊆ B′. Choose x ∈ F \ B′. Then by
(iii), (B′ \ {y})∪ {x} for some y ∈ B′ \B. Hence replacing F ′ by (F ′ \ {y})∪ {x} we
would keep a counterexample but increase |F ∩ F ′|, a contradiction.

(ii)⇒(iii): By the foregoing we know that (iii) implies (ii). Now axioms (ii) and
(iii) interchange if we replace B by the collection of complements of sets in B. Hence
also the implication (ii)⇒(iii) holds.

(i)⇒(v): If (i) holds, then by the foregoing, also (ii) holds. Let C,C ′ ∈ C and
x ∈ C ∩ C ′, y ∈ C \ C ′. We can assume that X = C ∪ C ′. Let B,B′ ∈ B with
B ⊇ C \ {y} and B′ ⊇ C ′ \ {x}. Then y 6∈ B and x 6∈ B′ (since C 6⊆ B and C ′ 6⊆ B′).

We can assume that y 6∈ B′. Otherwise, y ∈ B′ \B, and hence by (ii), there exists
a z ∈ B \B′ with B′′ := (B′ \ {y}) ∪ {z} ∈ B. Then z 6= x, since otherwise C ′ ⊆ B′′.
Hence, replacing B′ by B′′ gives y 6∈ B′.

As y 6∈ B′, we know B′ ∪ {y} 6∈ I, and hence there exists a C ′′ ∈ C contained in
B′ ∪ {y}. As C ′′ 6⊆ B′, we know y ∈ C ′′. Moreover, as x 6∈ B′ we know x 6∈ C ′′.

(v)⇒(iv): is trivial.

(iv)⇒(i): Let F, F ′ form a counterexample to (i) with |F ∩ F ′| maximal. Then
F 6⊆ F ′, and so we can choose y ∈ F \ F ′. By the maximality of |F ∩ F ′|, we know
F ′ ∪ {x} 6∈ I. So there is a C ∈ C contained in F ′ ∪ {x}. As C 6⊆ F ′ we know
x ∈ C. Then C is the unique set in C contained in F ′ ∪ {x}. For suppose there is
another, C ′ say. Again, x ∈ C ′, and hence by (iv) there exists a C ′′ ∈ C contained in
(C ∪ C ′) \ {x}. But then C ′′ ⊆ F ′, a contradiction.

As C 6⊆ F , C intersects F ′\F . Choose y ∈ C∩(F ′\F). Then F ′′ := (F ′∪{x})\{y}
does not contain any set in C (as C is the only set in C contained in F ′ ∪ {x}).
Then replacing F ′ by F ′′, we would keep a counterexample while increasing |F ′ ∩F |,
contradicting our assumption.

(i)⇒(vi): Choose Y, Z ⊆ X. Let F be an inclusionwise maximal set in I with
F ⊆ Y ∩ Z, and let F ′ be an inclusionwise maximal set in I with F ⊆ F ⊆ Y ∪ Z.
By (i) we know that r(Y ∩ Z) = |F | and r(Y ∪ Z) = |F ′|. Then

(11) |F ′ ∩ Y |+ |F ′ ∩ Z| = |F ′ ∩ (Y ∩ Z)|+ |F ′ ∩ (Y ∪ Z)| ≥ |F |+ |F ′|,

and hence we have (10).

178 Chapter 10. Matroids

(vi)⇒(i): Let F, F ′ ∈ I with |F | < |F ′|. Let U be the largest subset of F ′ \ F
with r(F ∪U) = |F |. Then U 6= F ′ \ F , since r(F ∪ F ′) ≥ |F ′| > |F |. So there exists
an x ∈ F ′ \ F ∪ U . If F ∪ {x} ∈ I we are done, so we can assume that F ∪ {x} 6∈ I;
equivalently, r(F ∪ {x}) = |F |. Let U ′ := U ∪ {x}. Then by (10),

(12) r(F ∪ U ′) ≤ r(F ∪ U) + r(F ∪ {x})− r(F) = |F |,

contradicting the maximality of U .

Given a matroid M = (X, I), any in B is called a basis and any set in C a circuit
of M . The function r is called rank function of M (often denoted by rM), and r(Y)
the rank of Y .

The symmetry of (ii) and (iii) in Theorem 10.2 immediately implies the following.
Define

(13) B∗ := {X \B | B ∈ B}.

Then

Corollary 10.2a. If B is the collection of bases of some matroid M , then B∗ also is
the collection of bases of some matroid on X, denoted by M∗.

Proof. Directly from the equivalence of (ii) and (iii) in Theorem 10.2.

The matroid M∗ is called the dual matroid of M . Since (B∗)∗ = B, we know
(M∗)∗ = M .

Theorem 10.3. The rank function rM∗ of the dual matroid M∗ satisfies:

(14) rM∗(Y) = |Y |+ rM(X \ Y)− rM(X).

Proof.

(15) rM∗(Y) = max{|A ∩ Y | | A ∈ B∗} =
= |Y | −min{|B ∩ Y | | B ∈ B} = |Y | − rM(X) + max{|B \ Y | | B ∈ B} =
|Y | − rM(X) + rM(X \ Y).

Another way of constructing matroids from matroids is by ‘deletion’ and ‘contrac-
tion’. Let M = (X, I) be a matroid and let Y ⊆ X. Define

Section 10.2. Equivalent axioms for matroids 179

(16) I ′ := {Z | Z ⊆ Y, Z ∈ I}.

Then M ′ = (Y, I ′) is a matroid again, as one easily checks. M ′ is called the restriction
of M to Y . If Y = X \ Z with Z ⊆ X, we say that M ′ arises by deleting Z, and
denote M ′ by M \ Z.

Contracting Z means replacing M by (M∗ \ Z)∗. This matroid is denoted by
M/Z. One may check that if G is a graph and e is an edge of G, then contracting
edge {e} in the cycle matroid M(G) of G corresponds to contracting e in the graph.
That is, M(G)/{e} = M(G/{e}), where G/{e} denotes the graph obtained from G
by contracting e.

If matroid M ′ arises from M by a series of deletions and contractions, M ′ is called
a minor of M .

Exercises

10.4. (i) LetX be a finite set and let k be a natural number. Let I := {Y ⊆ X | |Y | ≤ k}.
Show that (X, I) is a matroid. Such matroids are called k-uniform matroids.

(ii) Show that k-uniform matroids are transversal matroids. Give an example of a
k-uniform matroid that is neither graphic nor cographic.

10.5. Let M = (X, I) be a matroid and let k be a natural number. Define I ′ := {Y ∈ I |
|Y | ≤ k}. Show that (X, I ′) is again a matroid (called the k-truncation of M).

10.6. Let M = (X, I) be a matroid, let U be a set disjoint from X, and let k ≥ 0. Define

(17) I ′ := {U ′ ∪ Y | U ′ ⊆ U, Y ∈ I, |U ′ ∪ Y | ≤ k}.

Show that (U ∪X, I ′) is again a matroid.

10.7. Let M = (X, I) be a matroid and let x ∈ X.

(i) Show that if x is not a loop, then a subset Y of X \ {x} is independent in the
contracted matroid M/{x} if and only if Y ∪ {x} is independent in M .

(ii) Show that if x is a loop, then M/{x} =M \ {x}.
(iii) Show that for each Y ⊆ X : rM/{x}(Y) = rM (Y ∪ {x})− rM ({x}).

10.8. Let M = (X, I) be a matroid and let Y ⊆ X.

(ii) Let B be a basis of Y . Show that a subset U of X \ Y is independent in the
contracted matroid M/Y if and only if U ∪B is independent in M .

(ii) Show that for each U ⊆ X \ Y

(18) rM/Y (U) = rM (U ∪ Y)− rM (Y).

180 Chapter 10. Matroids

10.9. Let M = (X, I) be a matroid and let Y, Z ⊆ X. Show that (M \Y)/Z = (M/Z) \Y .
(That is, deletion and contraction commute.)

10.10. Let M = (X, I) be a matroid, and suppose that we can test in polynomial time if
any subset Y of X belongs to I. Show that then the same holds for the dual matroid
M∗.

10.3. Examples of matroids

In this section we describe some classes of examples of matroids.

I. Graphic matroids. As a first example we consider the matroids described in
Section 10.1.

Let G = (V,E) be a graph. Let I be the collection of all forests in G. Then
M = (E, I) is a matroid, as we saw in Section 10.1.

The matroid M is called the cycle matroid of G, denoted by M(G). Any matroid
obtained in this way, or isomorphic to such a matroid, is called a graphic matroid.

Note that the bases of M(G) are exactly those forests F of G for which the graph
(V, F) has the same number of components as G. So if G is connected, the bases are
the spanning trees.

Note also that the circuits of M(G), in the matroid sense, are exactly the circuits
of G, in the graph sense.

II. Cographic matroids. There is an alternative way of obtaining a matroid from
a graph G = (V,E). It is in fact the matroid dual of the graphic matroid.

Let B be the set of subsets J of E such that E \ J is an inclusionwise maximal
forest. By Corollary 10.2a, B forms the collection of bases of a matroid. Its collection
I of independent sets consists of those subsets J of E for which

(19) κ(V,E \ J) = κ(V,E).

where, for any graph H, let κ(H) denote the number of components of H.

The matroid (E, I) is called the cocycle matroid of G, denoted by M∗(G). Any
matroid obtained in this way, or isomorphic to such a matroid, is called a cographic
matroid.

By definition, a subset C of E is a circuit ofM∗(G) if it is an inclusionwise minimal
set with the property that (V,E \ C) has more components than G. Hence C is a
circuit of M∗(G) if and only if C is an inclusionwise minimal nonempty cutset in G.

III. Linear matroids. Let A be an m × n matrix. Let X = {1, . . . , n} and let I
be the collection of all those subsets Y of X so that the columns with index in Y are

Section 10.3. Examples of matroids 181

linearly independent. That is, so that the submatrix of A consisting of the columns
with index in Y has rank |Y |.

Now:

Theorem 10.4. (X, I) is a matroid.

Proof. Again, conditions (2)(i) and (ii) are easy to check. To see condition (2)(iii), let
Y and Z be subsets ofX so that the columns with index in Y are linearly independent,
and similarly for Z, and so that |Y | < |Z|.

Suppose that Y ∪{x} 6∈ I for each x ∈ Z \ Y . This means that each column with
index in Z \ Y is spanned by the columns with index in Y . Trivially, each column
with index in Z ∩ Y is spanned by the columns with index in Y . Hence each column
with index in Z is spanned by the columns with index in Y . This contradicts the fact
that the columns indexed by Y span an |Y |-dimensional space, while the columns
indexed by Z span an |Z|-dimensional space, with |Z| > |Y |.

Any matroid obtained in this way, or isomorphic to such a matroid, is called a
linear matroid.

Note that the rank rM(Y) of any subset Y of X is equal to the rank of the matrix
formed by the columns indexed by Y .

IV. Transversal matroids. Let X1, . . . , Xm be subsets of the finite set X. A set
Y = {y1, . . . , yn} is called a partial transversal (of X1, . . . , Xm), if there exist distinct
indices i1, . . . , in so that yj ∈ Xij for j = 1, . . . , n. A partial transversal of cardinality
m is called a transversal (or a system of distinct representatives, or an SDR).

Another way of representing partial transversals is as follows. Let G be the bipar-
tite graph with vertex set V := {1, . . . ,m} ∪ X and with edges all pairs {i, x} with
i ∈ {1, . . . ,m} and x ∈ Xi. (We assume here that {1, . . . ,m} ∩X = ∅.)

For any matching M in G, let ρ(M) denote the set of those elements in X that
belong to some edge in M . Then it is not difficult to see that:

(20) Y ⊆ X is a partial transversal if and only if Y = ρ(M) for some matching
M in G.

Now let I be the collection of all partial transversals for X1, . . . , Xm. Then:

Theorem 10.5. (X, I) is a matroid.

Proof. Again, conditions (2)(i) and (ii) are trivial. To see (2)(iii), let Y and Z be
partial transversals with |Y | < |Z|. Consider the graph G constructed above. By
(20) there exist matchings M and M ′ in G so that Y = ρ(M) and Z = ρ(M ′). So
|M | = |Y | < |Z| = |M ′|.

Consider the union M ∪M ′ of M and M ′. Each component of the graph (V ,M ∪

182 Chapter 10. Matroids

M ′) is either a path, or a circuit, or a singleton vertex. Since |M ′| > |M |, at least
one of these components is a path P with more edges in M ′ than in M . The path
consists of edges alternatingly in M ′ and in M , with end edges in M ′.

Let N and N ′ denote the edges in P occurring in M and M ′, respectively. So
|N ′| = |N | + 1. Since P has odd length, exactly one of its end vertices belongs
to X; call this end vertex x. Then x ∈ ρ(M ′) = Z and x 6∈ ρ(M) = Y . Define
M ′′ := (M \N) ∪N ′. Clearly, M ′′ is a matching with ρ(M ′′) = Y ∪ {x}. So Y ∪ {x}
belongs to I.

Any matroid obtained in this way, or isomorphic to such a matroid, is called a
transversal matroid. If the sets X1, . . . , Xm form a partition of X, one speaks of a
partition matroid.

These four classes of examples show that the greedy algorithm has a wider appli-
cability than just for finding minimum-weight spanning trees. There are more classes
of matroids (like ‘algebraic matroids’, ‘gammoids’), for which we refer to Welsh [1976].

