NOTES DE COURS D. Cornaz, Université Paris-Dauphine

A fundamental result of linear algebra can be stated as follows :
{a: Az =a,3z} = {a:Ca=0} (1)

meaning that every linear subspace generated by linear combination of a finite number of
points of R™, namely the columns of A, is the set of solutions of an homogeneous linear
system (VA 3C), and any set of solutions of an homogeneous linear system, namely Ca = 0,
is a finitely generated linear subspace (VC 3A). The proof is based on an algorithm, namely
Gaussian Elimination, which provides a sequence of invertible matrices By, ..., By (here B;
is either, a pivoting matriz, i.e. obtained from the identity by replacing one column of
the identity by any column with a nonzero element at the position where the 1 was, or a
permutation matriz, i.e. obtained by permuting rows, equivalently columns, of the identity),
the product B = By Bj_1 ... Bj of these invertibles matrices is an invertible matrix and hence
{z: Az = a} = {z: BAx = Ba} since there must have equalities every where in:

{z: Az =a} C{z: BAzr=Ba} C {x: B"'BAz =B 'Ba} = {z: Az = a}

The algorithm stops with an equivalent system BAxz = Ba which has the following form (up
to column permutation): [I M]x = B’a and 0 = B”a where B = [ B } The size of I is the
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dimension of the linear space spanned by A, equivalently the rank of A. Now the the proof

is easy since:
Proof of (1).

(VA3C) Take C' = B”, thus any a for which there is a solution x :( -, ) of BAr = Ba must
satisfy C'a = 0 ; furthermore 2’ = B’a, 2" = 0 is then a solution.

(VC'3A) Since Ca = 0 is equivalent to [I M]a = 0 (and 0 = 0), then a :< @ ) is a solution if

"
a

and only if @’ = —Ma", which is equivalent to a = Az for some z, with A :[ -M ]
]
It has the following consequence:
(Fz: Az =a) <= (c'A=0" = c'a=0) (2)
Proof of (2).

=: (Az=aandc'A=0") = (0=c' Az =c"a).

«: Since CA = O is a zero matrix, then (¢c' A =0" = ¢'a = 0) implies Ca = 0, which
implies Az = a for some z.

0

Let n be the dimension of the linear space spanned by the columns of a matrix A. The
so-called fundamental theorem of linear inequalities is:

Je: ¢"A >0  with equality for at least n — 1
(3z>0: Az =a) XOR linearly independent columns, and (3)
cla<0



meaning that either a belongs to the cone generated by the columns of A, or, exclusively,
there is a hyperplan (of the spanned space) through the origin and n — 1 columns which
separates all other columns from a. Since both the cone and the hyperplan belong to the
spanned space, we can assume that A is full row-rank (as a counterexample with A not full
row-rank woud give one with A full row-rank by projection unto the spanned space).

Proof of (3).
(X) (x>0, Ar=aandc'A>0") = (0<c"Az =c"a).

(OR) Let A; for j € J denotes the columns of A, let Ap be the submatrix of A obtained by
removing the columns A; with j € J\ B, and assume that Ap is invertible. The proof
follows from the finiteness of the following algorithm, which we prove just after:

Step 1. Let zp = A]_Bla. If zg > 0 stop.

Step 2. Let o be the minimum ¢ € B with x, < 0. There exists ¢ with CTAB\{J} =0'
and ¢' A, = 1. Thus ¢'a=c¢' Az = 2, < 0.

Step 3. If cTA > 0" stop.

Step 4. Let p be the minimum p € J with ¢" A, < 0, reset B := B\ {0} U {p} and go to
Step 1.

If the algorithms loops, the same subset B C J is used at some iteration and at a
later iteration. Let p be the maximum g € B which is removed and added, between
these two iterations, and say p leaves B at iteration k and enters at iteration ¢. Denote
Bt xt, 0%, ¢, p the objects B, z, p, c,o of the algorithm at iteration 1.

So B! = B\ {¢'} U{p’}, B = B* = B™! and u = o* = p’. Let j € B; we have:
if j > g, then, by maximality of u, we have j € B and j # of, hence cﬂAj =0
if j = p , then j = o, hence :E;“ <0, and j = p’ hence cﬂAj <0
if j < p , by minimality of o*, we have xf > 0, and by minimality of p¢, we have ceTAj >0

It follows that 0 < cﬂABkak = cﬂa; a contradiction since ¢! a < 0 by Step 2.

