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Abstract

We study minimal forbidden structures which are sophisticated homologous of odd-cycles in signed
graphs. We start with the structures associated with bicliques, our approach turns out yet to be
more general. It links several complicated graph problems.
Our approach leads to a chromatic version of two well-known Gallai identities. Using these

identities we can move Lovász SDP relaxation toward the chromatic number and the LP relaxation
toward the clique number. This works for a special coloring problem as well, namely Max-Coloring.
We show a link between the stable set polytope and that of clique-connecting forests, which are at
the basis of the chromatic Gallai identities.
For another special coloring problem, namely the partition coloring problem, it is challenging to

have a nice characterization of conformality, that is, recognizing e�ciently clique-vertex matrices.
After proving that, for all 0-1 matrices coming from clustered graphs, a local conformality su�ces
to imply the total conformality, we characterize the graphs with a strong perfectness property
de�ned not only for graphs but for clustered graphs.
Concerning the edge-coloring problem we give a best-possible min-max relation describing the

edge-star polytope. Another min-max relation, involving multi�ows, is given for characterizing
series-parallel graphs, and it improves a previous one.
Finally, we investigate minimal forbidden structures coming from another �eld than graph theory,

namely election problems in social choice. We list some questions that we have left open.
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Chapter 1

Introduction

An hypergraph H = (E, C) is a clutter if no hyperedge contains another one. Take for instance, E
the edge-set of a graph and C its odd-circuits (considered as edge sets in this report).
Many combinatorial problems can be formulated as �nding

αw(H) := max{w>x : Ax ≤ 1, x ≥ 0, x integer} (packing)
or τw(H) := min{w>x : Ax ≥ 1, x ≥ 0, x integer} (covering)

where A is the incidence matrix1 of a clutter H. Also, algorithms designed to solve combinatorial
problems can include subroutines, such as cutting-plane or column generation, solving a subprob-
lem with such a formulation.

Today, the main questions2 are solved concerning αw(H) but only partially solved concerning
τw(H) and even then only if H is binary, see [10, 24, 25, 37], and, for a very recent survey, see [4].
A lot of results of optimization in graphs, including on max-cut see [3, 37], or on graph coloring,
are uni�ed under this so-called packing/covering framework.
Some other complicated graphs problem, as �nding a maximum vertex-induced (or complete)

bipartite subgraph, seem to escape this framework. So does any problem which consists in maxi-
mizing the linear weight w(B) :=

∑
e∈B we over particular subsets B of edges which are not de�ned

from an hereditary property. In fact, several of these problems can be linked together by minimal
forbidden structures, which are sophisticated homologous of odd-circuits in signed-graphs. All of
them are NP-hard. Some are also theoretically di�cult in the sense that they consist, essentially,
in �nding τw(H) for some non-binary H where, except for trivial classes, the continuous relaxation
for τw(H) is fractional.

The graph coloring problem has a natural covering formulation but it is not clear which poly-
nomial size formulation is the most natural. When we apply the approach for nonhereditary
problems to the particular edge clique-partition problem, it lead us to a way of removing edges of
the line-graph L(G) of G so that the stable sets of the remaining subgraph of L(G) are in 1-to-1

1The incidence matrix of H = (E, C) is the matrix A with row set C, column set E, and entries

AC,e =

{
1 if e ∈ C
0 if e /∈ C (each row is the characteristic vector χC of C ⊆ E)

2The �main questions�, for a linear system (P ) := {Ax ≤ b} in general, are to characterizing when

• the polyhedron P := {x : Ax ≤ b} is integer, that is,

max{w>x : x ∈ P} = max{w>x : x ∈ P, x integer} (∀w)

• the system (P ) is totally dual integral (for short, TDI), that is,

min{y>b : y>A ≥ w>} = min{y>b : y>A ≥ w>, y integer} (∀w integer, when feasible)

(If b is integer and (P ) is TDI, then P is integer).
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correspondence with the colorings of G. This gives a natural packing formulation for the coloring
problem which extends to the special Max-coloring problem as well. In fact, we obtain a chromatic
version of two well-known Gallai identities. Using these identities we can move the polynomial
SDP relaxation by Lovász (see [32]) toward the chromatic number, and the LP relaxation toward
the clique number.
For the continuous relaxation of αw(H), integrality and TDIness coincide, and it happens only

when A is conformal3. This can be checked in a time polynomial in the size of A but for the
special partition-coloring problem, the matrix A is encoded by a clustered graph. We will study
the conformality of such matrices.