Exercises

10.11. Show that a partition matroid is graphic, cographic, and linear.

10.12. Let M = (V, I) be the transversal matroid derived from subsets X1, . . . , Xm of X as
in Example IV.

(i) Show with Kőnig’s matching theorem that:

(21) rM (X) = min
J⊆{1,...,m}

(
∣

∣

⋃

j∈J

Xj

∣

∣+m− |J |).

(ii) Derive a formula for rM (Y) for any Y ⊆ X.

10.13. Let G = (V,E) be a graph. Let I be the collection of those subsets Y of E so that F
has at most one circuit. Show that (E, I) is a matroid.

10.14. Let G = (V,E) be a graph. Call a collection C of circuits a circuit basis of G if each
circuit of G is a symmetric difference of circuits in C. (We consider circuits as edge
sets.)

Give a polynomial-time algorithm to find a circuit basis C of G that minimizes
∑

C∈C |C|.
(The running time of the algorithm should be bounded by a polynomial in |V |+ |E|.)

10.15. Let G = (V,E) be a connected graph. For each subset E′ of E, let κ(V,E′) denote
the number of components of the graph (V,E′). Show that for each E′ ⊆ E:

(i) rM(G)(E
′) = |V | − κ(V,E′);

Section 10.4. Two technical lemmas 183

(ii) rM∗(G)(E
′) = |E′| − κ(V,E \ E′) + 1.

10.16. Let G be a planar graph and let G∗ be a planar graph dual to G. Show that the cycle
matroid M(G∗) of G∗ is isomorphic to the cocycle matroid M∗(G) of G.

10.17. Show that the dual matroid of a linear matroid is again a linear matroid.

10.18. Let G = (V,E) be a loopless undirected graph. Let A be the matrix obtained from
the V ×E incidence matrix of G by replacing in each column, exactly one of the two
1’s by −1.

(i) Show that a subset Y of E is a forest if and only if the columns of A with index
in Y are linearly independent.

(ii) Derive that any graphic matroid is a linear matroid.

(iii) Derive (with the help of Exercise 10.17) that any cographic matroid is a linear
matroid.

10.4. Two technical lemmas

In this section we prove two technical lemmas as a preparation to the coming sections
on matroid intersection.

Let M = (X, I) be a matroid. For any Y ∈ I define a bipartite graph H(M,Y)
as follows. The graph H(M,Y) has vertex set X, with colour classes Y and X \ Y .
Elements y ∈ Y and x ∈ X \ Y are adjacent if and only if

(22) (Y \ {y}) ∪ {x} ∈ I.

Then we have:

Lemma 10.1. Let M = (X, I) be a matroid and let Y, Z ∈ I with |Y | = |Z|. Then
H(M,Y) contains a perfect matching on Y△Z.23

Proof. Suppose not. By Kőnig’s matching theorem there exist a subset S of Y \ Z
and a subset S ′ of Z \ Y such that for each edge {y, z} of H(M,Y) satisfying z ∈ S ′

one has y ∈ S and such that |S| < |S ′|.
As |(Y ∩ Z) ∪ S| < |(Y ∩ Z) ∪ S ′|, there exists an element z ∈ S ′ such that

T := (Y ∩ Z) ∪ S ∪ {z} belongs to I. This implies that there exists an U ∈ I such
that T ⊆ U ⊆ T ∪ Y and |U | = |Y |. So U = (Y \ {x}) ∪ {z} for some x 6∈ S. As
{x, z} is an edge of H(M,Y) this contradicts the choice of S and S ′.

The following forms a counterpart:

23A perfect matching on a vertex set U is a matching M with
⋃

M = U .

184 Chapter 10. Matroids

Lemma 10.2. Let M = (X, I) be a matroid and let Y ∈ I. Let Z ⊆ X be such that
|Y | = |Z| and such that H(M,Y) contains a unique perfect matching N on Y△Z.
Then Z belongs to I.
Proof. By induction on k := |Z \ Y |, the case k = 0 being trivial. Let k ≥ 1.

By the unicity of N there exists an edge {y, z} ∈ N , with y ∈ Y \Z and z ∈ Z \Y ,
with the property that there is no z′ ∈ Z \ Y such that z′ 6= z and {y, z′} is an edge
of H(M,Y).

Let Z ′ := (Z \{z})∪{y} and N ′ := N \{{y, z}}. Then N ′ is the unique matching
in H(M,Y) with union Y△Z ′. Hence by induction, Z ′ belongs to I.

There exists an S ∈ I such that Z ′ \ {y} ⊆ S ⊆ (Y \ {y}) ∪ Z and |S| = |Y |
(since (Y \ {y}) ∪ Z = (Y \ {y}) ∪ {z} ∪ Z ′ and since (Y \ {y}) ∪ {z} belongs to I).
Assuming Z 6∈ I, we know z 6∈ S and hence r((Y ∪ Z ′) \ {y}) = |Y |. Hence there
exists an z′ ∈ Z ′ \ Y such that (Y \ {y}) ∪ {z′} belongs to I. This contradicts the
choice of y.

Exercises

10.19. Let M = (X, I) be a matroid, let B be a basis of M , and let w : X → R be a weight
function. Show that B is a basis of maximum weight if and only if w(B′) ≤ w(B) for
every basis B′ with |B′ \B| = 1.

10.20. Let M = (X, I) be a matroid and let Y and Z be independent sets with |Y | = |Z|.
For any y ∈ Y \ Z define δ(y) as the set of those z ∈ Z \ Y which are adjacent to y
in the graph H(M,Y).

(i) Show that for each y ∈ Y \ Z the set (Z \ δ(y)) ∪ {y} belongs to I.
(Hint: Apply inequality (10) to X ′ := (Z \ δ(y)) ∪ {y} and X ′′ := (Z \ δ(y)) ∪
(Y \ {y}).)

(ii) Derive from (i) that for each y ∈ Y \ Z there exists an z ∈ Z \ Y so that {y, z}
is an edge both of H(M,Y) and of H(M,Z).

10.5. Matroid intersection

Edmonds [1970] discovered that the concept of matroid has even more algorithmic
power, by showing that there exist fast algorithms also for intersections of matroids.

Let M1 = (X, I1) and M2 = (X, I2) be two matroids, on the same set X. Consider
the collection I1 ∩ I2 of common independent sets. The pair (X, I1 ∩ I2) is generally
not a matroid again (cf. Exercise 10.21).

What Edmonds showed is that, for any weight function w on X, a maximum-
weight common independent set can be found in polynomial time. In particular, a
common independent set of maximum cardinality can be found in polynomial time.

We consider first some applications.

Section 10.5. Matroid intersection 185

Example 10.5a. Let G = (V,E) be a bipartite graph, with colour classes V1 and
V2, say. Let I1 be the collection of all subsets F of E so that no two edges in F have
a vertex in V1 in common. Similarly, let I2 be the collection of all subsets F of E so
that no two edges in F have a vertex in V2 in common. So both (X, I1) and (X, I2)
are partition matroids.

Now I1 ∩ I2 is the collection of matchings in G. Finding a maximum-weight
common independent set amounts to finding a maximum-weight matching in G.

Example 10.5b. Let X1, . . . , Xm and Y1, . . . , Ym be subsets of X. Let M1 = (X, I1)
and M2 = (X, I2) be the corresponding transversal matroids.

Then common independent sets correspond to common partial transversals. The
collections (X1, . . . , Xm) and (Y1, . . . , Ym) have a common transversal if and only if
the maximum cardinality of a common independent set is equal to m.

Example 10.5c. Let D = (V,A) be a directed graph. Let M1 = (A, I1) be the cycle
matroid of the underlying undirected graph. Let I2 be the collection of subsets Y of
A so that each vertex of D is entered by at most one arc in Y . So M2 := (A, I2) is a
partition matroid.

Now the common independent sets are those subsets Y of A with the property
that each component of (V, Y) is a rooted tree. Moreover, D has a rooted spanning
tree if and only if the maximum cardinality of a set in I1 ∩ I2 is equal to |V | − 1.

Example 10.5d. Let G = (V,E) be a connected undirected graph. Then G has
two edge-disjoint spanning trees if and only if the maximum cardinality of a common
independent set in the cycle matroid M(G) of G and the cocycle matroid M∗(G) of
G is equal to |V | − 1.

In this section we describe an algorithm for finding a maximum-cardinality com-
mon independent sets in two given matroids. In the next section we consider the
more general maximum-weight problem.

For any two matroids M1 = (X, I1) and M2 = (X, I2) and any Y ∈ I1 ∩ I2, we
define a directed graph H(M1,M2, Y) as follows. Its vertex set is X, while for any
y ∈ Y, x ∈ X \ Y ,

(23) (y, x) is an arc of H(M1,M2, Y) if and only if (Y \ {y}) ∪ {x} ∈ I1,
(x, y) is an arc of H(M1,M2, Y) if and only if (Y \ {y}) ∪ {x} ∈ I2.

These are all arcs of H(M1,M2, Y). In fact, this graph can be considered as the union
of directed versions of the graphs H(M1, Y) and H(M2, Y) defined in Section 10.4.

The following is the basis for finding a maximum-cardinality common independent
set in two matroids.

Cardinality common independent set augmenting algorithm

186 Chapter 10. Matroids

input: matroids M1 = (X, I1) and M2 = (X, I2) and a set Y ∈ I1 ∩ I2;
output: a set Y ′ ∈ I1 ∩ I2 with |Y ′| > |Y |, if it exists.
description of the algorithm: We assume that M1 and M2 are given in such a way
that for any subset Z of X we can check in polynomial time if Z ∈ I1 and if Z ∈ I2.

Consider the sets

(24) X1 := {y ∈ X \ Y | Y ∪ {y} ∈ I1},
X2 := {y ∈ X \ Y | Y ∪ {y} ∈ I2}.

Moreover, consider the directed graph H(M1,M2, Y) defined above. There are two
cases.

Case 1. There exists a directed path P in H(M1,M2, Y) from some vertex in X1 to
some vertex in X2. (Possibly of length 0 if X1 ∩X2 6= ∅.)

We take a shortest such path P (that is, with a minimum number of arcs). Let P
traverse the vertices y0, z1, y1, . . . , zm, ym of H(M1,M2, Y), in this order. By construc-
tion of the graph H(M1,M2, Y) and the sets X1 and X2, this implies that y0, . . . , ym
belong to X \ Y and z1, . . . , zm belong to Y .

Now output

(25) Y ′ := (Y \ {z1, . . . , zm}) ∪ {y0, . . . , ym}.

Case 2. There is no directed path in H(M1,M2, Y) from any vertex in X1 to any
vertex vertex in X2. Then Y is a maximum-cardinality common independent set.

This finishes the description of the algorithm. The correctness of the algorithm is
given in the following two theorems.

Theorem 10.6. If Case 1 applies, then Y ′ ∈ I1 ∩ I2.

Proof. Assume that Case 1 applies. By symmetry it suffices to show that Y ′ belongs
to I1.

To see that Y ′\{y0} belongs to I1, consider the graph H(M1, Y) defined in Section
10.4. Observe that the edges {zj , yj} form the only matching in H(M1, Y) with union
equal to {z1, . . . , zm, y1, . . . , ym} (otherwise P would have a shortcut). So by Lemma
10.2, Y ′ \ {y0} = (Y \ {z1, . . . , zm}) ∪ {y1, . . . , ym} belongs to I1.

To show that Y ′ belongs to I1, observe that rM1
(Y ∪Y ′) ≥ rM1

(Y ∪{y0}) = |Y |+1,
and that, as (Y ′ \ {y0}) ∩X1 = ∅, rM1

((Y ∪ Y ′) \ {y0}) = |Y |. As Y ′ \ {y0} ∈ I1, we
know Y ′ ∈ I1.

Theorem 10.7. If Case 2 applies, then Y is a maximum-cardinality common inde-

Section 10.5. Matroid intersection 187

pendent set.

Proof. As Case 2 applies, there is no directed X1−X2 path in H(M1,M2, Y). Hence
there is a subset U of X containing X2 such that U ∩X1 = ∅ and such that no arc of
H(M1,M2, Y) enters U . (We can take for U the set of vertices that are not reachable
by a directed path from X1.)

We show

(26) rM1
(U) + rM2

(X \ U) = |Y |.

To this end, we first show

(27) rM1
(U) = |Y ∩ U |.

Clearly, as Y ∩U ∈ I1, we know rM1
(U) ≥ |Y ∩U |. Suppose rM1

(U) > |Y ∩U |. Then
there exists an x in U \Y so that (Y ∩U)∪{x} ∈ I1. Since Y ∈ I1, this implies that
there exists a set Z ∈ I1 with |Z| ≥ |Y | and (Y ∩ U) ∪ {x} ⊆ Z ⊆ Y ∪ {x}. Then
Z = Y ∪ {x} or Z = (Y \ {y}) ∪ {x} for some y ∈ Y \ U .

In the first alternative, x ∈ X1, contradicting the fact that x belongs to U . In the
second alternative, (y, x) is an arc of H(M1,M2, Y) entering U . This contradicts the
definition of U (as y 6∈ U and x ∈ U).

This shows (27). Similarly we have that rM2
(X \ U) = |Y \ U |. Hence we have

(26).

Now (26) implies that for any set Z in I1 ∩ I2 one has

(28) |Z| = |Z ∩ U |+ |Z \ U | ≤ rM1
(U) + rM2

(X \ U) = |Y |.

