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Abstract

A short proof is given of the impossibility of decomposing the complete graph
on n vertices into n-2 or fewer complete bipartite graphs.

Let G be a finite graph, and let V|, ..., V., be sets of vertices of G. Assume
that for each i, G; is a subgraph of G(V}), the subgraph induced by G on V;.
Assume furthermore that the G; are edge-disjoint and between them contain
all edges of G. Then Gy, .. ., G, form a decomposition of G. It was proved in
[1] that if G=K,, the complete graph on n vertices, and each G; is a
complete bipartite graph, then » > n — 1, This inequality is a consequence of
a theorem in [1], and in [2] it is remarked that the application of that theorem
still seems to be the only known way of proving it (a similar remark was made
in [1]). Below I give a direct proof. I thank K.P. Villanger for bringing the
problem to my attention.

Let the verticesof K, be 1,...,nandlet V;= 4, U B;,i=1,...,r, such
that the edges of G; are all the edges between 4; and B;. Let L; (M;) be the
polynomial ZX;; j € 4, (£X,;j € B;); Then, as the G, form a decomposition
of K,,, we have the equation

L XXyt X X LMo LM (1)
If r < n — 2 the set of homogeneous linear equations

Ll=L2= -~-=Lr=Xl+--c+A’”=0
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has a nontrivial real solution (ay,..., a,). But this gives, by (1), the
contradiction

0<a%+ ks +a§,=(al+ RO +a,,)2—2(a,a2+a,a3+ Loy +a,,_la,,)
=02 —2(0-My(a,,...,a) + +0-May,...,a,)=0.

It would still be nice to have a nonalgebraic proof, and also a treatment of
infinite complete graphs.
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