Most of the time, the polyhedron de�ned by the continuous relaxation of αw(H) or τw(H) is
not integer but, when the problem is polynomial, one can sometimes cut-o� all fractional extreme
points by adding speci�c valid inequalities. The seminal success for this so-called polyhedral
approach was the work of Jack Edmonds for αw(H) when H is a line-graph, or in other words, for
the matching problem, and it was extended to H a quasi line-graph in [26]; which tends to show
that easy problems have a nice linear description. As the matchings, the stars are very natural
objects to look at. Surprisingly, a linear description of the so-called substar polytope is given only
for bipartite graphs in the giant book by Schrijver [37] (see the very last subject at page 1871 in
the index).
Note that, even if the relaxation is integer, the linear system might not be TDI. Moreover, a TDI

system leads to a so-called min-max theorem that might not be best-possible if the system is not
minimally-TDI4. One can make the linear system become minimally-TDI by adding well-chosen
redundant inequalities like Seb® [38] for τw(H) when H is the T -cut clutter of a graft (G,T ).
We will give a TDI system leading to a best-possible min-max theorem describing the (sub) star

polytope. Another TDI system will be given which describes the multicut polytope and allows to
improve a previous characterization of series-parallel graphs.

Our work raised many questions including that of exporting the approach by forbidden structures
to other �elds than graph theory, such as election problems in (computational) social choice theory
(see [7] for an introduction to this �eld).

3A matrix is called conformal if it is the incidence matrix of the cliques of some graph, see [24] (Theorem 3.9,
p. 39) or [37] (Theorem 82.2, p. 1431) for a characterization.

4That is, any proper subsystem which describes the same set is not TDI, see Chapter 22.3, p. 315 in [36].
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Chapter 2

Minimal forbidden structures in

linear programs

For a survey on the minimum biclique cover problem see [34], for recent results and applications
(e.g. biology) see [1]. We reveal the structure associated to this problem which allows to formulate
it naturally. A strong link with the clique number makes the structure interesting for itself,
moreover, it is algorithmically under control. This will give in fact a general method.

2.1 The minimum biclique cover problem

Let G = (V,E) be a simple undirected graph and let us denote by Kp,q the complete bipartite
graph with p and q vertices on each side. Figure 2.1 shows (a) K2,2 with two isolated vertices
(ignore the bold edges for now), (b) K2,3 with one isolated vertex, and (c) K3,3.

(e)

(c)(a) (b)

(d) (f)

Figure 2.1: Biclique and non-biclique sets

The minimum biclique cover problem (BIC, for short) is to �nd a minimum collection of complete
bipartite partial subgraphs of G which covers the edge-set of G (that is, each edge must be in at
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least one subgraph). The graph of Figure 2.1(d) for instance can be covered using a K1,2 (dot
lines) and a K2,2 (bold lines) disjoint, and covering the seven remaining edges with a K3,3 (two
edges of which are already covered).

De�nition 1 Given a graph G = (V,E), a subset B ⊆ E is a biclique set of G if there is a
complete bipartite partial subgraph of G with edge set E′ ⊆ E such that B ⊆ E′.

For instance in Figure 2.1(a)-(c) the set of edges in bold is a biclique set included in a K2,2, a K2,3,
and a K3,3, respectively. Solving BIC amounts to cover, or equivalently to partition, the edge-set
of G into a minimum number of biclique sets. So Figure 2.1(d) shows a partition into three biclique
sets (one in dot lines, one in bold lines, the last in normal lines).
The minimum biclique cover problem has been mainly studied in bipartite graphs and few was

known about the general case. In bipartite graphs, and in fact in triangle-free graphs, BIC is a
particular case of the graph coloring problem because of the following property:

Fishburn and Hammer's theorem [27] Let G = (V,E) be a triangle-free graph. A subset
B ⊆ E is a biclique set if and only if every subset B′ ⊆ B with |B′| = 2 is a biclique set.