So Y is a common independent set of maximum cardinality.

The algorithm clearly has polynomially bounded running time, since we can con-
struct the auxiliary directed graph H(M1,M2, Y) and find the path P (if it exists),
in polynomial time.

It implies the result of Edmonds [1970]:

Theorem 10.8. A maximum-cardinality common independent set in two matroids
can be found in polynomial time.

Proof. Directly from the above, as we can find a maximum-cardinality common inde-
pendent set after applying at most |X| times the common independent set augmenting
algorithm.

The algorithm also yields a min-max relation for the maximum cardinality of a

188 Chapter 10. Matroids

common independent set, as was shown again by Edmonds [1970].

Theorem 10.9 (Edmonds’ matroid intersection theorem). Let M1 = (X, I1) and
M2 = (X, I2) be matroids. Then

(29) max
Y ∈I1∩I2

|Y | = min
U⊆X

(rM1
(U) + rM2

(X \ U)).

Proof. The inequality ≤ follows similarly as in (28). The reverse inequality follows
from the fact that if the algorithm stops with set Y , we obtain a set U for which (26)
holds. Therefore, the maximum in (29) is at least as large as the minimum.

Exercises

10.21. Give an example of two matroids M1 = (X, I1) and M2 = (X, I2) so that (X, I1∩I2)
is not a matroid.

10.22. Derive Kőnig’s matching theorem from Edmonds’ matroid intersection theorem.

10.23. Let (X1, . . . , Xm) and (Y1, . . . , Ym) be subsets of the finite set X. Derive from Ed-
monds’ matroid intersection theorem: (X1, . . . , Xm) and (Y1, . . . , Ym) have a common
transversal if and only if

(30)
∣

∣(
⋃

i∈I

Xi) ∩ (
⋃

j∈J

Yj)
∣

∣ ≥ |I|+ |J | −m

for all subsets I and J of {1, . . . ,m}.

10.24. Reduce the problem of finding a Hamiltonian cycle in a directed graph to the problem
of finding a maximum-cardinality common independent set in three matroids.

10.25. Let G = (V,E) be a graph and let the edges of G be coloured with |V | − 1 colours.
That is, we have partitioned E into classes X1, . . . , X|V |−1, called colours. Show that
there exists a spanning tree with all edges coloured differently if and only if (V,E′)
has at most |V | − t components, for any union E′ of t colours, for any t ≥ 0.

10.26. LetM = (X, I) be a matroid and letX1, . . . , Xm be subsets ofX. Then (X1, . . . , Xm)
has an independent transversal if and only if the rank of the union of any t sets among
X1, . . . , Xm is at least t, for any t ≥ 0. (Rado [1942].)

10.27. Let M1 = (X, I1) and M2 = (X, I2) be matroids. Define

(31) I1 ∨ I2 := {Y1 ∪ Y2 | Y1 ∈ I1, Y2 ∈ I2}.

(i) Show that the maximum cardinality of a set in I1 ∨ I2 is equal to

Section 10.5. Matroid intersection 189

(32) min
U⊆X

(rM1
(U) + rM2

(U) + |X \ U |).

(Hint: Apply the matroid intersection theorem to M1 and M∗
2 .)

(ii) Derive that for each Y ⊆ X:

max{|Z| | Z ⊆ Y, Z ∈ I1 ∨ I2} =(33)

min
U⊆Y

(rM1
(U) + rM2

(U) + |Y \ U |).

(iii) Derive that (X, I1 ∨ I2) is again a matroid.

(Hint: Use axiom (vi) in Theorem 10.2.)

This matroid is called the union ofM1 andM2, denoted byM1∨M2. (Edmonds
and Fulkerson [1965], Nash-Williams [1967].)

(iv) Let M1 = (X, I1), . . . ,Mk = (X, Ik) be matroids and let

(34) I1 ∨ . . . ∨ Ik := {Y1 ∪ . . . ∪ Yk | Y1 ∈ I1, . . . , Yk ∈ Ik}.

Derive from (iii) that M1 ∨ . . .∨Mk := (X, I1 ∨ . . .∨Ik) is again a matroid and
give a formula for its rank function.

10.28. (i) Let M = (X, I) be a matroid and let k ≥ 0. Show that X can be covered by k
independent sets if and only if |U | ≤ k · rM (U) for each subset U of X.

(Hint: Use Exercise 10.27.) (Edmonds [1965b].)

(ii) Show that the problem of finding a minimum number of independent sets cov-
ering X in a given matroid M = (X, I), is solvable in polynomial time.

10.29. Let G = (V,E) be a graph and let k ≥ 0. Show that E can be partitioned into k
forests if and only if each nonempty subset W of V contains at most k(|W |−1) edges
of G.

(Hint: Use Exercise 10.28.) (Nash-Williams [1964].)

10.30. Let X1, . . . , Xm be subsets of X and let k ≥ 0.

(i) Show that X can be partitioned into k partial transversals of (X1, . . . , Xm) if
and only if

(35) k(m− |I|) ≥
∣

∣X \
⋃

i∈I

Xi

∣

∣

for each subset I of {1, . . . ,m}.
(ii) Derive from (i) that {1, . . . ,m} can be partitioned into classes I1, . . . , Ik so that

(Xi | i ∈ Ij) has a transversal, for each j = 1, . . . , k if and only if Y contains at
most k|Y | of the Xi as a subset, for each Y ⊆ X.

(Hint: Interchange the roles of {1, . . . ,m} and X.) (Edmonds and Fulkerson
[1965].)

190 Chapter 10. Matroids

10.31. (i) Let M = (X, I) be a matroid and let k ≥ 0. Show that there exist k pairwise
disjoint bases of M if and only if k(rM (X)− rM (U)) ≥ |X \ U | for each subset
U of X.

(Hint: Use Exercise 10.27.) (Edmonds [1965b].)

(ii) Show that the problem of finding a maximum number of pairwise disjoint bases
in a given matroid, is solvable in polynomial time.

10.32. Let G = (V,E) be a connected graph and let k ≥ 0. Show that there exist k pairwise
edge-disjoint spanning trees if and only if for each t, for each partition (V1, . . . , Vt) of
V into t classes, there are at least k(t − 1) edges connecting different classes of this
partition.

(Hint: Use Exercise 10.31.) (Nash-Williams [1961], Tutte [1961].)

10.33. Let M1 and M2 be matroids so that, for i = 1, 2, we can test in polynomial time if a
given set is independent in Mi. Show that the same holds for the union M1 ∨M2.

10.34. Let M = (X, I) be a matroid and let B and B′ be two disjoint bases. Let B be
partitioned into sets Y1 and Y2. Show that there exists a partition of B′ into sets Z1

and Z2 so that both Y1 ∪ Z1 ∪ Z2 and Z1 ∪ Y2 are bases of M .

(Hint: Assume without loss of generality that X = B ∪ B′. Apply the matroid
intersection theorem to the matroids (M \ Y1)/Y2 and (M∗ \ Y1)/Y2.)

10.35. The following is a special case of a theorem of Nash-Williams [1985]:

Let G = (V,E) be a simple, connected graph and let b : V → Z+. Call a graph
G̃ = (Ṽ , Ẽ) a b-detachment of G if there is a function φ : Ṽ → V such that |φ−1(v)| =
b(v) for each v ∈ V , and such that there is a one-to-one function ψ : Ẽ → E with
ψ(e) = {φ(v), φ(w)} for each edge e = {v, w} of G̃.

Then there exists a connected b-detachment if and only if for each U ⊆ V the number
of components of the graph induced by V \ U is at most |EU | − b(U) + 1.

Here EU denotes the set of edges intersecting U .

10.6. Weighted matroid intersection

We next consider the problem of finding a maximum-weight common independent
set, in two given matroids, with a given weight function. The algorithm, again due
to Edmonds [1970], is an extension of the algorithm given in Section 10.5. In each
iteration, instead of finding a path P with a minimum number of arcs in H, we will
now require P to have minimum length with respect to some length function defined
on H.

To describe the algorithm, if matroid M1 = (S, I1) and M2 = (S, I2) and a weight
function w : S → R are given, call a set Y ∈ I1∩I2 extreme if w(Z) ≤ w(Y) for each
Z ∈ I1 ∩ I2 satisfying |Z| = |Y |.

Section 10.6. Weighted matroid intersection 191

Weighted common independent set augmenting algorithm

input: matroids M1 = (S, I1) and M2 = (S, I2), a weight function w : S → Q, and
an extreme common independent set Y ;
output: an extreme common independent set Y ′ with |Y ′| = |Y |+ 1, if it exists
description of the algorithm: Consider again the sets X1 and X2 and the directed
graph H(M1,M2, Y) on S as in the cardinality case.

For any x ∈ S define the ‘length’ l(x) of x by:

(36) l(x) := w(x) if x ∈ Y ,
l(x) := −w(x) if x 6∈ Y.

The length of a path P , denoted by l(P), is equal to the sum of the lengths of the
vertices traversed by P , counting multiplicities.

We consider two cases.

Case 1. H(M1,M2, Y) has an X1−X2 path P . We choose P so that l(P) is minimal
and so that it has a minimum number of arcs among all minimum-length X1 − X2

paths. Set Y ′ := Y△V P .

Case 2. H(M1,M2, Y) has no X1 − X2 path. Then Y is a maximum-size common
independent set.

This finishes the description of the algorithm. The correctness of the algorithm if
Case 2 applies follows directly from Theorem 10.7. In order to show the correctness
if Case 1 applies, we first prove the following basic property of the length function l.

Theorem 10.10. Let C be a directed circuit in H(M1,M2, Y), and let t ∈ V C.
Define Z := Y△V C. If Z 6∈ I1 ∩ I2 then there exists a directed cycle C ′ with
V C ′ ⊂ V C such that l(C ′) < 0, or l(C ′) ≤ l(C) and t ∈ V C ′.

Proof. By symmetry we can assume that Z 6∈ I1. Let N1 and N2 be the sets of
arcs in C belonging to H(M1, Y) and H(M2, Y) respectively. If Z 6∈ I1, there is, by
Lemma 10.2 a matching N ′

1 in H(M1, Y) on V C with N ′
1 6= N1. Consider the directed

graph D = (V C,A) formed by the arcs in N1, N
′
1 (taking arcs in N1 ∩N ′

1 multiple),
and by the arcs in N2 taking each of them twice (parallel). Now each vertex in V C
is entered and left by exactly two arcs of D. Moreover, since N ′

1 6= N1, D contains
a directed circuit C1 with V C1 ⊂ V C. We can extend this to a decomposition of A
into directed circuits C1, . . . , Ck. Then

(37) χV C1 + · · ·+ χV Ck = 2 · χV C .

Since V C1 6= V C we know that V Cj = V C for at most one j. If, say V Ck = V C,

192 Chapter 10. Matroids

then (37) implies that either l(V Cj) < 0 for some j < k or l(V Cj) ≤ l(V C) for all
j < k, implying the proposition.

If V Cj 6= V C for all j, then l(V Cj) < 0 for some j ≤ k or l(V Cj) ≤ l(V C) for all
j ≤ k, again implying the proposition.

This implies:

Theorem 10.11. Let Y ∈ I1 ∩ I2. Then Y is extreme if and only if H(M1,M2, Y)
has no directed cycle of negative length.

Proof. To see necessity, suppose H(M1,M2, Y) has a cycle C of negative length.
Choose C with |V C| minimal. Consider Z := Y△V C. Since w(Z) = w(Y)− l(C) >
w(Y), while |Z| = |Y |, we know that Z 6∈ I1 ∩ I2. Hence by Proposition 10.10,
H(M1,M2, Y) has a negative-length directed cycle covering fewer than |V C| vertices,
contradicting our assumption.

To see sufficiency, consider a Z ∈ I1 ∩ I2 with |Z| = |Y |. By Lemma 10.1, both
H(M1, Y) and H(M2, Y) have a perfect matching on Y△Z. These two matchings
together form a disjoint union of a number of directed cycles C1, . . . , Ct. Then

(38) w(Y)− w(Z) =
t

∑

j=1

l(Cj) ≥ 0,

implying w(Z) ≤ w(Y). So Y is extreme.

This theorem implies that we can find in the algorithm a shortest path P in
polynomial time (with the Bellman-Ford method).

This also gives:

Theorem 10.12. If Case 1 applies, Y ′ is an extreme common independent set.

Proof. We first show that Y ′ ∈ I1 ∩ I2. To this end, let t be a new element, and
extend (for each i = 1, 2), Mi to a matroid M ′

i = (S+ t, I ′
i), where for each T ⊆ S+ t:

(39) T ∈ I ′
i if and only if T − t ∈ I i.

Note that H(M ′
1,M

′
2, Y + t) arises from H(M1,M2, Y) by extending it with a new

vertex t and adding arcs from each vertex in X1 to t, and from t to each vertex in
X2.

Let P be the path found in the algorithm. Define

(40) w(t) := l(t) := −l(P).

Section 10.6. Weighted matroid intersection 193

As P is a shortest X1 −X2 path, this makes that H(M ′
1,M

′
2, Y + t) has no negative-

length directed cycle. Hence, by Theorem 10.11, Y + t is an extreme common inde-
pendent set in M ′

1 and M ′
2.

