A fundamental result of linear algebra can be stated as follows :

$$
\begin{equation*}
\{a: A x=a, \exists x\}=\{a: C a=\mathbf{0}\} \tag{1}
\end{equation*}
$$

meaning that every linear subspace generated by linear combination of a finite number of points of \mathbb{R}^{n}, namely the columns of A, is the set of solutions of an homogeneous linear system $(\forall A \exists C)$, and any set of solutions of an homogeneous linear system, namely $C a=\mathbf{0}$, is a finitely generated linear subspace $(\forall C \exists A)$. The proof is based on an algorithm, namely Gaussian Elimination, which provides a sequence of invertible matrices B_{1}, \ldots, B_{k} (here B_{i} is either, a pivoting matrix, i.e. obtained from the identity by replacing one column of the identity by any column with a nonzero element at the position where the 1 was, or a permutation matrix, i.e. obtained by permuting rows, equivalently columns, of the identity), the product $B=B_{k} B_{k-1} \ldots B_{1}$ of these invertibles matrices is an invertible matrix and hence $\{x: A x=a\}=\{x: B A x=B a\}$ since there must have equalities every where in:

$$
\{x: A x=a\} \subseteq\{x: B A x=B a\} \subseteq\left\{x: B^{-1} B A x=B^{-1} B a\right\}=\{x: A x=a\}
$$

The algorithm stops with an equivalent system $B A x=B a$ which has the following form (up to column permutation): $[I M] x=B^{\prime} a$ and $\mathbf{0}=B^{\prime \prime} a$ where $B=\left[\begin{array}{c}B^{\prime} \\ B^{\prime \prime}\end{array}\right]$. The size of I is the dimension of the linear space spanned by A, equivalently the rank of A. Now the the proof is easy since:

Proof of (1).

$(\forall A \exists C)$ Take $C=B^{\prime \prime}$, thus any a for which there is a solution $x=\binom{x^{\prime}}{x^{\prime \prime}}$ of $B A x=B a$ must satisfy $C a=\mathbf{0}$; furthermore $x^{\prime}=B^{\prime} a, x^{\prime \prime}=\mathbf{0}$ is then a solution.
$(\forall C \exists A)$ Since $C a=\mathbf{0}$ is equivalent to $[I M] a=\mathbf{0}$ (and $\mathbf{0}=\mathbf{0}$), then $a=\binom{a^{\prime}}{a^{\prime \prime}}$ is a solution if and only if $a^{\prime}=-M a^{\prime \prime}$, which is equivalent to $a=A x$ for some x, with $A=\left[\begin{array}{c}-M \\ I\end{array}\right]$.

It has the following consequence:

$$
\begin{equation*}
(\exists x: A x=a) \quad \Longleftrightarrow \quad\left(c^{\top} A=\mathbf{0}^{\top} \Rightarrow c^{\top} a=0\right) \tag{2}
\end{equation*}
$$

Proof of (2).

$$
\Rightarrow:\left(A x=a \text { and } c^{\top} A=\mathbf{0}^{\top}\right) \Rightarrow\left(0=c^{\top} A x=c^{\top} a\right)
$$

\Leftarrow : Since $C A=O$ is a zero matrix, then $\left(c^{\top} A=\mathbf{0}^{\top} \Rightarrow c^{\top} a=0\right)$ implies $C a=\mathbf{0}$, which implies $A x=a$ for some x.

Let n be the dimension of the linear space spanned by the columns of a matrix A. The so-called fundamental theorem of linear inequalities is:

$$
(\exists x \geq \mathbf{0}: A x=a) \quad \text { XOR } \quad\left(\begin{array}{rl}
\exists c: c^{\top} A \geq \mathbf{0}^{\top} & \text { with equality for at least } n-1 \tag{3}\\
& \\
c^{\top} a<0 & \text { linearly independent columns, and }
\end{array}\right)
$$

meaning that either a belongs to the cone generated by the columns of A, or, exclusively, there is a hyperplan (of the spanned space) through the origin and $n-1$ columns which separates all other columns from a. Since both the cone and the hyperplan belong to the spanned space, we can assume that A is full row-rank (as a counterexample with A not full row-rank woud give one with A full row-rank by projection unto the spanned space).