In the auxiliary graph B(G) with vertex set V (B(G)) = E(G) where two vertices e, f ∈ E(G)
are linked if {e, f} is not a biclique set (that is, e and f are neither adjacent, nor in a same C4),
then the stable sets of B(G) and the biclique sets of G are in one-to-one correspondence, and hence
χ(B(G)) is the solution of BIC. If G is a triangle, then χ(B(G)) = 1 but we need two bicliques to
cover G. In essence, Fishburn and Hammer's theorem is a characterization of all graphs for which
we can be sure that χ(B(G)) equals the minimum number of bicliques for covering G.
Fishburn and Hammer said in [27]: �The situation is substantially complicated by the presence

of triangles, and we do not pursue the matter here.� For instance any three edges among the set
B = {12, 34, 56, 78} in the 8-antihole H8 of Figure 2.2(c) (the four edges in bold) form a biclique
set, e.g. B′ = {12, 34, 56} is contained in the complete bipartite subgraph induced by {135, 246}.
However, no complete bipartite subgraph contains B, e.g. the bipartite subgraph induced by
{1357, 2468} is not complete. Similarly, in Figure 2.2(a)-(b), the set of the edges in bold is not in
some biclique while any proper subset of this set is.
The following generalizes Fishburn and Hammer's theorem to all graphs:

Theorem 1 (C. and Fonlupt [16]) Let G = (V,E) be a graph. A subset B ⊆ E is a biclique
set if and only if every subset B′ ⊆ B with |B′| ≤ ω(G) is a biclique set. (ω is the clique number)

In Figure 2.2(c), since |B| = 4 = ω(H8), the theorem predicted that B might not be a biclique
set although every subset of cardinality < 4 was. The proof of Theorem 1 (radically di�erent from
the case-checking approach of [27]) has three steps.

The �rst step is the recognition of biclique sets. The main de�nition of this chapter is:

De�nition 2 Let B ⊆ E be a subset of edges of G = (V,E) with vertex set V (B) ⊆ V and let

E[V (B)] := {uv : u, v ∈ V (B), u 6= v, uv /∈ E}

The rooted graph of (G,B) is the graph with vertex-set V (B) and edge-set B ∪ E[V (B)].

Figure 2.1(f) shows the rooted graph corresponding to set of bold edges B of Figure 2.1(e).
Now the key idea is:

The biclique lemma. Let B ⊆ E be a subset of edges of G. Then B is a biclique set if and only
if the rooted graph of (G,B) has no cycle C with |C ∩B| odd.

One can check that the set B of bold edges in Figure 2.1(e) is not a biclique-set (it is a non-
biclique set).
The biclique lemma follows from two points:
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1. The extremities of an edge in B must be in di�erent sides of the complete bipartite graph
they belong to, while

2. The extremities of an edge in E[V (B)] must be in a same side (because of the completeness).

So if we contract the edges in E[V (B)] in the rooted graph, one should get a bipartite graph.
Triangles complicated indeed the situation because the set C of the three edges of a triangle

form a minimal non-biclique set, that is, C is not a biclique set but any of its proper subsets is a
biclique set.

(d)
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(b)(a) (c)

(f)(e)

Figure 2.2: Minimal non-biclique sets and their rooted graphs

In a general graph G = (V,E), BIC amounts to �nding the chromatic number χ(H) of the clutter
H = (E, C) where C is the set of all minimal non-biclique sets of G. So, H is a graph if and only if
ω(G) ≤ 2, by Fishburn and Hammer's theorem. Observe that, if G = K2k+1 is a complete graph
of odd order, then the edge-set of any Hamiltonian circuit C2k+1 of G is a minimal non-biclique
set. So Theorem 1 is best-possible.
Odd-circuits inducing cliques are not the only minimal non-biclique sets. Take for instance the

three edges in bold in the prism graph of Figure 2.2(a) or that in the fan graph of Figure 2.2(b).
The four edges in bold of Figure 2.2(c) form a minimal non-biclique set as well. Their rooted
graphs are represented, respectively, in Figure 2.2(d)-(f).