Let P run from z1 ∈ X1 to z2 ∈ X2. Extend P by the arcs (t, z1) and (z2, t) to a
directed cycle C. So Z = (Y + t)△V C. As P has a minimum number of arcs among
all shortest X1 −X2 paths, and as H(M ′

1,M
′
2, Y + t) has no negative-length directed

circuits, by Proposition 10.10 we know that Z ∈ I1 ∩ I2.

Moreover, Z is extreme, since Y + t is extreme and w(Z) = w(Y + t).

So the weighted common independent set augmenting algorithm is correct. It
obviously has polynomially bounded running time. Therefore:

Theorem 10.13. A maximum-weight common independent set in two matroids can
be found in polynomial time.

Proof. Starting with the extreme common independent set Y0 := ∅ we can find
iteratively extreme common independent sets Y0, Y1, . . . , Yk, where |Yi| = i for i =
0, . . . , k and where Yk is a maximum-size common independent set. Taking one among
Y0, . . . , Yk of maximum weight, we have an extreme common independent set.

Exercises

10.36. Give an example of two matroids M1 = (X, I1) and M2 = (X, I2) and a weight
function w : X → Z+ so that there is no maximum-weight common independent set
which is also a maximum-cardinality common independent set.

10.37. Reduce the problem of finding a maximum-weight common basis in two matroids to
the problem of finding a maximum-weight common independent set.

10.38. Let D = (V,A) be a directed graph, let r ∈ V , and let l : A → Z+ be a length
function. Reduce the problem of finding a minimum-length rooted tree with root
r, to the problem of finding a maximum-weight common independent set in two
matroids.

10.39. Let B be a common basis of the matroids M1 = (X, I1) and M2 = (X, I2) and let
w : X → Z be a weight function. Define length function l : X → Z by l(x) := w(x) if
x ∈ B and l(x) := −w(x) if x 6∈ B.

Show that B has maximum-weight among all common bases of M1 and M2 if and
only if H(M1,M2, B) has no directed circuit of negative length.

194 Chapter 10. Matroids

10.7. Matroids and polyhedra

The algorithmic results obtained in the previous sections have interesting conse-
quences for polyhedra associated with matroids.

Let M = (X, I) be a matroid. The matroid polytope P (M) of M is, by definition,
the convex hull of the incidence vectors of the independent sets of M . So P (M) is a
polytope in RX .

Each vector z in P (M) satisfies the following linear inequalities:

(41)
z(x) ≥ 0 for x ∈ X,
z(Y) ≤ rM(Y) for Y ⊆ X.

This follows from the fact that the incidence vector χY of any independent set Y of
M satisfies (41).

Note that if z is an integer vector satisfying (41), then z is the incidence vector of
some independent set of M .

Edmonds [1970] showed that system (41) in fact fully determines the matroid
polytope P (M). It means that for each weight function w : X → R, the linear
programming problem

(42) maximize wT z,
subject to z(x) ≥ 0 (x ∈ X)

z(Y) ≤ rM(Y) (Y ⊆ X)

has an integer optimum solution z. This optimum solution necessarily is the incidence
vector of some independent set of M . In order to prove this, we also consider the
LP-problem dual to (42):

(43) minimize
∑

Y⊆X

yY rM(Y),

subject to yY ≥ 0 (Y ⊆ X)
∑

Y⊆X,x∈Y

yY ≥ w(x) (x ∈ X).

We show:

Theorem 10.14. If w is integer, then (42) and (43) have integer optimum solutions.

Proof. Order the elements of X as y1, . . . , ym in such a way that w(y1) ≥ w(y2) ≥
. . . w(ym). Let n be the largest index for which w(yn) ≥ 0. Define Xi := {y1, . . . , yi}
for i = 0, . . . ,m and

(44) Y := {yi | i ≤ n; rM (Xi) > rM(Xi−1)}.

Section 10.7. Matroids and polyhedra 195

Then Y belongs to I (cf. Exercise 10.3). So z := χY is an integer feasible solution of
(42).

Moreover, define a vector y in RP(X) by:

(45)
yY := w(yi)− w(yi+1) if Y = Xi for some i = 1, . . . , n− 1,
yY := w(yn) if Y = Xn,
yY := 0 for all other Y ⊆ X

Then y is an integer feasible solution of (43).
We show that z and y have the same objective value, thus proving the theorem:

wT z = w(Y) =
∑

x∈Y

w(x) =
n

∑

i=1

w(yi) · (rM(Xi)− rM(Xi−1))(46)

= w(yn) · rM(Xn) +
n−1
∑

i=1

(w(yi)− w(yi+1)) · rM(Xi) =
∑

Y⊆X

yY rM(Y).

So system (41) is totally dual integral. This directly implies:

Corollary 10.14a. The matroid polytope P (M) is determined by (41).

Proof. Immediately from Theorem 10.14.

An even stronger phenomenon occurs at intersections of matroid polytopes. It
turns out that the intersection of two matroid polytopes gives exactly the convex hull
of the common independent sets, as was shown again by Edmonds [1970].

To see this, we first derive a basic property:

Theorem 10.15. Let M1 = (X, I1) and M2 = (X, I2) be matroids, let w : X → Z

be a weight function and let B be a common basis of maximum weight w(B). Then
there exist functions w1, w2 : X → Z so that w = w1 + w2, and so that B is both a
maximum-weight basis of M1 with respect to w1 and a maximum-weight basis of M2

with respect to w2.

Proof. Consider the directed graph H(M1,M2, B) with length function l as defined
in Exercise 10.39. Since B is a maximum-weight basis, H(M1,M2, B) has no directed
circuits of negative length. Hence there exists a function φ : X → Z so that φ(y) −
φ(x) ≤ l(y) for each arc (x, y) of H(M1,M2, B). Using the definition of H(M1,M2, B)
and l, this implies that for y ∈ B, x ∈ X \B:

(47)
φ(x)− φ(y) ≤ −w(x) if (B \ {y}) ∪ {x} ∈ I1,
φ(y)− φ(x) ≤ w(x) if (B \ {y}) ∪ {x} ∈ I2.

196 Chapter 10. Matroids

Now define

(48)
w1(y) := φ(y), w2(y) := w(y)− φ(y) for y ∈ B
w1(x) := w(x) + φ(x), w2(x) := −φ(x) for x ∈ X \B.

Then w1(x) ≤ w1(y) whenever (B \ {y}) ∪ {x} ∈ I1. So by Exercise 10.19, B is a
maximum-weight basis of M1 with respect to w1. Similarly, B is a maximum-weight
basis of M2 with respect to w2.

Note that if B is a maximum-weight basis of M1 with respect to some weight
function w, then also after adding a constant function to w this remains the case.

This observation will be used in showing that a theorem similar to Theorem 10.15
holds for independent sets instead of bases.

Theorem 10.16. Let M1 = (X, I1) and M2 = (X, I2) be matroids, let w : X → Z

be a weight function, and let Y be a maximum-weight common independent set. Then
there exist weight functions w1, w2 : X → Z so that w = w1+w2 and so that Y is both
a maximum-weight independent set of M1 with respect to w1 and a maximum-weight
independent set of M2 with respect to w2.

Proof. Let U be a set of cardinality |X|+ 2 disjoint from X. Define

(49) J1 := {Y ∪W | Y ∈ I1,W ⊆ U, |Y ∪W | ≤ |X|+ 1},
J2 := {Y ∪W | Y ∈ I2,W ⊆ U, |Y ∪W | ≤ |X|+ 1}.

Then M ′
1 := (X∪U,J1) and M2 := (X∪U,J2) are matroids again. Define w̃ : X → Z

by

(50)
w̃(x) := w(x) if x ∈ X,
w̃(x) := 0 if x ∈ U .

Let W be a subset of U of cardinality |X \Y |+1. Then Y ∪W is a common basis
of M ′

1 and M ′
2. In fact, Y ∪W is a maximum-weight common basis with respect to

the weight function w̃. (Any basis B of larger weight would intersect X in a common
independent set of M1 and M2 of larger weight than Y .)

So by Theorem 10.15, there exist functions w̃1, w̃2 : X → Z so that w̃1 + w̃2 = w̃
and so that Y ∪W is both a maximum-weight basis of M ′

1 with respect to w̃1 and a
maximum-weight basis of M ′

2 with respect to w̃2.
Now, w̃1(u

′′) ≤ w̃1(u
′) whenever u′ ∈ W,u′′ ∈ U \W . Otherwise we can replace u′

in Y ∪W by u′′ to obtain a basis of M ′
1 of larger w̃1-weight. Similarly, w̃2(u

′′) ≤ w̃2(u
′)

whenever u′ ∈ W,u′′ ∈ U \W .
Since w̃1(u) + w̃2(u) = w̃(u) = 0 for all u ∈ U , this implies that w̃1(u

′′) = w̃1(u
′)

whenever u′ ∈ W,u′′ ∈ U \W . As ∅ 6= W 6= U , it follows that w̃1 and w̃2 are constant

Section 10.7. Matroids and polyhedra 197

on U . Since we can add a constant function to w̃1 and subtracting the same function
from w̃2 without spoiling the required properties, we may assume that w̃1 and w̃2 are
0 on U .

Now define w1(x) := w̃1(x) and w2(x) := w̃2(x) for each x ∈ X. Then Y is both a
maximum-weight independent set of M1 with respect to w1 and a maximum-weight
independent set of M2 with respect to w2.

Having this theorem, it is quite easy to derive that the intersection of two matroid
polytopes has integer vertices, being incidence vectors of common independent sets.

By Theorem 10.14 the intersection P (M1) ∩ P (M2) of the matroid polytopes as-
sociated with the matroids M1 = (X, I1) and M2 = (X, I2) is determined by:

(51) z(x) ≥ 0 (x ∈ X),
z(Y) ≤ rM1

(Y) (Y ⊆ X),
z(Y) ≤ rM2

(Y) (Y ⊆ X),

The corresponding linear programming problem is, for any w : X → R:

(52) maximize wT z,
subject to z(x) ≥ 0 (x ∈ X),

z(Y) ≤ rM1
(Y) (Y ⊆ X),

z(Y) ≤ rM2
(Y) (Y ⊆ X).

Again we consider the dual linear programming problem:

(53) minimize
∑

Y⊆X

(y′Y rM1
(Y) + y′′Y rM2

(Y))

subject to y′Y ≥ 0 (Y ⊆ X),
y′′Y ≥ 0 (Y ⊆ X),

∑

Y⊆X,x∈Y

(y′Y + y′′Y) ≥ w(x) (x ∈ X).

Now

Theorem 10.17. If w is integer, then (52) and (53) have integer optimum solutions.

Proof. Let Y be a common independent set of maximum weight w(Y). By Theorem
10.15, there exist functions w1, w2 : X → Z so that w1 + w2 = w and so that Y is a
maximum-weight independent set in Mi with respect to wi (i = 1, 2).

Applying Theorem 10.14 to w1 and w2, respectively, we know that there exist
integer optimum solutions y′ and y′′, respectively, for problem (43) with respect to
M1, w1 and M2, w2, respectively. One easily checks that y′, y′′ forms a feasible solution
of (53). Optimality follows from:

198 Chapter 10. Matroids

(54) w(Z) = w1(Z) + w2(Z) =
∑

Y⊆X

y′Y rM1
(Y) +

∑

Y⊆X

y′′Y rM2
(Y)

=
∑

Y⊆X

(y′Y rM1
(Y) + y′′Y rM2

(Y)).

So system (51) is totally dual integral. Again, this directly implies:

Corollary 10.17a. The convex hull of the common independent sets of two matroids
M1 and M2 is determined by (51).

Proof. Directly from Theorem 10.17.

Exercises

10.40. Give an example of three matroids M1, M2, and M3 on the same set X so that the
intersection P (M1)∩P (M2)∩P (M3) is not the convex hull of the common independent
sets.

10.41. Derive Edmonds’ matroid intersection theorem (Theorem 10.9) from Theorem 10.17.

Section 10.7. Matroids and polyhedra 199

References

[1975] G.M. Adel’son-Vel’skĭı, E.A. Dinits, A.V. Karzanov, Potokovye algoritmy [Russian;
Flow Algorithms], Izdatel’stvo “Nauka”, Moscow, 1975.

[1974] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, Massachusetts, 1974.

[1993] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows — Theory, Algorithms, and
Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[1977] K. Appel, W. Haken, Every planar map is four colorable Part I: discharging, Illinois
Journal of Mathematics 21 (1977) 429–490.

[1977] K. Appel, W. Haken, J. Koch, Every planar map is four colorable Part II: reducibility,
Illinois Journal of Mathematics 21 (1977) 491–567.

[1969] M.L. Balinski, Labelling to obtain a maximum matching, in: Combinatorial Math-
ematics and Its Applications (Proceedings Conference Chapel Hill, North Carolina,
1967; R.C. Bose, T.A. Dowling, eds.), The University of North Carolina Press, Chapel
Hill, North Carolina, 1969, pp. 585–602.

[1957] T.E. Bartlett, An algorithm for the minimum number of transport units to maintain
a fixed schedule, Naval Research Logistics Quarterly 4 (1957) 139–149.

[1986] M. Becker, K. Mehlhorn, Algorithms for routing in planar graphs, Acta Informatica
23 (1986) 163–176.

[1958] R. Bellman, On a routing problem, Quarterly of Applied Mathematics 16 (1958) 87–
90.

[1958] C. Berge, Sur le couplage maximum d’un graphe, Comptes Rendus Hebdomadaires
des Séances de l’Académie des Sciences [Paris] 247 (1958) 258–259.

