Exercise 1 Prove that, given (a set defined by) a linear system $\{x : Ax = a\}$ and an invertible matrix B, then $\{x : Ax = a\} = \{x : BAx = Ba\}$ holds (with size of B so that BA is a matrix).

Exercise 2 Prove that a pivoting matrix (i.e. obtained from the identity by replacing one column of the identity by any column with a nonzero element at the position where the 1 was) is invertible.

Exercise 3 Prove that a permutation matrix (i.e. obtained by permuting rows, equivalently columns, of the identity) is invertible.

Exercise 4 Prove that $B = B_k B_{k-1} \dots B_1$ is invertible, where the B_i 's are pivoting or permutation matrices.

Exercise 5 Give an algorithm which, given a linear system $\{x : Ax = a\}$ as input, outputs an equivalent linear system $\{x : Ax = a\} = \{x : BAx = Ba\}$ which has the following form:

$$\begin{bmatrix} I M \end{bmatrix} x = B'a \\ \mathbf{0} = B''a \end{bmatrix}$$

where $B = \begin{bmatrix} B' \\ B'' \end{bmatrix}$.

Exercise 6 Prove that, given a matrix A, there is a matrix C so that

$$\{a: Ax = a, \exists x\} = \{a: Ca = \mathbf{0}\}$$
(1)

Exercise 7 Prove that, given a matrix C, there is a matrix A so that (1) holds.

Exercise 8 Prove that $(\exists x : Ax = a)$ only if $(c^{\top}A = \mathbf{0}^{\top} \Rightarrow c^{\top}a = 0)$.

Exercise 9 Prove that if $(\exists x : Ax = a)$, then $(c^{\top}A = \mathbf{0}^{\top} \Rightarrow c^{\top}a = 0)$.

Exercise 10 Let n be the dimension of the linear space spanned by the columns of a full row-rank matrix A. Prove the exclusivity in

$$(\exists x \ge \mathbf{0} : Ax = a) \quad XOR \quad \left(\begin{array}{c} \exists c : c^{\top}A \ge \mathbf{0}^{\top} & with \ equality \ for \ at \ least \ n-1 \\ & linearly \ independent \ columns, \ and \\ c^{\top}a < 0 \end{array} \right)$$
(2)

Let A_j for $j \in J$ denotes the columns of A, let A_B be the submatrix of A obtained by removing the columns A_j with $j \in J \setminus B$, and assume that A_B is invertible.

Exercise 11 Prove that, in the the following algorithm, the vector c exists indeed at Step 2.

- Step 1. Let $x_B = A_B^{-1}a$. If $x_B \ge \mathbf{0}$ stop.
- Step 2. Let σ be the minimum $\sigma \in B$ with $x_{\sigma} < 0$. There exists c with $c^{\top}A_{B\setminus\{\sigma\}} = \mathbf{0}^{\top}$ and $c^{\top}A_{\sigma} = 1$. Thus $c^{\top}a = c^{\top}A_Bx = x_{\sigma} < 0$.
- Step 3. If $c^{\top}A \ge \mathbf{0}^{\top}$ stop.
- Step 4. Let ρ be the minimum $\rho \in J$ with $c^{\top}A_{\rho} < 0$, reset $B := B \setminus \{\sigma\} \cup \{\rho\}$ and go to Step 1.

Exercise 12 Prove that the columns indexed in $B \setminus \{\sigma\} \cup \{\rho\}$ form indeed an invertible matrix at Step 4.

If the algorithms described above loops, the same subset $B \subseteq J$ is used at some iteration and at a later iteration. Let μ be the maximum $\mu \in J$ which is removed and added, between these two iterations, and say μ leaves B at iteration k and enters at iteration ℓ . Denote $B^i, x^i, \sigma^i, c^i, \rho^i$ the objects B, x, ρ, c, σ of the algorithm at iteration i.

Exercise 13 Let $j \in B^k$, prove that if $j > \mu$, then $c^{\ell^{\top}} A_j = 0$.

Exercise 14 Let $j \in B^k$, prove that if $j = \mu$, then $c^{\ell^{\top}} A_j < 0$.

Exercise 15 Let $j \in B^k$, prove that if $j < \mu$, then $c^{\ell^{\top}} A_j \ge 0$.

Exercise 16 Prove that the algorithm of exercise 11 stops.

Exercise 17 Prove that (2) holds.