O

To see that ¢ exists at Step 2, it suffices to notice that, for every b, the system y' Ag =b' has
always a unique solution y (in particular when b; = 0 except for one coordinate). Suppose
that the columns indexed in B\ {o} U{p} do not form an invertible matrix at Step 4. Then
the system yTAB\{U}U{p} = (0,...,0,1) has several solutions y ; impossible, since it would
imply that y" Ap = (0,...,0,1) has several solutions as well.

(3) has the following consequences (4)-(9).

{a: Az =a,3Fz >0} = {a:Ca>0} (4)
meaning that every finitely generated cone is a polyhedral cone and vice-versa.
Proof of (4).

(VA3C) By enumerating all subsets of n— 1 columns, we can construct a matrix C' the rows ¢ of
which correspond to all the hyperplans so that ¢ A > 07 with at least n — 1 equalities.
By (3), Ca > 0 if and only if Az = a for some .



(VC 3A) Given a matrix C, by above, there is a matrix B, and then a matrix D, so that

{c:y"C=c", >0} = {c: Bec>0}
h:y"B=bT,3y>0} = {b:Db>0}

It suffices to prove that {a: Ca >0} ={b: y"B=0b", Iy > 0}.

D: For each row b' of B and each row ¢! of C', we have 0 < bTe=c¢"b. Thus Cb > 0,
and it follows that C(BTy) > 0 for all y > 0.

C: For each row d' of D and each row b' of B, we have 0 < d"b=b"d. Thus Bd >0
and sod’ = yTC for some y > 0. If Ca > 0 then 0 < yTC’a = dTa; hence Da > 0
and it follows that a” = 2" B for some z > 0.

{r:Az<a} = {r:Bb==xz,3>0:1"b=1}+{z: Cc==z, 3¢ >0} (5)

meaning that every polyhedron is the sum of a polytope and a polyhedral cone. Indeed, the
first term in the sum is the convex hull of the columns of B, and the second term is a finitely
generated cone, so a polyhedral cone.

Proof of (5).

(VA,a3B,C): Given a matrix [A — a], by (4), there is a matrix D so that

() zanaa)-{() o= ()=o)

Moreover, we can whose a matrix D of the form

B C
DZ(]_T 0T>

So Az < a if and only if (gf) = Dy for some y > 0. Which is equivalent to

S Bb—ji:C’c forb>0andc>0
1 1'b

(VB,C3A,a): Given B,C, by (4), there is a matrix [A — a] so that

((): (3 & )r=Chozaf={(): -0 () <o}

which, restricted to u = 1 is equivalent to (5).
O
Another consequence of (3) is the so-called Farka’s lemma:
(3z>0: Az =a) <= (¢'A>0" = c'a>0) (6)

meaning that a point a does not belong to a cone if and only if there is a hyperplane separating
point a from the cone.

Proof of (6).



=: It follows from the exclusivity (X) in (3).
<: It follows from the (OR) in (3).
U
Farkas’s lemma (6) has the two following different variants (7)-(8).
(Fx>0: Az <a) <= ('A>0"andc>0= c¢'a>0) (7)
Proof of (7).
=: (Az<a,r>0,c>0andc' A>0") = (0<c Az < cla).

<: There is a x > 0 so that Ax < a if and only if there is a > 0 so that [AI]z = a. By
(6), the later is equivalent to the fact that ¢'[A I] > 0 implies ¢'a > 0.

n
(Fz: Axr<a) <= (c'A=0"andc>0= c¢'a>0) (8)
Proof of (8).
=: (Az<a,c>0andc'A=0") = (0=c'Az <ca).

<: There is a x so that Az < a if and only if there is a 2 > 0 so that [A —A I]x = a. By
(6), the later is equivalent to the fact that ¢'[A —A I] > 0 implies ¢ a > 0.

O

The duality theorem of linear programming is a consequence of (7), it states that, if both
polyhedra are nonempty, then the following equality holds:

min{c'z: Az <b, x> 0} = max{y b: y'A>c', y> 0} (9)

Proof of (9).

I\

If y"TA>c" and 2> 0, then ¢’z <y' Az. If Az <band y > 0, then y' Az < y'b.

Y

: It suffices to prove that there are x > 0 and y > 0 so that
A o’ b
O —AT ( . ) < | —c

S 4

where O is a zero matrix. By (7), this is equivalent to the fact that if there are u > 0,
v>0,and p > 0so that u' A > p.c” and Av < p.b, then u'b>v'ec. If 4 > 0, then

w'b=u" (b)) >u’ (W AY) = p N w Av) > ppeTo = ¢

Ifu:O,leta?”ZOandngOsothatAjgbandngAch. Thus u'b > u'AZ > 0
and ¢Tv < gTAv <0.