Proof of (3).

(X) $\left(x \geq \mathbf{0}, A x=a\right.$ and $\left.c^{\top} A \geq \mathbf{0}^{\top}\right) \Rightarrow\left(0 \leq c^{\top} A x=c^{\top} a\right)$.
(OR) Let A_{j} for $j \in J$ denotes the columns of A, let A_{B} be the submatrix of A obtained by removing the columns A_{j} with $j \in J \backslash B$, and assume that A_{B} is invertible. The proof follows from the finiteness of the following algorithm, which we prove just after:

Step 1. Let $x_{B}=A_{B}^{-1} a$. If $x_{B} \geq \mathbf{0}$ stop.
Step 2. Let σ be the minimum $\sigma \in B$ with $x_{\sigma}<0$. There exists c with $c^{\top} A_{B \backslash\{\sigma\}}=\mathbf{0}^{\top}$ and $c^{\top} A_{\sigma}=1$. Thus $c^{\top} a=c^{\top} A_{B} x=x_{\sigma}<0$.
Step 3. If $c^{\top} A \geq \mathbf{0}^{\top}$ stop.
Step 4. Let ρ be the minimum $\rho \in J$ with $c^{\top} A_{\rho}<0$, reset $B:=B \backslash\{\sigma\} \cup\{\rho\}$ and go to Step 1.

If the algorithms loops, the same subset $B \subseteq J$ is used at some iteration and at a later iteration. Let μ be the maximum $\mu \in B$ which is removed and added, between these two iterations, and say μ leaves B at iteration k and enters at iteration ℓ. Denote $B^{i}, x^{i}, \sigma^{i}, c^{i}, \rho^{i}$ the objects B, x, ρ, c, σ of the algorithm at iteration i.
So $B^{i+1}=B^{i} \backslash\left\{\sigma^{i}\right\} \cup\left\{\rho^{i}\right\}, B=B^{k}=B^{\ell+1}$, and $\mu=\sigma^{k}=\rho^{\ell}$. Let $j \in B$; we have:
if $j>\mu$, then, by maximality of μ, we have $j \in B^{\ell}$ and $j \neq \sigma^{\ell}$, hence $c^{\ell^{\top}} A_{j}=0$
if $j=\mu$, then $j=\sigma^{k}$, hence $x_{j}^{k}<0$, and $j=\rho^{\ell}$ hence $c^{\ell^{\top}} A_{j}<0$
if $j<\mu$, by minimality of σ^{k}, we have $x_{j}^{k} \geq 0$, and by minimality of ρ^{ℓ}, we have $c^{\ell^{\top}} A_{j} \geq 0$
It follows that $0<c^{\ell^{\top}} A_{B^{k}} x_{B^{k}}=c^{\ell^{\top}} a$; a contradiction since $c^{\ell^{\top}} a<0$ by Step 2.

To see that c exists at Step 2, it suffices to notice that, for every b, the system $y^{\top} A_{B}=b^{\top}$ has always a unique solution y (in particular when $b_{j}=0$ except for one coordinate). Suppose that the columns indexed in $B \backslash\{\sigma\} \cup\{\rho\}$ do not form an invertible matrix at Step 4. Then the system $y^{\top} A_{B \backslash\{\sigma\} \cup\{\rho\}}=(0, \ldots, 0,1)$ has several solutions y; impossible, since it would imply that $y^{\top} A_{B}=(0, \ldots, 0,1)$ has several solutions as well.
(3) has the following consequences (4)-(9).

$$
\begin{equation*}
\{a: A x=a, \exists x \geq \mathbf{0}\} \quad=\quad\{a: C a \geq \mathbf{0}\} \tag{4}
\end{equation*}
$$

meaning that every finitely generated cone is a polyhedral cone and vice-versa.

Proof of (4).