[1960] C. Berge, Les problèmes de coloration en théorie des graphes, Publications de l’Institut
de Statistique de l’Université de Paris 9 (1960) 123–160.

[1961] C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr
sind, Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg,
Mathematisch-Naturwissenschaftliche Reihe 10 (1961) 114–115.

[1963] C. Berge, Some classes of perfect graphs, in: Six Papers on Graph Theory [related to
a series of lectures at the Research and Training School of the Indian Statistical Insti-
tute, Calcutta, March-April 1963], Research and Training School, Indian Statistical
Institute, Calcutta, [1963,] pp. 1–21.

[1946] G. Birkhoff, Tres observaciones sobre el algebra lineal, Revista Facultad de Ciencias
Exactas, Puras y Aplicadas Universidad Nacional de Tucuman, Serie A (Matematicas
y Fisica Teorica) 5 (1946) 147–151.

200 Chapter 10. Matroids

[1926] O. Bor̊uvka, O jistém problému minimálńım [Czech, with German summary; On a
minimal problem], Práce Moravské Př́ırodovědecké Společnosti Brno [Acta Societatis
Scientiarum Naturalium Moravi[c]ae] 3 (1926) 37–58.

[1941] R.L. Brooks, On colouring the nodes of a network, Proceedings of the Cambridge
Philosophical Society 37 (1941) 194–197.

[1911] C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstanten von
positiven harmonischen Funktionen, Rendiconti del Circolo Matematico di Palermo 32
(1911) 193–217 [reprinted in: Constantin Carathéodory, Gesammelte Mathematische
Schriften, Band III (H. Tietze, ed.), C.H. Beck’sche Verlagsbuchhandlung, München,
1955, pp. 78–110].

[1976] N. Christofides, Worst-Case Analysis of a New Heuristic for the Travelling Salesman
Problem, Management Sciences Research Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1976.

[1984] R. Cole, A. Siegel, River routing every which way, but loose, in: 25th Annual Sympo-
sium on Foundations of Computer Science (25th FOCS, Singer Island, Florida, 1984),
IEEE, New York, 1984, pp. 65–73.

[1971] S.A. Cook, The complexity of theorem-proving procedures, in: Conference Record of
Third Annual ACM Symposium on Theory of Computing (3rd STOC, Shaker Heights,
Ohio, 1971), The Association for Computing Machinery, New York, 1971, pp. 151–
158.

[1978] W.H. Cunningham, A.B. Marsh, III, A primal algorithm for optimum matching,
[in: Polyhedral Combinatorics — Dedicated to the Memory of D.R. Fulkerson (M.L.
Balinski, A.J. Hoffman, eds.)] Mathematical Programming Study 8 (1978) 50–72.

[1951a] G.B. Dantzig, Application of the simplex method to a transportation problem, in: Ac-
tivity Analysis of Production and Allocation — Proceedings of a Conference (Proceed-
ings Conference on Linear Programming, Chicago, Illinois, 1949; Tj.C. Koopmans,
ed.), Wiley, New York, 1951, pp. 359–373.

[1951b] G.B. Dantzig, Maximization of a linear function of variables subject to linear in-
equalities, in: Activity Analysis of Production and Allocation — Proceedings of a
Conference (Proceedings Conference on Linear Programming, Chicago, Illinois, 1949;
Tj.C. Koopmans, ed.), Wiley, New York, 1951, pp. 339–347.

[1988] D. De Caen, On a theorem of Kőnig on bipartite graphs, Journal of Combinatorics,
Information & System Sciences 13 (1988) 127.

[1959] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Math-
ematik 1 (1959) 269–271.

[1950] R.P. Dilworth, A decomposition theorem for partially ordered sets, Annals of Math-
ematics (2) 51 (1950) 161–166 [reprinted in: The Dilworth Theorems — Selected
Papers of Robert P. Dilworth (K.P. Bogart, R. Freese, J.P.S. Kung, eds.), Birkhäuser,
Boston, Massachusetts, 1990, pp. 7–12].

Section 10.7. Matroids and polyhedra 201

[1970] E.A. Dinits, Algoritm resheniya zadachi o maksimal’nom potoke v seti so stepennŏı
otsenkŏı [Russian], Doklady Akademii Nauk SSSR 194 (1970) 754–757 [English trans-
lation: Algorithm for solution of a problem of maximum flow in a network with power
estimation Soviet Mathematics Doklady 11 (1970) 1277–1280].

[1961] G.A. Dirac, On rigid circuit graphs, Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg 25 (1961) 71–76.

[1965a] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, Journal of
Research National Bureau of Standards Section B 69 (1965) 125–130.

[1965b] J. Edmonds, Minimum partition of a matroid into independent subsets, Journal of
Research National Bureau of Standards Section B 69 (1965) 67–72.

[1965c] J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17 (1965)
449–467.

[1970] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: Combinato-
rial Structures and Their Applications (Proceedings Calgary International Conference
on Combinatorial Structures and Their Applications, Calgary, Alberta, 1969; R. Guy,
H. Hanani, N. Sauer, J. Schönheim, eds.), Gordon and Breach, New York, 1970, pp.
69–87.

[1965] J. Edmonds, D.R. Fulkerson, Transversals and matroid partition, Journal of Research
National Bureau of Standards Section B 69 (1965) 147–153.

[1972] J. Edmonds, R.M. Karp, Theoretical improvements in algorithmic efficiency for net-
work flow problems, Journal of the Association for Computing Machinery 19 (1972)
248–264.

[1931] J. Egerváry, Matrixok kombinatorius tulajdonságairól [Hungarian, with German sum-
mary], Matematikai és Fizikai Lapok 38 (1931) 16–28 [English translation [by H.W.
Kuhn]: On combinatorial properties of matrices, Logistics Papers, George Washing-
ton University, issue 11 (1955), paper 4, pp. 1–11].

[1976] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity
flow problems, SIAM Journal on Computing 5 (1976) 691–703.

[1975] S. Even, O. Kariv, An O(n2.5) algorithm for maximum matching in general graphs, in:
16th Annual Symposium on Foundations of Computer Science (16th FOCS, Berkeley,
California, 1975), IEEE, New York, 1975, pp. 100–112.

[1894] Gy. Farkas, A Fourier-féle mechanikai elv alkalmazásai [Hungarian], Mathematikai
és Természettudományi Értesitő 12 (1894) 457–472 [German translation, with slight
alterations: J. Farkas, Über die Anwendungen des mechanischen Princips von Fourier,
Mathematische und naturwissenschaftliche Berichte aus Ungarn 12 (1895) 263–281].

[1896] Gy. Farkas, A Fourier-féle mechanikai elv alkalmazásának algebrai alapja [Hungarian;
On the algebraic foundation of the applications of the mechanical principle of Fourier],

202 Chapter 10. Matroids

Mathematikai és Physikai Lapok 5 (1896) 49–54 [German translation, with some ad-
ditions: Section I of: J. Farkas, Die algebraischen Grundlagen der Anwendungen des
Fourier’schen Princips in der Mechanik, Mathematische und naturwissenschaftliche
Berichte aus Ungarn 15 (1897-99) 25–40].

[1898] Gy. Farkas, A Fourier-féle mechanikai elv algebrai alapja [Hungarian], Mathématikai
és Természettudományi Értesitő 16 (1898) 361–364 [German translation: J. Farkas,
Die algebraische Grundlage der Anwendungen des mechanischen Princips von Fourier,
Mathematische und naturwissenschaftliche Berichte aus Ungarn 16 (1898) 154–157].

[1957] G.J. Feeney, The empty boxcar distribution problem, Proceedings of the First Interna-
tional Conference on Operational Research (Oxford 1957) (M. Davies, R.T. Eddison,
T. Page, eds.), Operations Research Society of America, Baltimore, Maryland, 1957,
pp. 250–265.

[1955] A.R. Ferguson, G.B. Dantzig, The problem of routing aircraft, Aeronautical Engi-
neering Review 14 (1955) 51–55.

[1956] L.R. Ford, Jr, Network Flow Theory, Paper P-923, The RAND Corporation, Santa
Monica, California, [August 14,] 1956.

[1956] L.R. Ford, Jr, D.R. Fulkerson, Maximal flow through a network, Canadian Journal
of Mathematics 8 (1956) 399–404.

[1957] L.R. Ford, Jr, D.R. Fulkerson, A simple algorithm for finding maximal network flows
and an application to the Hitchcock problem, Canadian Journal of Mathematics 9
(1957) 210–218.

[1958] L.R. Ford, Jr, D.R. Fulkerson, A suggested computation for maximal multi-commodity
network flows, Management Science 5 (1958) 97–101.

[1962] L.R. Ford, Jr, D.R. Fulkerson, Flows in Networks, Princeton University Press, Prince-
ton, New Jersey, 1962.

[1980] S. Fortune, J. Hopcroft, J. Wyllie, The directed subgraph homeomorphism problem,
Theoretical Computer Science 10 (1980) 111–121.

[1984] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, in: 25th Annual Symposium on Foundations of Computer
Science (25th FOCS, Singer Island, Florida, 1984), IEEE, New York, 1984, pp. 338–
346.

[1917] G. Frobenius, Über zerlegbare Determinanten, Sitzungsberichte der Königlich Preuß-
ischen Akademie der Wissenschaften zu Berlin (1917) 274–277 [reprinted in: Fer-
dinand Georg Frobenius, Gesammelte Abhandlungen, Band III (J.-P. Serre, ed.),
Springer, Berlin, 1968, pp. 701–704].

[1973] H.N. Gabow, Implementation of Algorithms for Maximum Matching on Nonbipar-
tite Graphs, Ph.D. Thesis, Department of Computer Science, Stanford University,
Stanford, California, 1973.

Section 10.7. Matroids and polyhedra 203

[1990] H.N. Gabow, Data structures for weighted matching and nearest common ancestors
with linking, in: Proceedings of the First Annual ACM-SIAM Symposium on Dis-
crete Algorithms (San Francisco, California, 1990), Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania, 1990, pp. 434–443.

[1986] Z. Galil, S. Micali, H. Gabow, An O(EV log V) algorithm for finding a maximal
weighted matching in general graphs, SIAM Journal on Computing 15 (1986) 120–
130.

[1958] T. Gallai, Maximum-minimum Sätze über Graphen, Acta Mathematica Academiae
Scientiarum Hungaricae 9 (1958) 395–434.

[1959] T. Gallai, Über extreme Punkt- und Kantenmengen, Annales Universitatis Scien-
tiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Mathematica 2 (1959)
133–138.

[1979] M.R. Garey, D.S. Johnson, Computers and Intractability — A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, California, 1979.

[1996] G.S. Gasparian, Minimal imperfect graphs: a simple approach, Combinatorica 16
(1996) 209–212.

[1990] A.V. Goldberg, É. Tardos, R.E. Tarjan, Network flow algorithms, in: Paths, Flows,
and VLSI-Layout (B. Korte, L. Lovász, H.J. Prömel, A. Schrijver, eds.), Springer,
Berlin, 1990, pp. 101–164.

[1988] A.V. Goldberg, R.E. Tarjan, A new approach to the maximum-flow problem, Journal
of the Association for Computing Machinery 35 (1988) 921–940.

[1990] A.V. Goldberg, R.E. Tarjan, Finding minimum-cost circulations by successive ap-
proximation, Mathematics of Operations Research 15 (1990) 430–466.

[1873] P. Gordan, Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten, Math-
ematische Annalen 6 (1873) 23–28.

[2000] F. Göring, Short proof of Menger’s theorem, Discrete Mathematics 219 (2000) 295–
296.

[1981] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica 1 (1981) 169–197 [corrigendum: Combi-
natorica 4 (1984) 291–295].

[1960] M.-g. Guan, Graphic programming using odd or even points [in Chinese], Acta Math-
ematica Sinica 10 (1960) 263–266 [English translation: Chinese Mathematics 1 (1962)
273–277].

[1943] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschrift der
naturforschenden Gesellschaft in Zürich 88 (1943) 133–142.

204 Chapter 10. Matroids

[1958] A. Hajnal, J. Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen,
Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae —
Sectio Mathematica 1 (1958) 113–121.

[1935] P. Hall, On representatives of subsets, The Journal of the London Mathematical So-
ciety 10 (1935) 26–30 [reprinted in: The Collected Works of Philip Hall (K.W. Gru-
enberg, J.E. Roseblade, eds.), Clarendon Press, Oxford, 1988, pp. 165–169].

[1960] A.J. Hoffman, Some recent applications of the theory of linear inequalities to extremal
combinatorial analysis, in: Combinatorial Analysis (New York, 1958; R. Bellman, M.
Hall, Jr, eds.) [Proceedings of Symposia in Applied Mathematics, Volume X], Ameri-
can Mathematical Society, Providence, Rhode Island, 1960, pp. 113–127 [reprinted in:
Selected Papers of Alan Hoffman — With Commentary (C.A. Micchelli, ed.), World
Scientific, Singapore, 2003, pp. 244–248].

[1956] A.J. Hoffman, J.B. Kruskal, Integral boundary points of convex polyhedra, in: Lin-
ear Inequalities and Related Systems (H.W. Kuhn, A.W. Tucker, eds.) [Annals of
Mathematics Studies 38], Princeton University Press, Princeton, New Jersey, 1956,
pp. 223–246 [reprinted in: Selected Papers of Alan Hoffman — With Commentary
(C.A. Micchelli, ed.), World Scientific, Singapore, 2003, pp. 220–243].

