Given $x, y \in \mathbb{R}^{n}$, we denote the scalar product by $x^{\top} y=\sum_{j=1}^{n} x_{j} y_{j}$, and the norm by $\|x\|=\left(x^{\top} x\right)^{1 / 2}$. The convex hull of two points $a, b \in \mathbb{R}^{n}$ is the segment $[a, b]$, that is, the set of all point $x \in \mathbb{R}^{n}$ so that $x=\alpha . a+(1-\alpha) . b$ for some real $0 \leq \alpha \leq 1$. More generally, the convex hull of k points, that is, the columns of some (finite) matrix $B \in \mathbb{R}^{n \times k}$, is

$$
\operatorname{conv} \cdot \operatorname{hull}(B)=\left\{x \in \mathbb{R}^{n}: x=B b, \exists b \in \mathbb{R}^{k}, b \geq \mathbf{0}: \mathbf{1}^{\top} b=1\right\}
$$

A polytope P is the convex hull of a finite set of points, that is, a subset of \mathbb{R}^{n} of the form $P=$ conv.hull (B) for some matrix B. Given a graph G, its matching polytope is the convex hull of the 0-1 characteristic vectors of all its matchings.

A classical result is that every polytope is also the set of all solutions of a linear system, that is, given B, there always exists a matrix A such that

$$
\begin{equation*}
\{x: A x \leq a\}=\left\{x: B b=x, \exists b \geq \mathbf{0}: \mathbf{1}^{\top} b=1\right\} \tag{1}
\end{equation*}
$$

The converse holds provided that the set at the left is bounded, that is, given a bounded set of the form $P=\{x: A x \leq a\}$, it is the convex hull of points, called extreme points of P. For instance, the cube in the space \mathbb{R}^{3}, denoted by $[\mathbf{0}, \mathbf{1}]$, is both

1. the set of points x with $0 \leq x_{j} \leq 1$, and
2. the convex hull of all points with $0-1$ coordinates.

It holds for all hypercubes as well, and generally, in \mathbb{R}^{n}, the extrem points of $P=\{x: A x \leq$ $a\}$ are both the set of points of P

1. which satisfy n linearly independent equations of the system $A x=a$
2. which are the convex hull of no pair of distinct points in P

We will prove that the matching polytope of any bipartite graph G is described by a system $A x \leq a$ where the rows of A are the characteristic vector of the stars of G, and $a=\mathbf{1}$.

1 Geometrical insight

Pythagorean theorem, which sates that $\|x\|^{2}=x_{1}^{2}+x_{2}^{2}$, where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ (for a proof: express $(a+b)^{2}$ in two ways), implies $\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}$ for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, assuming that 3 points always define a plane (proof by induction on n). Pythagorean theorem implies also that $x^{\top} y=\|x\| \cdot\| \| y \| \cdot \cos \theta$, where θ is the angle between the two lines $(\mathbf{0} x)$ and $(\mathbf{0} y)$. (Proof: express $\|x-y\|$ in two different ways.) This implies that $x^{\top} y=0$ if and only if the two lines $(\mathbf{0} x)$ and $(\mathbf{0} y)$ are orthogonal (or one of x, y is the origin). This is why linear spaces have two possible descriptions, for instance, a line $(\mathbf{0} a)$ of \mathbb{R}^{2} is both the set of x so that

1. $x=\alpha . a$ for some real α
2. $c^{\top} x=0$ for some non-zero c with $c^{\top} a=0$ or, plane ($\mathbf{0} a b$) of \mathbb{R}^{3} is both the set of x so that
3. $x=\alpha . a+\beta . b$ for some reals α, β
4. $c^{\top} x=0$ for some non-zero c with $c^{\top} a=c^{\top} b=0$
(and more generally a linear subspace of \mathbb{R}^{n} is both
5. $\{a: A x=a, \exists x\}$
6. $\{a: C a=\mathbf{0}\}$
)
For lines ($a b$), planes ($a b c$) (and, more generally, affine spaces not containing the origin), this gives: a line $(a b)$ of \mathbb{R}^{2} is both the set of x so that
7. $x=a+\alpha .(b-a)$ for some real α
8. $c^{\top} x=1$ for some non-zero c with $c^{\top}(b-a)=0$
or, a plane ($a b c$) of \mathbb{R}^{3} is both the set of x so that
9. $x=a+\alpha \cdot(b-a)+\beta .(c-a)$ for some reals α, β
10. $c^{\top} x=1$ for some non-zero c with $c^{\top}(b-a)=c^{\top}(c-a)=0$