$(\forall A \exists C)$ By enumerating all subsets of $n-1$ columns, we can construct a matrix C the rows c^{\top} of which correspond to all the hyperplans so that $c^{\top} A \geq \mathbf{0}^{\top}$ with at least $n-1$ equalities. By (3), $C a \geq \mathbf{0}$ if and only if $A x=a$ for some x.
$(\forall C \exists A)$ Given a matrix C, by above, there is a matrix B, and then a matrix D, so that

$$
\begin{aligned}
& \left\{c: y^{\top} C=c^{\top}, \exists y \geq \mathbf{0}\right\}=\{c: B c \geq \mathbf{0}\} \\
& \left\{b: y^{\top} B=b^{\top}, \exists y \geq \mathbf{0}\right\}=\{b: D b \geq \mathbf{0}\}
\end{aligned}
$$

It suffices to prove that $\{a: C a \geq \mathbf{0}\}=\left\{b: y^{\top} B=b^{\top}, \exists y \geq \mathbf{0}\right\}$.
\supseteq : For each row b^{\top} of B and each row c^{\top} of C, we have $0 \leq b^{\top} c=c^{\top} b$. Thus $C b \geq \mathbf{0}$, and it follows that $C\left(B^{\top} y\right) \geq \mathbf{0}$ for all $y \geq \mathbf{0}$.
\subseteq : For each row d^{\top} of D and each row b^{\top} of B, we have $0 \leq d^{\top} b=b^{\top} d$. Thus $B d \geq \mathbf{0}$ and so $d^{\top}=y^{\top} C$ for some $y \geq \mathbf{0}$. If $C a \geq \mathbf{0}$ then $0 \leq y^{\top} C a=d^{\top} a$; hence $D a \geq \mathbf{0}$ and it follows that $a^{\top}=z^{\top} B$ for some $z \geq \mathbf{0}$.

$$
\begin{equation*}
\{x: A x \leq a\}=\left\{x: B b=x, \exists b \geq \mathbf{0}: \mathbf{1}^{\top} b=1\right\}+\{x: C c=x, \exists c \geq \mathbf{0}\} \tag{5}
\end{equation*}
$$

meaning that every polyhedron is the sum of a polytope and a polyhedral cone. Indeed, the first term in the sum is the convex hull of the columns of B, and the second term is a finitely generated cone, so a polyhedral cone.

Proof of (5).

$(\forall A, a \exists B, C)$: Given a matrix $[A-a]$, by (4), there is a matrix D so that

$$
\left\{\binom{x}{\mu}: A x-\mu . a \leq \mathbf{0}, \mu \geq 0\right\}=\left\{\binom{x}{\mu}: D y=\binom{x}{\mu}, \exists y \geq \mathbf{0}\right\}
$$

Moreover, we can whose a matrix D of the form

$$
D=\left(\begin{array}{cc}
B & C \\
\mathbf{1}^{\top} & \mathbf{0}^{\top}
\end{array}\right)
$$

So $A x \leq a$ if and only if $\binom{x}{1}=D y$ for some $y \geq \mathbf{0}$. Which is equivalent to

$$
\binom{x}{1}=\binom{B b+C c}{\mathbf{1}^{\top} b} \quad \text { for } b \geq \mathbf{0} \text { and } c \geq \mathbf{0}
$$

$(\forall B, C \exists A, a)$: Given B, C, by (4), there is a matrix $[A-a]$ so that

$$
\left\{\binom{x}{\mu}:\left(\begin{array}{cc}
B & C \\
\mathbf{1}^{\top} & \mathbf{0}^{\top}
\end{array}\right) y=\binom{x}{\mu}, y \geq \mathbf{0}\right\}=\left\{\binom{x}{\mu}:[A-a]\binom{x}{\mu} \leq \mathbf{0}\right\}
$$

which, restricted to $\mu=1$ is equivalent to (5).

Another consequence of (3) is the so-called Farka's lemma:

$$
\begin{equation*}
(\exists x \geq \mathbf{0}: A x=a) \quad \Longleftrightarrow \quad\left(c^{\top} A \geq \mathbf{0}^{\top} \Rightarrow c^{\top} a \geq 0\right) \tag{6}
\end{equation*}
$$

meaning that a point a does not belong to a cone if and only if there is a hyperplane separating point a from the cone.
\Rightarrow : It follows from the exclusivity (X) in (3).
\Leftarrow : It follows from the (OR) in (3).

