Exercise 1 Prove that, given (a set defined by) a linear system $\{x: A x=a\}$ and an invertible matrix B, then $\{x: A x=a\}=\{x: B A x=B a\}$ holds (with size of B so that $B A$ is a matrix).

Exercise 2 Prove that a pivoting matrix (i.e. obtained from the identity by replacing one column of the identity by any column with a nonzero element at the position where the 1 was) is invertible.

Exercise 3 Prove that a permutation matrix (i.e. obtained by permuting rows, equivalently columns, of the identity) is invertible.

Exercise 4 Prove that $B=B_{k} B_{k-1} \ldots B_{1}$ is invertible, where the B_{i} 's are pivoting or permutation matrices.

Exercise 5 Give an algorithm which, given a linear system $\{x: A x=a\}$ as input, outputs an equivalent linear system $\{x: A x=a\}=\{x: B A x=B a\}$ which has the following form:

$$
\begin{aligned}
{[I M] x } & =B^{\prime} a \\
0 & =B^{\prime \prime} a
\end{aligned}
$$

where $B=\left[\begin{array}{c}B^{\prime} \\ B^{\prime \prime}\end{array}\right]$.
Exercise 6 Prove that, given a matrix A, there is a matrix C so that

$$
\begin{equation*}
\{a: A x=a, \exists x\} \quad=\quad\{a: C a=\mathbf{0}\} \tag{1}
\end{equation*}
$$

Exercise 7 Prove that, given a matrix C, there is a matrix A so that (1) holds.
Exercise 8 Prove that $(\exists x: A x=a)$ only if $\left(c^{\top} A=\mathbf{0}^{\top} \Rightarrow c^{\top} a=0\right)$.
Exercise 9 Prove that if $(\exists x: A x=a)$, then $\left(c^{\top} A=\mathbf{0}^{\top} \Rightarrow c^{\top} a=0\right)$.
Exercise 10 Let n be the dimension of the linear space spanned by the columns of a full row-rank matrix A. Prove the exclusivity in

$$
(\exists x \geq \mathbf{0}: A x=a) \quad \text { XOR } \quad\left(\begin{array}{cl}
\exists c: c^{\top} A \geq \mathbf{0}^{\top} & \text { with equality for at least } n-1 \tag{2}\\
& \text { linearly independent columns, and } \\
c^{\top} a<0 &
\end{array}\right)
$$

Let A_{j} for $j \in J$ denotes the columns of A, let A_{B} be the submatrix of A obtained by removing the columns A_{j} with $j \in J \backslash B$, and assume that A_{B} is invertible.

Exercise 11 Prove that, in the the following algorithm, the vector c exists indeed at Step 2.
Step 1. Let $x_{B}=A_{B}^{-1} a$. If $x_{B} \geq \mathbf{0}$ stop.
Step 2. Let σ be the minimum $\sigma \in B$ with $x_{\sigma}<0$. There exists c with $c^{\top} A_{B \backslash\{\sigma\}}=\mathbf{0}^{\top}$ and $c^{\top} A_{\sigma}=1$. Thus $c^{\top} a=c^{\top} A_{B} x=x_{\sigma}<0$.

Step 3. If $c^{\top} A \geq \mathbf{0}^{\top}$ stop.
Step 4. Let ρ be the minimum $\rho \in J$ with $c^{\top} A_{\rho}<0$, reset $B:=B \backslash\{\sigma\} \cup\{\rho\}$ and go to Step 1.

Exercise 12 Prove that the columns indexed in $B \backslash\{\sigma\} \cup\{\rho\}$ form indeed an invertible matrix at Step 4.

If the algorithms described above loops, the same subset $B \subseteq J$ is used at some iteration and at a later iteration. Let μ be the maximum $\mu \in J$ which is removed and added, between these two iterations, and say μ leaves B at iteration k and enters at iteration ℓ. Denote $B^{i}, x^{i}, \sigma^{i}, c^{i}, \rho^{i}$ the objects B, x, ρ, c, σ of the algorithm at iteration i.