The second step in the proof of Theorem 1 is to describe the structure of the rooted graphs
of a minimal non-biclique set B. For this we consider a cycle C of the rooted graph of (G,B)
with |C ∩ B| maximum. For instance, in Figure 2.2, C has vertex-sequence (a) 1, 2, 3, 4, 5, 6, (b)
1, 2, 3, 4, 5, and (c) 1, 2, 4, 3, 5, 7, 8. We prove that then:

(i) The edges in B \ C form a matching disjoint from edges in B ∩ C, and

(ii) Any edge of the rooted graph not belonging to C ∪B is either:
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(a) a diagonal, that is, a chord of C of the form of 14 in Figure 2.2(c);

(b) a short-chord, that is, a chord of C of the form of 35 in Figure 2.2(d); or

(c) a wing, that is, an edge of the form 46 in Figure 2.2(e).

The last step of the proof is to �nd in the rooted graph a subset of vertices of size |B| which is
a clique in the original graph of G. Figure 2.3 shows the rooted graph of a minimal non-biclique
set where, in the original graph G, the white vertices form a clique of size |B|.

Figure 2.3: The clique of size |B| of a minimal non-biclique set B

2.2 A general method: Separation algorithms

Let G = (V,E) be a graph and let B = {B1, . . . , B|B|} be a set of edge subsets Bi ⊆ E.
The problem of covering E with sets in B can be formulated naturally by

min{y>1 : y>A ≥ 1>, y ≥ 0, y integer} where A is the incidence matrix of the clutter (E,B)

The matrix A may have exponentially many rows and, since the objective function is unit,
the pricing problem of the relaxation amounts to �nding some B ∈ B maximizing µ̄(B) for a
nonnegative weight vector µ̄ ∈ QE+.

De�nition 3 Given B, we denote C(B) the set of all C ⊆ E such that no B ∈ B contains C but
there exists a B ∈ B which contains C ′, for every proper subset C ′ ⊂ C.

Well-known instances are

• if B is the set of bipartite subgraphs, then C(B) is the set of odd-circuits; and

• if B is the set of forests, then C(B) is the set of circuits.

In general, unlike these two well-known instances, the collection B is not hereditary. It follows
that a set B′ containing no C ∈ C(B) is not necessarily in B. However, B′ ⊆ B for some B ∈ B,
hence �nding a maximum B ∈ B is equivalent to �nding a maximum B′ containing no C ∈ C(B).

Thus the pricing is to �nd a minimum T intersecting all C ∈ C(B) which is formulated by

min{1>x : Mx ≥ 1, x ≥ 0, x integer} where M is the incidence matrix of (E, C(B))

7



The matrix M has exponentially many rows. The following theorem shows that the separation
problem of the relaxation is polynomial for several types of set B.

Theorem 2 (C. and Fonlupt [16], C. [12], C. and Mahjoub [21]) Let G = (V,E) be a graph,
let B be some set of edge subsets of G, and let x̄ ∈ QE+ be a cost vector. The problem of �nding a
set C ∈ C(B) minimizing its cost x̄(C) can be solved in a polynomial time when B is de�ned as the
set of

(a) edge sets of complete bipartite subgraphs of G,

(b) edge sets of complete multipartite subgraphs of G,

(c) edge sets of vertex-induced bipartite subgraphs of G.

In the proof, after characterizing the minimal structures (as explained in the next section), we
build an auxiliary graph A(B) of order O(|V |). Of course A(B) is speci�c to the particular problem
studied, but each time it allows then to reduce the separation problem to a shortest path problem.

Theorem 2 shows that ideas that were developed to study bicliques can be applied to other
problems. One of the main tool for bicliques was that sophisticated concept of odd-circuit of
Figure 2.3. There is a sophisticated concept of loop which appears useful to study complete
multipartite subgraphs. This is explain in the next section.

