Given $x, y \in \mathbb{R}^n$, we denote the scalar product by $x^{\top}y = \sum_{j=1}^n x_j y_j$, and the norm by $||x|| = (x^{\top}x)^{1/2}$. The convex hull of two points $a, b \in \mathbb{R}^n$ is the segment [a, b], that is, the set of all point $x \in \mathbb{R}^n$ so that $x = \alpha . a + (1 - \alpha) . b$ for some real $0 \le \alpha \le 1$. More generally, the convex hull of k points, that is, the columns of some (finite) matrix $B \in \mathbb{R}^{n \times k}$, is

$$conv.hull(B) = \{ x \in \mathbb{R}^n : x = Bb, \exists b \in \mathbb{R}^k, b \ge \mathbf{0} : \mathbf{1}^\top b = 1 \}$$

A polytope P is the convex hull of a finite set of points, that is, a subset of \mathbb{R}^n of the form P = conv.hull(B) for some matrix B. Given a graph G, its matching polytope is the convex hull of the 0-1 characteristic vectors of all its matchings.

A classical result is that every polytope is also the set of all solutions of a linear system, that is, given B, there always exists a matrix A such that

$$\{x : Ax \le a\} = \{x : Bb = x, \exists b \ge \mathbf{0} : \mathbf{1}^{\top}b = 1\}$$
(1)

The converse holds provided that the set at the left is bounded, that is, given a bounded set of the form $P = \{x : Ax \leq a\}$, it is the convex hull of points, called extreme points of P. For instance, the cube in the space \mathbb{R}^3 , denoted by [0, 1], is both

- 1. the set of points x with $0 \le x_j \le 1$, and
- 2. the convex hull of all points with 0-1 coordinates.

It holds for all hypercubes as well, and generally, in \mathbb{R}^n , the extrem points of $P = \{x : Ax \le a\}$ are both the set of points of P

- 1. which satisfy n linearly independent equations of the system Ax = a
- 2. which are the convex hull of no pair of distinct points in P

We will prove that the matching polytope of any bipartite graph G is described by a system $Ax \leq a$ where the rows of A are the characteristic vector of the stars of G, and a = 1.

1 Geometrical insight

Pythagorean theorem, which sates that $||x||^2 = x_1^2 + x_2^2$, where $x = (x_1, x_2) \in \mathbb{R}^2$ (for a proof: express $(a+b)^2$ in two ways), implies $||x||^2 = x_1^2 + x_2^2 + \ldots + x_n^2$ for $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, assuming that 3 points always define a plane (proof by induction on n). Pythagorean theorem implies also that $x^{\top}y = ||x|| \cdot ||y|| \cdot \cos \theta$, where θ is the angle between the two lines $(\mathbf{0}x)$ and $(\mathbf{0}y)$. (Proof: express ||x - y|| in two different ways.) This implies that $x^{\top}y = 0$ if and only if the two lines $(\mathbf{0}x)$ and $(\mathbf{0}y)$ are orthogonal (or one of x, y is the origin). This is why linear spaces have two possible descriptions, for instance, a line $(\mathbf{0}a)$ of \mathbb{R}^2 is both the set of x so that

1. $x = \alpha . a$ for some real α

2. $c^{\top}x = 0$ for some non-zero c with $c^{\top}a = 0$

or, plane $(\mathbf{0}ab)$ of \mathbb{R}^3 is both the set of x so that

- 1. $x = \alpha . a + \beta . b$ for some reals α, β
- 2. $c^{\top}x = 0$ for some non-zero c with $c^{\top}a = c^{\top}b = 0$

(and more generally a linear subspace of \mathbb{R}^n is both

1. $\{a : Ax = a, \exists x\}$

2.
$$\{a : Ca = 0\}$$

	١		
	1	L	
	l	l	
	1		
	•		

For lines (ab), planes (abc) (and, more generally, affine spaces not containing the origin), this gives: a line (ab) of \mathbb{R}^2 is both the set of x so that

- 1. $x = a + \alpha (b a)$ for some real α
- 2. $c^{\top}x = 1$ for some non-zero c with $c^{\top}(b-a) = 0$

or, a plane (*abc*) of \mathbb{R}^3 is both the set of x so that

- 1. $x = a + \alpha . (b a) + \beta . (c a)$ for some reals α, β
- 2. $c^{\top}x = 1$ for some non-zero c with $c^{\top}(b-a) = c^{\top}(c-a) = 0$

2 Linear systems and graphs

Given a set X, typically X is the edge-set or the vertex-set of some graph, the characteristic vector of a subet $Y \subseteq X$ is the vector $\chi^Y \in \mathbb{R}^X$ (that is, a vector of $\mathbb{R}^{|X|}$ with a one-to-one correspondence between its coordinates and the elements of X) so that

$$\chi_x^Y = \begin{cases} 1 & \text{if } x \in Y \\ 0 & \text{if } x \notin Y \end{cases}$$

Throughout, we let A be the 0-1 vertex-edge incidence matrix of G, that is, equivalently

- 1. the rows are the characteristic vector of stars of G (in other words, each row of A is the vector $\chi^{\delta(v)}$ for some vertex $v \in V$)
- 2. the columns are the characteristic vector of the edges of G (in other words, each column of A is the vector $\chi^{\{u,v\}}$ for some edge $e = uv \in E$)

Then the 0-1 vectors x satisfying $Ax \leq 1$ are the characteristic vectors of matchings of G.

Which other familiar objects from graph theory can be described in a similar way with the matrix A?

3 Matching polytope of bipartite graphs

A bipartite graph G = (V, E) is both

- 1. a graph with $\chi(G) \leq 2$
- 2. a graph with no odd cycle

(Proof: partition the vertex-set V into subsets V_i at distance i from some $s \in V$.)

First, let us show that it is easy to describe the perfect matching polytope of a bipartite graph:

- Let x be a point of $P = \{x : Ax = 1, x \ge 0\}$ and let $F = \{e \in E : 0 < x_e < 1\}$. Clearly, the subgraph (V, F) of G has no vertex of degree 1 (otherwise a constraint would be violated).
- Suppose that there is an even cycle $C \subseteq F$. So C has a bipartition into matchings M, N; and hence, there is a $\varepsilon > 0$, so that both $y = x + \varepsilon . (\chi^M - \chi^N)$ and $z = x - \varepsilon . (\chi^M - \chi^N)$ are in P. In this case, x = (y + z)/2 is not an extreme point.
- So extreme points of P have no fractional coordinate.

Finally, this leads to a description of the matching polytope:

- Let x be a point of $P = \{x : Ax \leq 1, x \geq 0\}.$
- Let G' = (V', E') be a copy of G and let x' be the vector with $x_{e'} = x_e$.
- Let \tilde{G} be the graph obtained from the disjoint union of G and G', by adding |V| = |V'|edges e = vv' linking a vertex v and its copy v'. Let \tilde{x} be the vector with $\tilde{x}_e = \tilde{x}_{e'} = x_e$ and $\tilde{x}_{vv'} = 1 - x(\delta(v))$.
- So \tilde{x} is a point of the perfect matching polytope of \tilde{G} , and hence its the convex hull of characteristic vectors $\chi^{\tilde{M}}$ of perfect matchings \tilde{M} of \tilde{G} .
- Since $\tilde{M} \cap E = M$ is a matching of G, then x is the convex hull of characteristic vectors χ^M of matchings M of G.