Exercise 13 Let $j \in B^{k}$, prove that if $j>\mu$, then $c^{\ell^{\top}} A_{j}=0$.
Exercise 14 Let $j \in B^{k}$, prove that if $j=\mu$, then $c^{\ell^{\top}} A_{j}<0$.
Exercise 15 Let $j \in B^{k}$, prove that if $j<\mu$, then $c^{\ell^{\top}} A_{j} \geq 0$.
Exercise 16 Prove that the algorithm of exercise 11 stops.
Exercise 17 Prove that (2) holds.
Exercise 18 Prove that, given a matrix A, there is a matrix C so that

$$
\begin{equation*}
\{a: A x=a, \exists x \geq \mathbf{0}\} \quad=\quad\{a: C a \geq \mathbf{0}\} \tag{3}
\end{equation*}
$$

Given a matrix C, by above, there is a matrix B, and then a matrix D, so that

$$
\begin{aligned}
& \left\{c: y^{\top} C=c^{\top}, \exists y \geq \mathbf{0}\right\} \quad=\quad\{c: B c \geq \mathbf{0}\} \\
& \left\{b: y^{\top} B=b^{\top}, \exists y \geq \mathbf{0}\right\} \quad=\quad\{b: D b \geq \mathbf{0}\}
\end{aligned}
$$

Exercise 19 Prove that $\{a: C a \geq \mathbf{0}\} \supseteq\left\{b: y^{\top} B=b^{\top}, \exists y \geq \mathbf{0}\right\}$.
Exercise 20 Prove that $\{a: C a \geq \mathbf{0}\} \subseteq\left\{b: y^{\top} B=b^{\top}, \exists y \geq \mathbf{0}\right\}$.
Exercise 21 Prove that, given a matrix C, there is a matrix A so that (3) holds.
Exercise 22 Prove that, given a matrix A and a vector a, then there are two matrices B, C so that

$$
\begin{equation*}
\{x: A x \leq a\}=\left\{x: B b=x, \exists b \geq \mathbf{0}: \mathbf{1}^{\top} b=1\right\}+\{x: C c=x, \exists c \geq \mathbf{0}\} \tag{4}
\end{equation*}
$$

Exercise 23 Prove that, given two matrices B, C, there are a matrix A and a vector a, so that (4) holds.

Exercise 24 Prove that $(\exists x \geq \mathbf{0}: A x=a)$ only if ($\left.c^{\top} A \geq \mathbf{0}^{\top} \Rightarrow c^{\top} a \geq 0\right)$
Exercise 25 Prove that if $(\exists x \geq \mathbf{0}: A x=a)$, then $\left(c^{\top} A \geq \mathbf{0}^{\top} \Rightarrow c^{\top} a \geq 0\right)$
Exercise 26 Prove that ($\exists x \geq \mathbf{0}: A x \leq a)$ only if ($c^{\top} A \geq \mathbf{0}^{\top}$ and $c \geq \mathbf{0} \Rightarrow c^{\top} a \geq 0$)
Exercise 27 Prove that if $(\exists x \geq \mathbf{0}: A x \leq a)$, then $\left(c^{\top} A \geq \mathbf{0}^{\top}\right.$ and $\left.c \geq \mathbf{0} \Rightarrow c^{\top} a \geq 0\right)$
Exercise 28 Prove that ($\exists x: A x \leq a)$ only if ($c^{\top} A=\mathbf{0}^{\top}$ and $\left.c \geq \mathbf{0} \Rightarrow c^{\top} a \geq 0\right)$
Exercise 29 Prove that if ($\exists x: A x \leq a)$, then $\left(c^{\top} A=\mathbf{0}^{\top}\right.$ and $\left.c \geq \mathbf{0} \Rightarrow c^{\top} a \geq 0\right)$
Exercise 30 Prove that $\min \left\{c^{\top} x: A x \leq b, x \geq \mathbf{0}\right\} \leq \max \left\{y^{\top} b: y^{\top} A \geq c^{\top}, y \geq \mathbf{0}\right\}$ (where both sets are assumed non-empty).

Exercise 31 Prove that if there are $u \geq \mathbf{0}, v \geq \mathbf{0}$, and $\mu>0$ so that $u^{\top} A \geq \mu . c^{\top}$ and $A v \leq \mu . b$, then $u^{\top} b \geq v^{\top} c$.

Exercise 32 Prove that if there are $u \geq \mathbf{0}, v \geq \mathbf{0}$, and $\mu=0$ so that $u^{\top} A \geq \mu . c^{\top}$ and $A v \leq \mu . b$, then $u^{\top} b \geq v^{\top} c$.

Exercise 33 Prove that there are $x \geq \mathbf{0}$ and $y \geq \mathbf{0}$ so that

$$
\left[\begin{array}{cc}
A & O^{\top} \\
O & -A^{\top} \\
-c^{\top} & b^{\top}
\end{array}\right]\binom{x}{y} \leq\left[\begin{array}{c}
b \\
-c \\
0
\end{array}\right]
$$

where O is a zero matrix.
Exercise 34 Prove that $\min \left\{c^{\top} x: A x \leq b, x \geq \mathbf{0}\right\} \geq \max \left\{y^{\top} b: y^{\top} A \geq c^{\top}, y \geq \mathbf{0}\right\}$.