2.2.1 Maximum complete multipartite subgraph

Let us denote by Kp1,...,pq the complete multipartite graph with q shores of size p1, . . . , pq. Call
complete multipartite any graph which is (isomorphic to) Kp1,...,pq for some q. For instance the
graph which appears in Figure 2.1(d)-(e) was K1,1,2,2 (this graph is redrawn in Figure 2.4(a) where
it can be seen complete multipartite by taking {12; 34; 5; 6} as vertex-partition).

(c)(b)(a)
3

4

5

6

1

2

Figure 2.4: Multiclique and non-multiclique sets

De�nition 4 A subset B ⊆ E is a multiclique set of G = (V,E) if B ⊆ E′ where (V (E′), E′) is
a complete multipartite partial subgraph of G.

So every subset of edge in Figure 2.4(a) is a multiclique set. Let us remove some edges. Is the
subset B of edges in bold in Figure 2.4(b) a multiclique set ? The answer is given by the key
observation of [12]:

The multiclique lemma. Let B ⊆ E be a subset of edges of G. Then B is a multiclique set if
and only if the rooted graph of (G,B) has no cycle C with |C ∩B| = 1.

8



Looking at its rooted graph in Figure 2.4(c) one can conclude, using the multiclique lemma, that
the set B of Figure 2.4(b) is not a multiclique set.

The proof of the multiclique lemma follows the same lines as that of the biclique lemma except
that after contracting the edges in E[V (B)] in the rooted graph one should get, not a bipartite
graph, but a multipartite graph, that is a graph without loop. (So in a sense, the concept of loop
is here as useful as that of odd-cycle).
Recall that Fishburn and Hammer's theorem says that triangle-free graphs is exactly the class of

graphs in which we are sure that the minimum number of complete bipartite subgraphs needed for
covering the edge-set is equal to χ(B(G)). Theorem 3 below, which o�ers a second generalization
of Fishburn and Hammer's theorem, characterizes the class of graphs for which we know that the
minimum number of complete multipartite subgraphs needed for covering the edge-set is equal to
χ(B(G)).
We proved Theorem 3, by using a complete description of the structure of rooted graphs of

minimal non-multiclique sets (as for the proof of Theorem 1 with minimal non-biclique sets).
Figure 2.5 shows such a rooted graph.

Figure 2.5: Rooted graph of a minimal non-multiclique set

A graph is {fan,prism}-free if none of its induced subgraph is isomorphic to the graph of Fig-
ure 2.2(a) (the prism) or to the graph of Figure 2.2(b) (the fan). We used fully the description to
prove that:

1. If G has a minimal non-multiclique set C with |C| ≥ 3, then G has minimal non-multiclique
set D with |D| = |C| − 1; and

2. If G has a minimal non-multiclique set C with |C| = 3, then G has either a fan or a prism
as induced subgraph.

This clearly implies Theorem 3.

Theorem 3 (C. [12]) The cardinality of any minimal non-multiclique set of G is two if and only
if G is a {fan,prism}-free graph.

Theorem 3 is indeed a generalization of Fishburn and Hammer's result since:
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1. Every triangle-free graph is {fan,prism}-free;

2. In a triangle-free graph, biclique sets and multiclique sets coincide.

2.2.2 Vertex-induced subgraphs with edge-weight

Maximum induced bipartite subgraph with edge weight

Given a graph G = (V,E) with edge weight w ∈ ZE , the maximum induced bipartite subgraph
with edge weight problem is to �nd a vertex-induced bipartite subgraph (V ′, E(V ′)) maximizing
w(E(V ′)).
This problem can be linked to the problem of �nding a maximum biclique set, together with

Ridha Mahjoub, we give �rise to some structural relations between [...] both problems" in [21]. The
general idea is that, if the edge-weights are non-negative, we are looking for a maximum induced-
bipartite set, that is, a subset B of edges such that B ⊆ E′ where (V (E′), E′) is an induced bipartite
subgraph of G (i.e., E′ = E(V (E′))).