Farkas's lemma (6) has the two following different variants (7)-(8).

$$
\begin{equation*}
(\exists x \geq \mathbf{0}: A x \leq a) \quad \Longleftrightarrow \quad\left(c^{\top} A \geq \mathbf{0}^{\top} \text { and } c \geq \mathbf{0} \Rightarrow c^{\top} a \geq 0\right) \tag{7}
\end{equation*}
$$

Proof of (7).
$\Rightarrow:\left(A x \leq a, x \geq \mathbf{0}, c \geq \mathbf{0}\right.$ and $\left.c^{\top} A \geq \mathbf{0}^{\top}\right) \Rightarrow\left(0 \leq c^{\top} A x \leq c^{\top} a\right)$.
$\Leftarrow:$ There is a $x \geq \mathbf{0}$ so that $A x \leq a$ if and only if there is a $x \geq \mathbf{0}$ so that $[A I] x=a$. By (6), the later is equivalent to the fact that $c^{\top}[A I] \geq \mathbf{0}$ implies $c^{\top} a \geq 0$.

$$
\begin{equation*}
(\exists x: A x \leq a) \quad \Longleftrightarrow \quad\left(c^{\top} A=\mathbf{0}^{\top} \text { and } c \geq \mathbf{0} \Rightarrow c^{\top} a \geq 0\right) \tag{8}
\end{equation*}
$$

Proof of (8).
$\Rightarrow:\left(A x \leq a, c \geq \mathbf{0}\right.$ and $\left.c^{\top} A=\mathbf{0}^{\top}\right) \Rightarrow\left(0=c^{\top} A x \leq c^{\top} a\right)$.
$\Leftarrow:$ There is a x so that $A x \leq a$ if and only if there is a $x \geq \mathbf{0}$ so that $[A-A I] x=a$. By (6), the later is equivalent to the fact that $c^{\top}[A-A I] \geq \mathbf{0}$ implies $c^{\top} a \geq 0$.

The duality theorem of linear programming is a consequence of (7), it states that, if both polyhedra are nonempty, then the following equality holds:

$$
\begin{equation*}
\min \left\{c^{\top} x: A x \leq b, x \geq \mathbf{0}\right\}=\max \left\{y^{\top} b: y^{\top} A \geq c^{\top}, y \geq \mathbf{0}\right\} \tag{9}
\end{equation*}
$$

Proof of (9).

$\leq:$ If $y^{\top} A \geq c^{\top}$ and $x \geq \mathbf{0}$, then $c^{\top} x \leq y^{\top} A x$. If $A x \leq b$ and $y \geq \mathbf{0}$, then $y^{\top} A x \leq y^{\top} b$.
\geq : It suffices to prove that there are $x \geq \mathbf{0}$ and $y \geq \mathbf{0}$ so that

$$
\left[\begin{array}{cc}
A & O^{\top} \\
O & -A^{\top} \\
-c^{\top} & b^{\top}
\end{array}\right]\binom{x}{y} \leq\left[\begin{array}{c}
b \\
-c \\
0
\end{array}\right]
$$

where O is a zero matrix. By (7), this is equivalent to the fact that if there are $u \geq \mathbf{0}$, $v \geq \mathbf{0}$, and $\mu \geq 0$ so that $u^{\top} A \geq \mu \cdot c^{\top}$ and $A v \leq \mu . b$, then $u^{\top} b \geq v^{\top} c$. If $\mu>0$, then

$$
u^{\top} b=u^{\top}\left(\mu^{-1} \mu b\right) \geq u^{\top}\left(\mu^{-1} A v\right)=\mu^{-1}\left(u^{\top} A v\right) \geq \mu^{-1} \mu c^{\top} v=c^{\top} v
$$

If $\mu=0$, let $\bar{x} \geq \mathbf{0}$ and $\bar{y} \geq \mathbf{0}$ so that $A \bar{x} \leq b$ and $\bar{y}^{\top} A \geq c^{\top}$. Thus $u^{\top} b \geq u^{\top} A \bar{x} \geq 0$ and $c^{\top} v \leq \bar{y}^{\top} A v \leq 0$.