[1973] J. Hopcroft, R.M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM Journal on Computing 2 (1973) 225–231.

[1961] T.C. Hu, The maximum capacity route problem, Operations Research 9 (1961) 898–
900.

[1963] T.C. Hu, Multi-commodity network flows, Operations Research 11 (1963) 344–360.

[1977] D.B. Johnson, Efficient algorithms for shortest paths in sparse networks, Journal of
the Association for Computing Machinery 24 (1977) 1–13.

[1984] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combina-
torica 4 (1984) 373–395.

[1972] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer
Computations (Proceedings of a symposium on the Complexity of Computer Com-
putations, IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
1972; R.E. Miller, J.W. Thatcher, eds.), Plenum Press, New York, 1972, pp. 85–103.

[1975] R.M. Karp, On the computational complexity of combinatorial problems, Networks
5 (1975) 45–68.

[1974] A.V. Karzanov, Nakhozhdenie maksimal’nogo potoka v seti metodom predpotokov
[Russian; Determining the maximal flow in a network by the method of preflows],
Doklady Akademii Nauk SSSR 215 (1974) 49–52 [English translation: Soviet Mathe-
matics Doklady 15 (1974) 434–437].

Section 10.7. Matroids and polyhedra 205

[1979] L.G. Khachiyan, Polinomialny̆ı algoritm v linĕınom programmirovanii [Russian], Dok-
lady Akademii Nauk SSSR 244 (1979) 1093–1096 [English translation: A polynomial
algorithm in linear programming, Soviet Mathematics Doklady 20 (1979) 191–194].

[1980] L.G. Khachiyan, Polinomial’nye algoritmy v linĕınom programmirovanii [Russian],
Zhurnal Vychislitel’nŏı Matematiki i Matematicheskŏı Fiziki 20 (1980) 51–86 [English
translation: Polynomial algorithms in linear programming, U.S.S.R. Computational
Mathematics and Mathematical Physics 20 (1980) 53–72].

[1968] D.E. Knuth, The Art of Computer Programming, Volume I Fundamental Algorithms,
Addison-Wesley, Reading, Massachusetts, 1968.

[1916] D. Kőnig, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére [Hun-
garian], Mathematikai és Természettudományi Értesitő 34 (1916) 104–119 [German
translation: Über Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlehre, Mathematische Annalen 77 (1916) 453–465].

[1931] D. Kőnig, Graphok és matrixok [Hungarian; Graphs and matrices], Matematikai és
Fizikai Lapok 38 (1931) 116–119.

[1932] D. Kőnig, Über trennende Knotenpunkte in Graphen (nebst Anwendungen auf Deter-
minanten und Matrizen), Acta Litterarum ac Scientiarum Regiae Universitatis Hun-
garicae Francisco-Josephinae, Sectio Scientiarum Mathematicarum [Szeged] 6 (1932-
34) 155–179.

[1948] Tj.C. Koopmans, Optimum utilization of the transportation system, in: The Econo-
metric Society Meeting (Washington, D.C., 1947; D.H. Leavens, ed.) [Proceedings of
the International Statistical Conferences — Volume V], 1948, pp. 136–146 [reprinted
in: Econometrica 17 (Supplement) (1949) 136–146] [reprinted in: Scientific Papers of
Tjalling C. Koopmans, Springer, Berlin, 1970, pp. 184–193].

[1984] M.R. Kramer, J. van Leeuwen, The complexity of wire-routing and finding minimum
area layouts for arbitrary VLSI circuits, in: VLSI-Theory (F.P. Preparata, ed.) [Ad-
vances in Computing Research, Volume 2], JAI Press, Greenwich, Connecticut, 1984,
pp. 129–146.

[1956] J.B. Kruskal, Jr, On the shortest spanning subtree of a graph and the traveling
salesman problem, Proceedings of the American Mathematical Society 7 (1956) 48–
50.

[1955] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Research
Logistics Quarterly 2 (1955) 83–97.

[1976] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston, New York, 1976.

[1985] C.E. Leiserson, F.M. Maley, Algorithms for routing and testing routability of planar
VLSI layouts, in: Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing (17th STOC, Providence, Rhode Island, 1985), The Association for
Computing Machinery, New York, 1985, pp. 69–78.

206 Chapter 10. Matroids

[1972a] L. Lovász, A characterization of perfect graphs, Journal of Combinatorial Theory,
Series B 13 (1972) 95–98.

[1972b] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Mathe-
matics 2 (1972) 253–267 [reprinted as: Normal hypergraphs and the weak perfect
graph conjecture, in: Topics on Perfect Graphs (C. Berge, V. Chvátal, eds.) [Annals
of Discrete Mathematics 21], North-Holland, Amsterdam, 1984, pp. 29–42].

[1979] L. Lovász, Graph theory and integer programming, in: Discrete Optimization I (Pro-
ceedings Advanced Research Institute on Discrete Optimization and Systems Appli-
cations and Discrete Optimization Symposium, Banff, Alta, and Vancouver, B.C.,
Canada, 1977; P.L. Hammer, E.L. Johnson, B.H. Korte, eds.) [Annals of Discrete
Mathematics 4], North-Holland, Amsterdam, 1979, pp. 141–158.

[1986] L. Lovász, M.D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest [also:
North-Holland Mathematics Studies Volume 121, North-Holland, Amsterdam], 1986.

[1975] J.F. Lynch, The equivalence of theorem proving and the interconnection problem,
(ACM) SIGDA Newsletter 5:3 (1975) 31–36.

[1978] V.M. Malhotra, M.P. Kumar, S.N. Maheshwari, An O(|V |3) algorithm for finding
maximum flows in networks, Information Processing Letters 7 (1978) 277–278.

[1985] K. Matsumoto, T. Nishizeki, N. Saito, An efficient algorithm for finding multicom-
modity flows in planar networks, SIAM Journal on Computing 14 (1985) 289–302.

[1927] K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10 (1927)
96–115.

[1980] S. Micali, V.V. Vazirani, An O(
√

|v||E|) algorithm for finding maximum matching
in general graphs, in: 21st Annual Symposium on Foundations of Computer Science
(21st FOCS, Syracuse, New York, 1980), IEEE, New York, 1980, pp. 17–27.

[1784] G. Monge, Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie
Royale des Sciences [année 1781. Avec les Mémoires de Mathématique & de Physique,
pour la même Année] (2e partie) (1784) [Histoire: 34–38, Mémoire:] 666–704.

[1936] T.S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen, Inaugural Disserta-
tion Basel, Azriel, Jerusalem, 1936 [English translation: Contributions to the theory
of linear inequalities, RAND Corporation Translation 22, The RAND Corporation,
Santa Monica, California, 1952 [reprinted in: Theodore S. Motzkin: Selected Papers
(D. Cantor, B. Gordon, B. Rothschild, eds.), Birkhäuser, Boston, Massachusetts,
1983, pp. 1–80]].

[1961] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, The Journal
of the London Mathematical Society 36 (1961) 445–450.

[1964] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, The Journal of
the London Mathematical Society 39 (1964) 12.

Section 10.7. Matroids and polyhedra 207

[1967] C.St.J.A. Nash-Williams, An application of matroids to graph theory, in: Theory
of Graphs — International Symposium — Théorie des graphes — Journées interna-
tionales d’étude (Rome, 1966; P. Rosenstiehl, ed.), Gordon and Breach, New York,
and Dunod, Paris, 1967, pp. 263–265.

[1985] C.St.J.A. Nash-Williams, Connected detachments of graphs and generalized Euler
trails, The Journal of the London Mathematical Society (2) 31 (1985) 17–29.

[1947] J. von Neumann, Discussion of a maximum problem, typescript dated November 15–
16, 1947, Institute for Advanced Study, Princeton, New Jersey, 1947 [reprinted in:
John von Neumann, Collected Works, Volume VI (A.H. Taub, ed.), Pergamon Press,
Oxford, 1963, pp. 89–95].

[1953] J. von Neumann, A certain zero-sum two-person game equivalent to the optimal
assignment problem, in: Contributions to the Theory of Games Volume II (H.W.
Kuhn, A.W. Tucker, eds.) [Annals of Mathematics Studies 28], Princeton University
Press, Princeton, New Jersey, 1953, pp. 5–12 [reprinted in: John von Neumann,
Collected Works, Volume VI (A.H. Taub, ed.), Pergamon Press, Oxford, 1963, pp.
44–49].

[1968] A.R.D. Norman, M.J. Dowling, Railroad Car Inventory: Empty Woodrack Cars on
the Louisville and Nashville Railroad, Technical Report 320-2926, IBM New York
Scientific Center, New York, 1968.

[1981] H. Okamura, P.D. Seymour, Multicommodity flows in planar graphs, Journal of Com-
binatorial Theory, Series B 31 (1981) 75–81.

[1988] J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm, in: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing (20th STOC,
Chicago, Illinois, 1988), The Association for Computing Machinery, New York, 1988,
pp. 377–387.

[1993] J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Operations
Research 41 (1993) 338–350.

[1994] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Massachusetts,
1994.

[1983] R.Y. Pinter, River routing: methodology and analysis, in: Third CalTech Confer-
ence on Very Large Scale Integration (Pasadena, California, 1983; R. Bryant, ed.),
Springer, Berlin, 1983, pp. 141–163.

[1957] R.C. Prim, Shortest connection networks and some generalizations, The Bell System
Technical Journal 36 (1957) 1389–1401.

[1942] R. Rado, A theorem on independence relations, The Quarterly Journal of Mathemat-
ics (Oxford) (2) 13 (1942) 83–89.

[1965] J.W.H.M.T.S.J. van Rees, Een studie omtrent de circulatie van materieel, Spoor- en
Tramwegen 38 (1965) 363–367.

208 Chapter 10. Matroids

[1997] H. Ripphausen-Lipa, D. Wagner, K. Weihe, The vertex-disjoint Menger problem in
planar graphs, SIAM Journal on Computing 26 (1997) 331–349.

[1956] J.T. Robacker, Min-Max Theorems on Shortest Chains and Disjunct Cuts of a Net-
work, Research Memorandum RM-1660, The RAND Corporation, Santa Monica,
California, [12 January] 1956.

[1986] N. Robertson, P.D. Seymour, Graph minors. VI. Disjoint paths across a disc, Journal
of Combinatorial Theory, Series B 41 (1986) 115–138.

[1995] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, Jour-
nal of Combinatorial Theory, Series B 63 (1995) 65–110.

[1993] N. Robertson, P. Seymour, R. Thomas, Hadwiger’s conjecture for K6-free graphs,
Combinatorica 13 (1993) 279–361.

[1966] B. Rothschild, A. Whinston, Feasibility of two commodity network flows, Operations
Research 14 (1966) 1121–1129.

[1973] M. Sakarovitch, Two commodity network flows and linear programming, Mathemat-
ical Programming 4 (1973) 1–20.

[1991] A. Schrijver, Disjoint homotopic paths and trees in a planar graph, Discrete & Com-
putational Geometry 6 (1991) 527–574.

[1994] A. Schrijver, Finding k disjoint paths in a directed planar graph, SIAM Journal on
Computing 23 (1994) 780–788.

[2003] A. Schrijver, Combinatorial Optimization — Polyhedra and Efficiency, Springer, Berlin,
2003.

[1915] E. Stiemke, Über positive Lösungen homogener linearer Gleichungen, Mathematische
Annalen 76 (1915) 340–342.

[1985] É. Tardos, A strongly polynomial minimum cost circulation algorithm, Combinatorica
5 (1985) 247–255.

[1974] R. Tarjan, Finding dominators in directed graphs, SIAM Journal on Computing 3
(1974) 62–89.

[1984] R.E. Tarjan, A simple version of Karzanov’s blocking flow algorithm, Operations
Research Letters 2 (1984) 265–268.

[1950] R.L. Thorndike, The problem of the classification of personnel, Psychometrika 15
(1950) 215–235.

[1937] A.M. Turing, On computable numbers, with an application to the Entscheidungsprob-
lem, Proceedings of the London Mathematical Society (2) 42 (1937) 230–265 [correc-
tion: 43 (1937) 544–546] [reprinted in: The Undecidable — Basic Papers on Undecid-
able Propositions, Unsolvable Problems and Computable Functions (M. Davis, ed.),
Raven Press, Hewlett, New York, 1965, pp. 116–154].

Section 10.7. Matroids and polyhedra 209

[1947] W.T. Tutte, The factorization of linear graphs, The Journal of the London Mathemat-
ical Society 22 (1947) 107–111 [reprinted in: Selected Papers of W.T. Tutte Volume I
(D. McCarthy, R.G. Stanton, eds.), The Charles Babbage Research Centre, St. Pierre,
Manitoba, 1979, pp.89–97].

[1961] W.T. Tutte, On the problem of decomposing a graph into n connected factors, The
Journal of the London Mathematical Society 36 (1961) 221–230 [reprinted in: Selected
Papers of W.T. Tutte Volume I (D. McCarthy, R.G. Stanton, eds.), The Charles
Babbage Research Centre, St. Pierre, Manitoba, 1979, pp. 214–225].

[1968] A.F. Veinott, Jr, G.B. Dantzig, Integral extreme points, SIAM Review 10 (1968)
371–372.

[1964] V.G. Vizing, Ob otsenke khromaticheskogo klassa p-grafa [Russian; On an estimate
of the chromatic class of a p-graph], Diskretny̆ı Analiz 3 (1964) 25–30.