The structure of a subgraph G[V (B)] induced by the vertex-set V (B) of minimal non-induced-
bipartite set B has some similarity with the rooted graphs of a minimal non-biclique sets where
E(V (B)) \B plays a role similar as E(V (B)). Formally, a minimal non-induced-bipartite set is a
subset B ⊆ E such that:

(α) G[V (B)] contains an odd-cycle,

(β) for every odd-cycle C of G[V (B)] and for every edge e of B, there exists a vertex v of C
which is an extremity of e and of no other edge in B.

Indeed, if (β) holds, then for every odd-cycle C of G[V (D)] there is a vertex v which does not
belong to the subgraph G[V (B \ {e})], and hence, G[V (B \ {e})] is bipartite, for any e ∈ B. Oth-
erwise, if (β) does not hold, there are an edge e ∈ B and an odd-cycle C any vertex v of which
belongs to G[V (B \ {e})], and hence B \ {e} is not bipartite, hence B is not minimal.

Let G = (V,E) be the graph on vertex-set {1, . . . , 6} with edge-set composed of a 5-cycle
12, 23, 34, 45, 15 and a pending edge 16, as in Figure 2.6.(a).
If the weight is one for edges 16, 23, 45, and zero for all other edges, then an integer quadratic

formulation for this instance of our problem is

max x1x6 + x2x3 + x4x5

x1 + . . .+ x5 ≤ 4
0 ≤ x1, . . . , x6 ≤ 1

x1, . . . , x6 integer

A classic approach is then to apply the so-called (RLT1) Sherali-Adams linearization [40] to its
relaxation; one obtains

max y16 + y23 + y45

4x1 + x2 + x3 + x4 + x5 − 4 ≤ y12 + y13 + y14 + y15 ≤ 3x1
x1 + 4x2 + x3 + x4 + x5 − 4 ≤ y12 + y23 + y24 + y25 ≤ 3x2
x1 + x2 + 4x3 + x4 + x5 − 4 ≤ y13 + y23 + y34 + y35 ≤ 3x3
x1 + x2 + x3 + 4x4 + x5 − 4 ≤ y14 + y24 + y34 + y45 ≤ 3x4
x1 + x2 + x3 + x4 + 4x5 − 4 ≤ y15 + y25 + y35 + y45 ≤ 3x5

x1 + x2 + x3 + x4 + x5 + 4x6 − 4 ≤ y16 + y26 + y36 + y46 + y56 ≤ 4x6

xi + xj − 1 ≤ yij ≤ xi, xj (1 ≤ i < j ≤ 6)

0 ≤ x1, . . . , x6 ≤ 1

10



It admits the following feasible solution leading to a value 7
3 for the objective function

x1, x6, y16 = 1

x2, . . . , x5, y12, . . . , y15, y26, . . . , y56, y23, y45 = 2
3

all other variables = 1
3

(see Figure 2.6.(b))

(a)

1 2/3 1/3 0

(c)(b)

1 6

2

34

5

Figure 2.6: Sherali-Adams vs. minimal structures

A natural pure edge formulation is
max w>y

y(D) ≤ |D| − 1 for each minimal non-induced-bipartite set D

y ∈ {0, 1}E

For our particular example, it is stronger than Sherali-Adams since 7
3 > 2 = |D| − 1 with

D = {16, 23, 45}. Note that to handle arbitrary weights it su�ces to add the constraints

ysu − yuv + yvt ≤ 1 for su, uv, vt ∈ E (with possibly s = t)

There is another pure edge formulation if, instead of the minimal non-induced-bipartite set
inequalities, one uses

y(C) ≤ |C| − 2 for each odd-cycle C

If now we change the objective function of our example and we maximize y(C = {12, 23, 34, 45, 15}),
then it is stronger than Sherali-Adams since |C| − 2 = 3 < 10

3 which is achieved with

x6, y16, . . . , y56 = 0

x1, . . . , x5, y12, y23, y34, y45, y15 = 2
3

all other variables = 1
3

(see Figure 2.6.(c))

Both pure edge formulations cannot be compared to Sherali-Adams but they both dominates
the basic linearizations by Glover and Woolsey [30], and by Glover [29]. (They are contained in
the projection onto the y-space).