Exercise 18 Prove that, given a matrix A, there is a matrix C so that

$$\{a: Ax = a, \exists x \ge \mathbf{0}\} = \{a: Ca \ge \mathbf{0}\}$$
(3)

Given a matrix C, by above, there is a matrix B, and then a matrix D, so that

$$\begin{array}{lll} \{c: \ y^{\top}C = c^{\top}, \ \exists y \geq \mathbf{0}\} & = & \{c: \ Bc \geq \mathbf{0}\}\\ \{b: \ y^{\top}B = b^{\top}, \ \exists y \geq \mathbf{0}\} & = & \{b: \ Db \geq \mathbf{0}\} \end{array}$$

Exercise 19 Prove that $\{a : Ca \ge \mathbf{0}\} \supseteq \{b : y^{\top}B = b^{\top}, \exists y \ge \mathbf{0}\}.$

Exercise 20 Prove that $\{a : Ca \ge \mathbf{0}\} \subseteq \{b : y^{\top}B = b^{\top}, \exists y \ge \mathbf{0}\}.$

Exercise 21 Prove that, given a matrix C, there is a matrix A so that (3) holds.

Exercise 22 Prove that, given a matrix A and a vector a, then there are two matrices B, C so that

$$\{x : Ax \le a\} = \{x : Bb = x, \exists b \ge \mathbf{0} : \mathbf{1}^{\top}b = 1\} + \{x : Cc = x, \exists c \ge \mathbf{0}\}$$
(4)

Exercise 23 Prove that, given two matrices B, C, there are a matrix A and a vector a, so that (4) holds.

Exercise 24 Prove that $(\exists x \ge \mathbf{0} : Ax = a)$ only if $(c^{\top}A \ge \mathbf{0}^{\top} \Rightarrow c^{\top}a \ge 0)$

Exercise 25 Prove that if $(\exists x \ge \mathbf{0} : Ax = a)$, then $(c^{\top}A \ge \mathbf{0}^{\top} \Rightarrow c^{\top}a \ge 0)$

Exercise 26 Prove that $(\exists x \ge \mathbf{0} : Ax \le a)$ only if $(c^{\top}A \ge \mathbf{0}^{\top} \text{ and } c \ge \mathbf{0} \Rightarrow c^{\top}a \ge 0)$

Exercise 27 Prove that if $(\exists x \ge \mathbf{0} : Ax \le a)$, then $(c^{\top}A \ge \mathbf{0}^{\top} \text{ and } c \ge \mathbf{0} \Rightarrow c^{\top}a \ge 0)$

Exercise 28 Prove that $(\exists x : Ax \leq a)$ only if $(c^{\top}A = \mathbf{0}^{\top} \text{ and } c \geq \mathbf{0} \Rightarrow c^{\top}a \geq 0)$

Exercise 29 Prove that if $(\exists x : Ax \leq a)$, then $(c^{\top}A = \mathbf{0}^{\top} \text{ and } c \geq \mathbf{0} \Rightarrow c^{\top}a \geq 0)$

Exercise 30 Prove that $\min\{c^{\top}x : Ax \leq b, x \geq 0\} \leq \max\{y^{\top}b : y^{\top}A \geq c^{\top}, y \geq 0\}$ (where both sets are assumed non-empty).

Exercise 31 Prove that if there are $u \ge 0$, $v \ge 0$, and $\mu > 0$ so that $u^{\top}A \ge \mu.c^{\top}$ and $Av \le \mu.b$, then $u^{\top}b \ge v^{\top}c$.

Exercise 32 Prove that if there are $u \ge 0$, $v \ge 0$, and $\mu = 0$ so that $u^{\top}A \ge \mu.c^{\top}$ and $Av \le \mu.b$, then $u^{\top}b \ge v^{\top}c$.

Exercise 33 Prove that there are $x \ge 0$ and $y \ge 0$ so that

$$\begin{bmatrix} A & O^{\top} \\ O & -A^{\top} \\ -c^{\top} & b^{\top} \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \leq \begin{bmatrix} b \\ -c \\ 0 \end{bmatrix}$$

where O is a zero matrix.

Exercise 34 Prove that $\min\{c^{\top}x : Ax \leq b, x \geq \mathbf{0}\} \geq \max\{y^{\top}b : y^{\top}A \geq c^{\top}, y \geq \mathbf{0}\}.$