
Notes de cours D. Cornaz, Université Paris-Dauphine

A fundamental result of linear algebra can be stated as follows :

{a : Ax = a, ∃x} = {a : Ca = 0} (1)

meaning that every linear subspace generated by linear combination of a finite number of

points of Rn, namely the columns of A, is the set of solutions of an homogeneous linear

system (∀A∃C), and any set of solutions of an homogeneous linear system, namely Ca = 0,

is a finitely generated linear subspace (∀C ∃A). The proof is based on an algorithm, namely

Gaussian Elimination, which provides a sequence of invertible matrices B1, . . . , Bk (here Bi
is either, a pivoting matrix, i.e. obtained from the identity by replacing one column of

the identity by any column with a nonzero element at the position where the 1 was, or a

permutation matrix, i.e. obtained by permuting rows, equivalently columns, of the identity),

the product B = BkBk−1 . . . B1 of these invertibles matrices is an invertible matrix and hence

{x : Ax = a} = {x : BAx = Ba} since there must have equalities every where in:

{x : Ax = a} ⊆ {x : BAx = Ba} ⊆ {x : B−1BAx = B−1Ba} = {x : Ax = a}

The algorithm stops with an equivalent system BAx = Ba which has the following form (up

to column permutation): [I M ]x = B′a and 0 = B′′a where B =
[

B′

B′′

]
. The size of I is the

dimension of the linear space spanned by A, equivalently the rank of A. Now the the proof

is easy since:

Proof of (1).

(∀A∃C) Take C = B′′, thus any a for which there is a solution x =
(

x′

x′′

)
of BAx = Ba must

satisfy Ca = 0 ; furthermore x′ = B′a, x′′ = 0 is then a solution.

(∀C ∃A) Since Ca = 0 is equivalent to [I M ] a = 0 (and 0 = 0), then a =
(

a′

a′′

)
is a solution if

and only if a′ = −Ma′′, which is equivalent to a = Ax for some x, with A =
[

−M

I

]
.

�

It has the following consequence:

(∃x : Ax = a) ⇐⇒ (c>A = 0> ⇒ c>a = 0) (2)

Proof of (2).

⇒: (Ax = a and c>A = 0>) ⇒ (0 = c>Ax = c>a).

⇐: Since CA = O is a zero matrix, then (c>A = 0> ⇒ c>a = 0) implies Ca = 0, which

implies Ax = a for some x.

�

Let n be the dimension of the linear space spanned by the columns of a matrix A. The

so-called fundamental theorem of linear inequalities is:

(∃x ≥ 0 : Ax = a) XOR

 ∃c : c>A ≥ 0> with equality for at least n− 1

linearly independent columns, and

c>a < 0

 (3)
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meaning that either a belongs to the cone generated by the columns of A, or, exclusively,

there is a hyperplan (of the spanned space) through the origin and n − 1 columns which

separates all other columns from a. Since both the cone and the hyperplan belong to the

spanned space, we can assume that A is full row-rank (as a counterexample with A not full

row-rank woud give one with A full row-rank by projection unto the spanned space).

Proof of (3).

(X) (x ≥ 0, Ax = a and c>A ≥ 0>) ⇒ (0 ≤ c>Ax = c>a).

(OR) Let Aj for j ∈ J denotes the columns of A, let AB be the submatrix of A obtained by

removing the columns Aj with j ∈ J \B, and assume that AB is invertible. The proof

follows from the finiteness of the following algorithm, which we prove just after:

Step 1. Let xB = A−1B a. If xB ≥ 0 stop.

Step 2. Let σ be the minimum σ ∈ B with xσ < 0. There exists c with c>AB\{σ} = 0>

and c>Aσ = 1. Thus c>a = c>ABx = xσ < 0.

Step 3. If c>A ≥ 0> stop.

Step 4. Let ρ be the minimum ρ ∈ J with c>Aρ < 0, reset B := B \ {σ} ∪ {ρ} and go to

Step 1.

If the algorithms loops, the same subset B ⊆ J is used at some iteration and at a

later iteration. Let µ be the maximum µ ∈ B which is removed and added, between

these two iterations, and say µ leaves B at iteration k and enters at iteration `. Denote

Bi, xi, σi, ci, ρi the objects B, x, ρ, c, σ of the algorithm at iteration i.

So Bi+1 = Bi \ {σi} ∪ {ρi}, B = Bk = B`+1, and µ = σk = ρ`. Let j ∈ B; we have:

if j > µ , then, by maximality of µ, we have j ∈ B` and j 6= σ`, hence c`
>
Aj = 0

if j = µ , then j = σk, hence xkj < 0, and j = ρ` hence c`
>
Aj < 0

if j < µ , by minimality of σk, we have xkj ≥ 0, and by minimality of ρ`, we have c`
>
Aj ≥ 0

It follows that 0 < c`
>
ABkxBk = c`

>
a; a contradiction since c`

>
a < 0 by Step 2.

�

To see that c exists at Step 2, it suffices to notice that, for every b, the system y>AB = b> has

always a unique solution y (in particular when bj = 0 except for one coordinate). Suppose

that the columns indexed in B \ {σ} ∪ {ρ} do not form an invertible matrix at Step 4. Then

the system y>AB\{σ}∪{ρ} = (0, . . . , 0, 1) has several solutions y ; impossible, since it would

imply that y>AB = (0, . . . , 0, 1) has several solutions as well.

(3) has the following consequences (4)-(9).

{a : Ax = a, ∃x ≥ 0} = {a : Ca ≥ 0} (4)

meaning that every finitely generated cone is a polyhedral cone and vice-versa.