Minimal arcs sets vertex-inducing dicycles

In (α)-(β), if we replace �odd-cycle� by �cycle�, then B becomes a minimal subset of edges the
vertices of which induce a graph which is not a forest. Induced trees have been studied in [11].
Among all the minimal structures we studied, except for minimal non-co-multiclique sets, the

minimal non-induced-forest sets are the most easy to describe.

11



v

15

35

51 10

2025

v v

v

vv

v

v

30

4 8

24 2026

w w

www

Figure 2.7: A minimal arc-set vertex-inducing a dicycle

In contrast, if one considers directed graphs and if replace everywhere �cycle� by �dicycle�, one
gets a rich structure of minimal forbidden arc sets C, see [20]. A digraph induced by the vertices
of C is depicted by Figure 2.7 where the arcs outside C are in dot lines.

2.2.3 Disjoint cliques

Call co-biclique set of G = (V,E) any subset B ⊆ E contained in the edge set of a Kp +Kq, that
is, two vertex-disjoint complete subgraphs of G. In [13], we used the following lemma whose proof
is similar to that of the biclique lemma.

The co-biclique lemma. Let B ⊆ E be a subset of edges of G. Then B is a co-biclique set if
and only if the rooted graph of (G,B) has no cycle C with |C \B| odd.

The structure of the rooted graph of a minimal non-co-biclique set is close to that of rooted graphs
of minimal non-biclique sets but with other types of edges allowed. (So it is slightly more complex).

Now call co-multiclique set of G = (V,E) any subset B ⊆ E contained in the edge set of several
vertex-disjoint complete subgraphs of G. One has a co-multiclique lemma similar to the multiclique
lemma.

The co-multiclique Lemma. Let B ⊆ E be a subset of edges of G. Then B is a co-multiclique
set if and only if the rooted graph of (G,B) has no cycle C with with |C \B| = 1.

Observe that the rooted graph of a minimal non-co-multiclique set B must be exactly a cycle
with one edge in E, that is, G[V (B)] is isomorphic to K|B|+1 \ e. This structure is very simple in
comparison with all other similar structures of this chapter. (Because of its simplicity it has no

12



interest for itself, and the separation problem reduces trivially to �nding a minimum length path,
however, it has led us to di�erent things related to graph coloring and to multi�ows that we will
explain in the next chapters).

To conclude this chapter, we make a short remark about applying the approach to any covering
problem with a pure quadratic objective function and a polynomial number of constraints, that is,
of the form

(QCOV)


min

∑
i<j

wijxixj

Ax ≥ 1
x ∈ {0, 1}n

where w is non-negative and A is a 0-1 matrix with a polynomial number of rows.
Let be the graph G = (V,E) where V = {1, . . . , n} and E = {ij with wij > 0}. Given a row

a>x ≥ 1 of (QCOV), de�ne Va := {v ∈ V : av = 1}.
Observe that (QCOV) amounts to �nding τw(H) for the clutter H = (E, C) where C ∈ C if there

is a Va such that C is a minimal subset of edges spanning Va. The separation problem for the
relaxation of τw(H) amounts to a �nding a minimum cost C. Here it is the particular case of the
b-edge cover problem where b ∈ {0, 1}V instead of b ∈ ZV+. Thus it can be solved in a polynomial
time (see [37], Theorem 34.15 p. 581).

13



Chapter 3

Graph coloring

Let be a simple connected graph G = (V,E).
An edge-clique partition of G is a subset E′ ⊆ E induced by a clique partition of V , that is, of

the form E′ = E(V1) ∪ . . . ∪ E(Vp) where V1, . . . , Vp is a partition of V into nonempty cliques.
For instances see the set of bold edges in Figure 3.1.(a) and (d). (Notice that if Vi is a singleton,

then E(Vi) = ∅).
It is easily seen that B ⊇ E′ is contained in some edge-clique partition E′ ⊆ E if and only if the

rooted graph of (G,B) has no cycle C with |C \B| = 1. Suppose that, moreover, B has no cycle,
so B is a forest every tree of which spans a clique of G. It follows that the connected components
of (V,B) induces a partition of V into |V | − |B| cliques, and in fact a partition into cliques. If |B|
is maximum, then

χ(G) = |V | − |B| (Recall that χ(G) = χ(G))

Since B can be de�ned as a subset without forbidden structures, the chromatic number is
expressed this way as the stability number of a clutter. It appears surprisingly that one can use a
clutter which is in fact a graph and that the colorings are in 1-to-1 correspondence with the stable
sets of this graph. This is explain in the next section.