[1937] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Mathematische Annalen 114
(1937) 570–590.

[1995] D. Wagner, K. Weihe, A linear-time algorithm for edge-disjoint paths in planar
graphs, Combinatorica 15 (1995) 135–150.

[1976] D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.

[1969] W.W. White, A.M. Bomberault, A network algorithm for empty freight car allocation,
IBM Systems Journal 8 (1969) 147–169.

210 Name index

Name index

Adel’son-Vel’skĭı, G.M. 156, 199
Aho, A.V. 98, 110, 199
Ahuja, R.K. 68, 73, 199
Appel, K. 112, 199

Balinski, M.L. 83, 199
Bartlett, T.E. 76, 199
Becker, M. 168, 199
Bellman, R.E. 13, 16-18, 48, 73, 192, 199
Berge, C. 2, 78-79, 94, 96, 113, 125-126,

129, 199
Birkhoff, G. 44, 199
Bomberault, A.M. 74, 209
Bor̊uvka, O. 19, 200
Brooks, R.L. 112, 200

Carathéodory, C. 24, 30, 33, 200
Christofides, N. 89-91, 200
Chudnovsky, M. 113, 126
Cole, R.J. 164, 200
Cook, S.A. 98, 105-106, 200
Cunningham, W.H. 94, 96, 200

Dantzig, G.B. 34, 60, 76, 136, 200, 202,
209

De Caen, D. 41, 200
Dijkstra, E.W. 6, 8-10, 19-21, 48, 200
Dilworth, R.P. 121-124, 127-128, 146,

200
Dinitz, Y. 66, 156, 199, 201
Dirac, G.A. 129, 201
Dowling, M.J. 74, 207

Edmonds, J.R. 66, 79, 81, 83, 85, 88,
91-94, 96, 184, 187-190, 194-195, 198,
201

Egerváry, J. 47, 52, 201
Euler, L. 166-167
Even, S. 83, 151, 155, 201

Farkas, Gy. 2, 23, 30-34, 152, 201-202
Feeney, G.J. 74, 202
Ferguson, A.R. 76, 202
Ford, Jr, L.R. 13, 16-18, 48, 59-60, 62,

73, 149, 169, 172, 192, 202
Fortune, S. 151, 157, 202
Fredman, M.L. 10, 202
Frobenius, F.G. 41, 202
Fulkerson, D.R. 59-60, 62, 73, 149, 169,

172, 189, 201-202

Gabow, H.N. 88, 202-203
Galil, Z. 88, 203
Gallai, T. 2, 39, 79, 111, 127, 203
Garey, M.R. 98, 203
Gasparyan, G.S. 125, 203
Goldberg, A.V. 68, 203
Gordan, P. 33, 203
Göring, F. 54, 203
Grötschel, M. 128, 203
Guan, M.-g. 89, 203

Hadwiger, H. 113, 203
Hajnal, A. 129, 204
Haken, W. 112, 199
Hall, P. 43, 204
Hoffman, A.J. 51, 68-69, 135-137,

145-146, 204
Hopcroft, J.E. 45, 98, 110, 151, 157, 199,

202, 204
Hu, T.C. 21, 150, 153, 156, 204

Itai, A. 151, 155, 201

Johnson, D.B. 10, 204
Johnson, D.S. 98, 203

Kariv, O. 83, 201
Karmarkar, N. 34, 204
Karp, R.M. 45, 66, 98, 106, 151, 201, 204
Karzanov, A.V. 67, 156, 199, 204
Khachiyan, L.G. 34, 205
Knuth, D.E. 67, 151, 205
Koch, J. 112, 199
Kőnig, D. 2, 41-42, 46, 52-53, 115-117,

120, 123, 126-127, 140, 182-183, 188,
205

Koopmans, Tj.C. 73-74, 205

Name index 211

Kramer, M.R. 151, 205
Kruskal, Jr, J.B. 20-21, 51, 135-137, 173,

204-205
Kuhn, H.W. 47, 205
Kumar, M.P. 67, 206

Lawler, E.L. 88, 205
Leeuwen, J. van 151, 205
Leiserson, C.E. 164, 205
Lovász, L. 79, 88, 125-126, 128-129, 203,

206
Lynch, J.F. 151, 206

Magnanti, T.L. 68, 73, 199
Maheshwari, S.N. 67, 206
Maley, F.M. 164, 205
Malhotra, V.M. 67, 206
Marsh, III, A.B. 94, 96, 200
Matsumoto, K. 168, 206
Mehlhorn, K. 168, 199
Menger, K. 2, 54-55, 58-60, 206
Micali, S. 83, 88, 203, 206
Monge, G. 49, 206
Motzkin, T.S. 33, 206

Nash-Williams, C.St.J.A. 189-190,
206-207

Neumann, J. von 34, 44, 207
Nishizeki, T. 168, 206
Norman, A.R.D. 74, 207

Okamura, H. 150, 165-166, 207
Orlin, J.B. 68, 73, 199, 207

Papadimitriou, C.H. 98, 110, 207
Pinter, R.Y. 163, 207
Plummer, M.D. 88, 206
Prim, R.C. 19-21, 207

Rado, R. 188, 207
Rees, J.W.H.M.T.S.J. van 76, 207
Ripphausen-Lipa, H. 161, 208
Robacker, J.T. 5, 208
Robertson, G.N. 113, 126, 151, 159, 161,

208
Rothschild, B. 150, 155, 165, 208

Saito, N. 168, 206
Sakarovitch, M. 153, 208
Schrijver, A. 83, 128, 151, 164, 203, 208
Seymour, P.D. 113, 126, 150-151, 159,

161, 165-166, 207-208
Shamir, A. 151, 155, 201
Siegel, A. 164, 200
Stiemke, E. 33, 208
Surányi, J. 129, 204

Tardos, É. 68, 73, 203, 208
Tarjan, R.E. 10, 67-68, 202-203, 208
Thomas, R. 113, 126, 208
Thorndike, R.L. 49, 208
Thue, A. 100
Turing, A.M. 3, 100, 108-110, 208
Tutte, W.T. 2, 78-80, 94, 96, 103, 190,

209

Ullman, J.D. 98, 110, 199

Vazirani, V.V. 83, 206
Veinott, Jr, A.F. 136, 209
Vizing, V.G. 116, 209

Wagner, D. 161, 168, 208-209
Wagner, K. 113, 209
Weihe, K. 161, 168, 208-209
Welsh, D.J.A. 182, 209
Whinston, A. 150, 155, 165, 208
White, W.W. 74, 209
Wyllie, J. 151, 157, 202

212 Subject index

Subject index

accepts word

algorithm 101

Turing machine 109

acyclic digraph 157

affine halfspace 24

affine hyperplane 23

airline timetabling 88-89
airplane crew pairing 88
airplane routing 7-8, 56-57, 76, 158
airport terminal assignment 123
algorithm 100-101

polynomial-time 101

allows sequence of words

algorithm 101

alphabet 98
alternating forest

M - 86

alternating walk

M - 81

antichain 121-124, 176
arc-disjoint 54

arc-disjoint paths 55

arc-disjoint paths problem 149-152, 158
arc-disjoint s− t paths 55
arc-disjoint s− t paths/min-max 55
assignment

bungalow 122-123
frequency 114
job 45-46, 48-49, 83-84, 122
platform 123
room 83, 88, 114, 123
seat 83, 88
terminal 123

assignment problem 45-46

optimal 48-50

augmenting path

flow 61

M - 40-45, 47-48, 82

b-detachment 190

b-matching 44, 80-81

basic solution 30

basis 178

basis in a matroid 174

basis of a matrix 30

Bellman-Ford method 13-14
bend cut

1- 168

bipartite matching 41-53, 185

cardinality 41-46
weighted 47-53

bipartite matching algorithm

cardinality 45
weighted 47-48

blocking flow 67-68
blossom

M - 82

boolean expression 103

box cars

routing empty railway 74

bridge 80

Brooks’ theorem 112

bungalow assignment 122-123
bus station platform assignment 123

capacity of a cut 58

Carathéodory’s theorem 30
cardinality bipartite matching 41-46
cardinality bipartite matching algorithm

45
cardinality common independent set

algorithm 185-187
cardinality common independent set

augmenting algorithm 185-187
cardinality common independent set

problem 184-190
cardinality matching 41-46, 78-85, 132
cardinality matroid intersection 184-190
cardinality matroid intersection algorithm

185-187
cardinality nonbipartite matching 78-85,

132

Subject index 213

cardinality nonbipartite matching
algorithm 81-83

certificate 97, 101-103
chain 121-124

maximal 123

child 9

Chinese postman problem 89-91
chord 128

chordal graph 128-131
Christofides’ approximative algorithm for

the traveling salesman problem
89-91

chromatic number 111-115, 125-128

edge- 116-117
vertex- 111-115, 125-128

circuit 178

Hamiltonian 89

circuit basis 182

circulation 68-70, 144-146

min-cost 73
minimum-cost 73

circulation theorem

Hoffman’s 69-70, 145-146

class scheduling 117-118
clique 111-112, 125-128
clique number 111-112, 125-128
co-NP 102-103
COCLIQUE 111

cocycle matroid 180

cographic matroid 180, 182-183
colour 111, 115
colourable

k- 111

3- 112-115

colouring 111-115

edge- 115-117
map 113
vertex- 111-115

colouring number 111-115, 125-128

edge- 116-117
vertex- 111-115, 125-128

colouring theorem

Kőnig’s edge- 116, 120-127

column generation technique 168-172

commodity 148

commodity flow problem

fractional k- 148-152, 168-172
integer k- 148-151, 155-156
integer undirected k- 149-151
k- 148-152, 168-172
undirected k- 149-151

common independent set 184

extreme 190

common independent set algorithm

cardinality 185-187
weighted 191-193

common independent set augmenting
algorithm

cardinality 185-187
weighted 191-193

common independent set problem
184-193

cardinality 184-190
weighted 190-193

common SDR 43, 57-58, 70, 120-121,
185, 188

common system of distinct representatives
43, 57-58, 70, 120-121, 185, 188

common transversal 43, 57-58, 70,
120-121, 185, 188

comparability graph 124, 127-128
complement 125

complementary graph 125

complete

NP- 97-98, 103

component

odd 78

component of a collection of sets 80

cone

convex 29

finitely generated convex 29-30

conservation law

flow 58

contraction in a matroid 179-180
convex cone 29

finitely generated 29-30

convex hull 23

convex set 23-24

214 Subject index

Cook’s theorem 105
cost 71

cover

edge 39-40
vertex 39-40

cover number

edge 39-40, 79-80
vertex 39-40

cover polytope

edge 143

vertex 143

CPM 14-16, 122
crew pairing

airplane 88

Critical Path Method 14-16, 122
cross-free 90

cross-freeness condition 160-161
Cunningham-Marsh formula 94-96
cut 5

1-bend 168

s− t 55

s− t vertex- 55

cut condition 149, 152, 161, 168
cut/minimum-size

s− t 55
s− t vertex- 55

cut/minimum-size/min-max

s− t 55
s− t vertex- 55

cycle matroid 180

decomposition theorem

Dilworth’s 121-122, 124, 127-128,
146

deletion in a matroid 179-180
dependent set in a matroid 174

deshrinking 85

detachment

b- 190

Dijkstra-Prim method 19-20
Dilworth’s decomposition theorem

121-122, 124, 127-128, 146
DIRECTED HAMILTONIAN CYCLE

107

directed Hamiltonian cycle problem 107

disconnecting vertex set

S − T 54

disconnecting vertex
set/minimum-size/min-max

S − T 54-55

disjoint

arc- 54

internally vertex- 54

vertex- 54

disjoint paths

arc- 55

internally vertex- 55

disjoint paths problem

arc- 149-152, 158
edge- 149-152, 156-168
vertex- 149-152, 157-162

disjoint s− t paths

arc- 55
internally 55
internally vertex- 55

disjoint s− t paths/min-max

arc- 55
internally 55
internally vertex- 55

disjoint S − T paths/min-max 54-55
disjoint spanning trees problem

edge- 185, 190

disjoint trees problem

vertex- 164-165

distance 5-6
distinct representatives

common system of 43, 57-58, 70,
120-121, 185, 188

partial system of 43

system of 42-43, 46, 188

doubly stochastic matrix 44, 143
down-monotone 176

dual LP-problem 34

dual matroid 178, 182-183
dual of a matroid 180
duality theorem of linear programming

34-37

Subject index 215

dynamic programming 8

edge-chromatic number 116-117
edge-colouring 115-117
edge-colouring number 116-117
edge-colouring theorem

Kőnig’s 116, 120-127

edge cover 39-40
edge cover number 39-40, 79-80
edge cover polytope 143

edge cover theorem

Kőnig’s 42, 115, 123, 126-127,
140-141

edge-disjoint paths problem 149-152,
156-168

edge-disjoint spanning trees problem 185,
190

Edmonds’ matching polytope theorem
91-93-94, 96

Edmonds’ matroid intersection theorem
188, 198

ellipsoid method 34
empty railway box cars

routing 74

end vertex 5

Euler condition 155, 165-167
extreme common independent set 190

extreme flow 71

extreme matching 47

factor

1- 78-80

factor theorem

Tutte’s 1- 79

Farkas’ lemma 30-32
Fibonacci forest 10-11
Fibonacci heap 11-12
finitely generated convex cone 29-30
flow 144-146

blocking 67-68
s− t 58

flow algorithm

Ford-Fulkerson maximum 60-68
maximum 60-68
minimum-cost 70-73

flow augmenting algorithm 60-62
flow augmenting path 61

flow conservation law 58

flow problem

fractional k-commodity 148-152,
168-172

fractional multicommodity
148-152, 168-172

integer k-commodity 148-151,
155-156

integer multicommodity 148-151,
155-156

integer two-commodity 155-156
integer undirected k-commodity

149-151
integer undirected multicommodity

149-151
k-commodity 148-152, 168-172
maximum 58-68
min-cost 70-73
minimum-cost 70-73
multicommodity 148-152, 168-172
undirected k-commodity 149-151
undirected multicommodity