Proof of (4).

(∀A∃C) By enumerating all subsets of n−1 columns, we can construct a matrix C the rows c> of

which correspond to all the hyperplans so that c>A ≥ 0> with at least n− 1 equalities.

By (3), Ca ≥ 0 if and only if Ax = a for some x.
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(∀C ∃A) Given a matrix C, by above, there is a matrix B, and then a matrix D, so that

{c : y>C = c>, ∃y ≥ 0} = {c : Bc ≥ 0}
{b : y>B = b>, ∃y ≥ 0} = {b : Db ≥ 0}

It suffices to prove that {a : Ca ≥ 0} = {b : y>B = b>, ∃y ≥ 0}.

⊇: For each row b> of B and each row c> of C, we have 0 ≤ b>c = c>b. Thus Cb ≥ 0,

and it follows that C(B>y) ≥ 0 for all y ≥ 0.

⊆: For each row d> of D and each row b> of B, we have 0 ≤ d>b = b>d. Thus Bd ≥ 0

and so d> = y>C for some y ≥ 0. If Ca ≥ 0 then 0 ≤ y>Ca = d>a; hence Da ≥ 0

and it follows that a> = z>B for some z ≥ 0.

�

{x : Ax ≤ a} = {x : Bb = x, ∃b ≥ 0 : 1>b = 1}+ {x : Cc = x, ∃c ≥ 0} (5)

meaning that every polyhedron is the sum of a polytope and a polyhedral cone. Indeed, the

first term in the sum is the convex hull of the columns of B, and the second term is a finitely

generated cone, so a polyhedral cone.

Proof of (5).

(∀A, a∃B,C): Given a matrix [A − a], by (4), there is a matrix D so that{(
x

µ

)
: Ax− µ.a ≤ 0, µ ≥ 0

}
=

{(
x

µ

)
: Dy =

(
x

µ

)
,∃y ≥ 0

}
Moreover, we can whose a matrix D of the form

D =

(
B C

1> 0>

)

So Ax ≤ a if and only if
(
x
1

)
= Dy for some y ≥ 0. Which is equivalent to(

x

1

)
=

(
Bb+ Cc

1>b

)
for b ≥ 0 and c ≥ 0

(∀B,C ∃A, a): Given B,C, by (4), there is a matrix [A − a] so that{(
x

µ

)
:

(
B C

1> 0>

)
y =

(
x

µ

)
, y ≥ 0

}
=

{(
x

µ

)
: [A − a]

(
x

µ

)
≤ 0

}
which, restricted to µ = 1 is equivalent to (5).

�

Another consequence of (3) is the so-called Farka’s lemma:

(∃x ≥ 0 : Ax = a) ⇐⇒ (c>A ≥ 0> ⇒ c>a ≥ 0) (6)

meaning that a point a does not belong to a cone if and only if there is a hyperplane separating

point a from the cone.

Proof of (6).
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⇒: It follows from the exclusivity (X) in (3).

⇐: It follows from the (OR) in (3).

�

Farkas’s lemma (6) has the two following different variants (7)-(8).

(∃x ≥ 0 : Ax ≤ a) ⇐⇒ (c>A ≥ 0> and c ≥ 0⇒ c>a ≥ 0) (7)

Proof of (7).

⇒: (Ax ≤ a, x ≥ 0, c ≥ 0 and c>A ≥ 0>) ⇒ (0 ≤ c>Ax ≤ c>a).

⇐: There is a x ≥ 0 so that Ax ≤ a if and only if there is a x ≥ 0 so that [AI]x = a. By

(6), the later is equivalent to the fact that c>[AI] ≥ 0 implies c>a ≥ 0.

�

(∃x : Ax ≤ a) ⇐⇒ (c>A = 0> and c ≥ 0⇒ c>a ≥ 0) (8)

Proof of (8).

⇒: (Ax ≤ a, c ≥ 0 and c>A = 0>) ⇒ (0 = c>Ax ≤ c>a).

⇐: There is a x so that Ax ≤ a if and only if there is a x ≥ 0 so that [A −A I]x = a. By

(6), the later is equivalent to the fact that c>[A −A I] ≥ 0 implies c>a ≥ 0.

�

The duality theorem of linear programming is a consequence of (7), it states that, if both

polyhedra are nonempty, then the following equality holds:

min{c>x : Ax ≤ b, x ≥ 0} = max{y>b : y>A ≥ c>, y ≥ 0} (9)

Proof of (9).

≤: If y>A ≥ c> and x ≥ 0, then c>x ≤ y>Ax. If Ax ≤ b and y ≥ 0, then y>Ax ≤ y>b.

≥: It suffices to prove that there are x ≥ 0 and y ≥ 0 so that A O>

O −A>

−c> b>

( x

y

)
≤

 b

−c
0


where O is a zero matrix. By (7), this is equivalent to the fact that if there are u ≥ 0,

v ≥ 0, and µ ≥ 0 so that u>A ≥ µ.c> and Av ≤ µ.b, then u>b ≥ v>c. If µ > 0, then

u>b = u>(µ−1µ b) ≥ u>(µ−1Av) = µ−1(u>Av) ≥ µ−1µ c>v = c>v

If µ = 0, let x̄ ≥ 0 and ȳ ≥ 0 so that Ax̄ ≤ b and ȳ>A ≥ c>. Thus u>b ≥ u>Ax̄ ≥ 0

and c>v ≤ ȳ>Av ≤ 0.

�
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