2 Linear systems and graphs

Given a set X, typically X is the edge-set or the vertex-set of some graph, the characteristic vector of a subet $Y \subseteq X$ is the vector $\chi^{Y} \in \mathbb{R}^{X}$ (that is, a vector of $\mathbb{R}^{|X|}$ with a one-to-one correspondence between its coordinates and the elements of X) so that

$$
\chi_{x}^{Y}= \begin{cases}1 & \text { if } x \in Y \\ 0 & \text { if } x \notin Y\end{cases}
$$

Throughout, we let A be the 0-1 vertex-edge incidence matrix of G, that is, equivalently

1. the rows are the characteristic vector of stars of G (in other words, each row of A is the vector $\chi^{\delta(v)}$ for some vertex $v \in V$)
2. the columns are the characteristic vector of the edges of G (in other words, each column of A is the vector $\chi^{\{u, v\}}$ for some edge $e=u v \in E$)

Then the 0-1 vectors x satisfying $A x \leq \mathbf{1}$ are the characteristic vectors of matchings of G.

Which other familiar objects from graph theory can be described in a similar way with the matrix A ?

3 Matching polytope of bipartite graphs

A bipartite graph $G=(V, E)$ is both

1. a graph with $\chi(G) \leq 2$
2. a graph with no odd cycle
(Proof: partition the vertex-set V into subsets V_{i} at distance i from some $s \in V$.)
First, let us show that it is easy to describe the perfect matching polytope of a bipartite graph:

- Let x be a point of $P=\{x: A x=\mathbf{1}, x \geq \mathbf{0}\}$ and let $F=\left\{e \in E: 0<x_{e}<1\right\}$. Clearly, the subgraph (V, F) of G has no vertex of degree 1 (otherwise a constraint would be violated).
- Suppose that there is an even cycle $C \subseteq F$. So C has a bipartition into matchings M, N; and hence, there is a $\varepsilon>0$, so that both $y=x+\varepsilon \cdot\left(\chi^{M}-\chi^{N}\right)$ and $z=x-\varepsilon \cdot\left(\chi^{M}-\chi^{N}\right)$ are in P. In this case, $x=(y+z) / 2$ is not an extreme point.
- So extreme points of P have no fractional coordinate.

Finally, this leads to a description of the matching polytope:

- Let x be a point of $P=\{x: A x \leq \mathbf{1}, x \geq \mathbf{0}\}$.
- Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a copy of G and let x^{\prime} be the vector with $x_{e^{\prime}}=x_{e}$.
- Let \tilde{G} be the graph obtained from the disjoint union of G and G^{\prime}, by adding $|V|=\left|V^{\prime}\right|$ edges $e=v v^{\prime}$ linking a vertex v and its copy v^{\prime}. Let \tilde{x} be the vector with $\tilde{x}_{e}=\tilde{x}_{e^{\prime}}=x_{e}$ and $\tilde{x}_{v v^{\prime}}=1-x(\delta(v))$.
- So \tilde{x} is a point of the perfect matching polytope of \tilde{G}, and hence its the convex hull of characteristic vectors $\chi^{\tilde{M}}$ of perfect matchings \tilde{M} of \tilde{G}.
- Since $\tilde{M} \cap E=M$ is a matching of G, then x is the convex hull of characteristic vectors χ^{M} of matchings M of G.