149-151

flow theorem

integer 60, 146

follows from word

word 100

Ford-Fulkerson maximum flow algorithm
60-68

forest

Fibonacci 10-11
M -alternating 86

rooted 9

four-colour conjecture 112

four-colour theorem 112

4CC 112

4CT 112

fractional k-commodity flow problem
148-152, 168-172

fractional multicommodity flow problem
148-152, 168-172

frequency assignment 114

216 Subject index

Gallai’s theorem 39-40
good characterization 103

good forest 22

goods

storage of 113-114

Gordan’s theorem 33
graphic matroid 180, 182-183
greedy algorithm 173-176
greedy forest 19

grid graph 168

Hadwiger’s conjecture 113, 115
halfspace 24

affine 24

Hall’s marriage theorem 43
Hamiltonian circuit 89

HAMILTONIAN CYCLE

DIRECTED 107

UNDIRECTED 107-108

Hamiltonian cycle problem

directed 107

undirected 107-108

heap 9

Fibonacci 11-12
2- 9-10

Hoffman-Kruskal theorem 137-138
Hoffman’s circulation theorem 69-70,

145-146
hull

convex 23

Hungarian method 47-48
Hu’s two-commodity flow theorem

153-155
hyperplane 23

affine 23

incidence function 91

incidence matrix of a directed graph 143

incidence vector 50, 91, 124, 141, 169
independent set algorithm

cardinality common 185-187
weighted common 191-193

independent set augmenting algorithm

cardinality common 185-187

independent set in a matroid 174

independent set problem

cardinality common 184-190
common 184-193
weighted common 190-193

induced subgraph 113

integer flow theorem 60, 146
integer k-commodity flow problem

148-151, 155-156
integer linear programming 132-147
integer multicommodity flow problem

148-151, 155-156
integer polyhedron 133-134-138
integer polytope 133

integer two-commodity flow problem
155-156

integer undirected k-commodity flow
problem 149-151

integer undirected multicommodity flow
problem 149-151

integer vector 132

integrity theorem 60, 62
interior point method 34
internally disjoint s− t paths 55
internally disjoint s− t paths/min-max 55
internally vertex-disjoint 54

internally vertex-disjoint paths 55

internally vertex-disjoint s− t paths 55
internally vertex-disjoint s− t

paths/min-max 55
intersection graph 129

interval matrix 146

job assignment 45-46, 48-49, 83-84, 122
join

T - 91

k-commodity flow problem 148-152,
168-172

fractional 148-152, 168-172
integer 148-151, 155-156
integer undirected 149-151
undirected 149-151

k-truncation of a matroid 179

k-uniform matroid 179

Subject index 217

knapsack problem 14
Kőnig’s edge-colouring theorem 116,

120-127
Kőnig’s edge cover theorem 42, 115, 123,

126-127, 140-141
Kőnig’s matching theorem 41-42, 46,

52-53, 115, 127, 140, 188
Kruskal’s method 20

length of a walk 5

linear matroid 180-181, 183
linear programming 33-37

duality theorem of 34-37
integer 132-147

literal 111

Lovász’s perfect graph theorem 125-126,
128

LP 33-37

M -alternating forest 86

M -alternating walk 81

M -augmenting path 40-45, 47-48, 82
M -blossom 82

map colouring 113
marriage theorem

Hall’s 43

matching 39-53, 78-91, 132

b- 44, 80-81
bipartite 41-53, 185
cardinality 41-46, 78-85, 132
cardinality bipartite 41-46
cardinality nonbipartite 78-85, 132
nonbipartite 78-91, 132
perfect 39, 42, 44, 50-51, 78-80
weighted bipartite 47-53
weighted nonbipartite 85-91

matching algorithm

cardinality bipartite 45
weighted bipartite 47-48

matching number 39-40, 78-79
matching polytope 50-53, 91-93-94,

142-143

perfect 51, 91-94, 142

matching polytope theorem

Edmonds’ 91-93-94, 96

matching problem

weighted 52

matching theorem

Kőnig’s 41-42, 46, 52-53, 115, 127,
140, 188

matroid 173-198
matroid intersection 184-193

cardinality 184-190
weighted 190-193

matroid intersection algorithm

cardinality 185-187
weighted 191-193

matroid intersection theorem

Edmonds’ 188, 198

matroid polytope 194-198
max-biflow min-cut theorem 156

max-flow min-cut theorem 59-60, 62,
145-146

maximal chain 123

maximum flow algorithm 60-68

Ford-Fulkerson 60-68

maximum flow problem 58-68
maximum reliability problem 21
maximum-size matching 78-79
Menger’s theorem 54-56

directed arc-disjoint version of 55

directed internally vertex-disjoint
version of 55

directed vertex-disjoint version of
54-55

min-cost circulation 73
min-cost flow problem 70-73
minimum-cost circulation 73
minimum-cost flow algorithm 70-73
minimum-cost flow problem 70-73
minimum-cost transportation problem

73-74
minimum-size s− t cut 55
minimum-size s− t cut/min-max 55
minimum-size S − T disconnecting vertex

set/min-max 54-55
minimum-size s− t vertex-cut 55
minimum-size s− t vertex-cut/min-max

55

218 Subject index

minimum spanning tree 19-22
minor of a graph 113

minor of a matroid 179

Motzkin’s theorem 33
multicommodity flow problem 148-152,

168-172

fractional 148-152, 168-172
integer 148-151, 155-156
integer undirected 149-151
undirected 149-151

nested family 85

net 148

nonbipartite matching 78-91, 132

cardinality 78-85, 132
weighted 85-91

NP 97-98, 101-103

co- 102-103

NP-complete 97-98, 103

odd component 78

Okamura-Seymour theorem 165-168
1-bend cut 168

1-factor 78-80
1-factor theorem

Tutte’s 79

optimal assignment problem 48-50
optimal pairing 88
ordered set

partially 121-124

P 97-98, 101
pairing 83

airplane crew 88
optimal 88

parallel elements in a matroid 175

parent 9

partial SDR 43

partial system of distinct representatives
43

partial transversal 43

partially ordered set 121-124
PARTITION 106-107
partition matroid 182

partition problem 106-107

path 5

M -augmenting 40-45, 47-48, 82
s− t 5

shortest 5-19, 91

path problem

shortest 5-19

paths

arc-disjoint s− t 55
internally disjoint s− t 55
internally vertex-disjoint 55

internally vertex-disjoint s− t 55

paths/min-max

arc-disjoint s− t 55
disjoint S − T 54-55
internally disjoint s− t 55
internally vertex-disjoint s− t 55

perfect graph 125-128
perfect graph theorem 125-126, 128

Lovász’s 125-126, 128
strong 113, 126

perfect matching 39, 42, 44, 50-51, 78-80
perfect matching polytope 51, 91-94, 142
PERT 14-16, 122
PERT-CPM 14-16, 122
planar graph 159-168
platform assignment 123
polyhedron 25-29

integer 133-134-138

polynomial time

Turing machine solves problem in
109

polynomial-time algorithm 101

polytope 25-29

edge cover 143

integer 133

matching 50-53, 91-93-94, 142-143
matroid 194-198
perfect matching 51, 91-94, 142
stable set 143

vertex cover 143

polytope theorem

Edmonds’ matching 91-93-94, 96

postman problem

Chinese 89-91

Subject index 219

primality testing 103
prize equilibrium 16-17
problem 100

processor

two- 84

processor scheduling

two- 83-84

Program Evaluation and Review
Technique 14-16, 122

project scheduling 122

railway box cars

routing empty 74

railway platform assignment 123
railway stock routing 74-76, 151-152
rank 178

rank function 178

rank of a matroid 174

reliability problem

maximum 21

representatives

common system of distinct 43,
57-58, 70, 120-121, 185, 188

partial system of distinct 43

system of distinct 42-43, 46, 188

restriction in a matroid 179

rigid circuit graph 128-131
room assignment 83, 88, 114, 123
root 5, 9
rooted forest 9

rooted tree 5, 9, 185, 193
routing

airplane 7-8, 56-57, 76, 158
railway stock 74-76, 151-152
ship 7-8, 73-74
vehicle 7-8
VLSI- 151, 162-164

routing empty freighters 73-74
routing empty railway box cars 74

s− t cut/minimum-size 55
s− t cut/minimum-size/min-max 55
S − T disconnecting vertex set 54

S − T disconnecting vertex
set/minimum-size/min-max 54-55

S − T path 54

s− t paths

arc-disjoint 55
internally disjoint 55
internally vertex-disjoint 55

S − T paths/min-max

disjoint 54-55

s− t paths/min-max

arc-disjoint 55
internally disjoint 55
internally vertex-disjoint 55

s− t vertex-cut 55

s− t vertex-cut/minimum-size 55
s− t vertex-cut/minimum-size/min-max

55
salesman problem

Christofides’ approximative
algorithm for the traveling
89-91

traveling 89-90, 108

salesman tour

traveling 89

SAT 103-105

3- 106

satisfiability problem 103-105

3- 106

scheduling

class 117-118
project 122
two-processor 83-84

SDR 42-43, 46, 188

common 43, 57-58, 70, 120-121,
185, 188

partial 43

seat assignment 83, 88
separate 23

separates pair

curve 161

ship routing 7-8, 73-74
shortest path 5-19, 91
shortest path problem 5-19
shrinking 81

simplex method 34
simplicial vertex 129

220 Subject index

sink 157

size of a word 99

solves problem

algorithm 101

Turing machine 109

solves problem in polynomial time

Turing machine 109

source 157

spanning tree

minimum 19-22

spanning trees problem

edge-disjoint 185, 190

stable set 39-40, 125-128
stable set number 39-40, 111-112, 125-128
stable set polytope 143

starting vertex 5

Stiemke’s theorem 33
stops at word

algorithm 101

storage of goods 113-114
strong perfect graph theorem 113, 126
subgraph

induced 113

subject to capacity

flow 58

subtrees of a tree 129-131
system of distinct representatives 42-43,

46, 188

common 43, 57-58, 70, 120-121,
185, 188

partial 43

T -join 91

terminal assignment 123
3-SAT 106

3-satisfiability problem 106

Thue system 100-101
tight subset 166

timetabling

airline 88-89

totally unimodular matrix 134-147
tour

traveling salesman 89

transportation problem 49-50, 63, 65

minimum-cost 73-74

transversal 42-43, 46, 188

common 43, 57-58, 70, 120-121,
185, 188

partial 43

transversal matroid 181-182
traveling salesman problem 89-90, 108

Christofides’ approximative
algorithm for the 89-91

traveling salesman tour 89

tree

minimum spanning 19-22
rooted 5, 9, 185, 193

trees problem

edge-disjoint spanning 185, 190
vertex-disjoint 164-165

triangulated graph 128-131
truncation of a matroid 179

k- 179

TSP 108

Turing machine 100, 108-110
Tutte-Berge formula 78-79, 96
Tutte’s 1-factor theorem 79

two-commodity flow problem

integer 155-156

two-commodity flow theorem

Hu’s 153-155

2-heap 9-10
two-processor 84

two-processor scheduling 83-84

under capacity

flow 58

UNDIRECTED HAMILTONIAN CYCLE
107-108

undirected Hamiltonian cycle problem
107-108

undirected k-commodity flow problem
149-151

integer 149-151

undirected multicommodity flow problem
149-151

integer 149-151

uniform matroid 179

Subject index 221

k- 179

unimodular matrix 136-137
union of matroids 189

value of a flow 58

vehicle routing 7-8
vertex-chromatic number 111-115,

125-128
VERTEX-COLOURING 111-112
vertex-colouring 111-115
vertex-colouring number 111-115,

125-128
vertex cover 39-40
vertex cover number 39-40
vertex-cover number 111
vertex cover polytope 143

vertex-cut

s− t 55

vertex-cut/minimum-size

s− t 55

vertex-cut/minimum-size/min-max

s− t 55

vertex-disjoint 54

internally 54

vertex-disjoint paths

internally 55

vertex-disjoint paths problem 149-152,
157-162

vertex-disjoint s− t paths

internally 55

vertex-disjoint s− t paths/min-max

internally 55

vertex-disjoint trees problem 164-165
vertex of a convex set 25

Vizing’s theorem 116-117
VLSI-routing 151, 162-164

W − v walk 82

walk 5

M -alternating 81

s− t 5

W − v 82

weighted bipartite matching 47-53
weighted bipartite matching algorithm

47-48

weighted bipartite matching problem 77
weighted common independent set

algorithm 191-193
weighted common independent set

augmenting algorithm 191-193
weighted common independent set

problem 190-193
weighted matching 47-53, 85-91
weighted matching problem 52
weighted matroid intersection 190-193
weighted matroid intersection algorithm

191-193
weighted nonbipartite matching 85-91
word 99