3.1 The chromatic Gallai identities

A forest of G each tree of which spans a clique de�nes a clique partition of G (that is, a coloring
in the complementary graph). In order to have a 1-to-1 correspondence between special forests

and clique partitions one chooses, arbitrarily, an orientation ~G of G such that no clique contains a
directed cycle (equivalently, ~G has no directed 3-cycle).

In ~G, an out-star is a set of arcs all of which have the same tail and an out-stellar forest is the
vertex-disjoint union of out-stars.
Since no clique of ~G has a dicycle, given a clique K of G, there is exactly one out-star of ~G

spanning K and so there is a 1-to-1 correspondence between the clique partitions of G and the
simplicial stellar forests of ~G, that is, an out-stellar forest of ~G the out-stars of which spans
cliques. (The cliques of size one correspond to empty out-stars.) Take for instance the edge-clique
partition of Figure 3.1.(a) and its associated simplicial stellar forest in the orientation chosen in
Figure 3.1.(b). See also Figure 3.1.(d) and (e).

De�nition 5 Let ~G be a orientated graph. A pair of arcs {e, f} is simplicial if

1. e and f have the same tail;

2. the heads of e and f are linked by an arc.

The sandwich line-graph S(~G) of ~G is the graph with vertex-set the arc-set of ~G where two vertices
are linked if they correspond to adjacent arcs which are not simplicial.

14



A stable set of S(~G) necessarily corresponds to a simplicial stellar forest of ~G. So we have a

1-to-1 correspondence between clique partitions of G (colorings of G) and stable sets of S(~G). Take
for instance the simplicial stellar forest of Figure 3.1.(b) and its stable set de�ned by the white
vertices in Figure 3.1.(c). Similarly see Figure 3.1.(e) and (f).

(e)

(c)(b)

(f)

(a)

(d)

Figure 3.1: 1-to-1 correspondences between clique partitions of G, simplicial stellar forests of ~G
and stable sets of S(~G)

Thus for any partition into p cliques of G and its corresponding stable set S in ~G, we have

p+ |S| = |V (G)|,

and in particular χ(G) = |V (G)| − α(S(~G)). Surprisingly, we also have α(G) = |V (G)| − χ(S(~G))
even if, this time, there are no 1-to-1 correspondence between the stable sets of G and the clique
partitions of ~G. Indeed, if G = K2, then G has three stable sets but S(~G) has only one clique-

partition (since ~G = K1).
To see why this identity also holds let us de�ne:

De�nition 6 Let ~G be a orientated graph. A set S of arcs is an anti-simplicial star of ~G if there
exists a vertex v, called the center of S, such that:

1. for all e ∈ S, then v is either the tail or the head of e;

2. for all e, f ∈ S with tail v, then the heads of e and f are not linked.
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An anti-simplicial stellar partition of ~G is a partition of the arc-set of ~G into anti-simplicial stars.

Given a vertex-cover T of ~G, associate to any vertex v ∈ T the anti-simplicial star A(v) composed
of all arcs entering v and all arcs from v to a vertex outside T . For instance the anti-simplicial
star of ~G in Figure 3.2.(b) is uniquely de�ned by its center v ∈ T where the set T is de�ned by the
black vertices. With the same center but a di�erent set T of black vertices, we obtain for instance
the anti-simplicial star of Figure 3.2.(e).

Since T is a vertex-cover, the union of all A(v), v ∈ T is an anti-simplicial stellar partition of ~G.

The anti-simplicial stellar partition of ~G and the clique partitions of S(~G) are in 1-to-1 corre-
spondence. Figure 3.2.(c) shows the clique partition corresponding to the anti-simplicial stellar
partition de�ned by the vertex-cover T of Figure 3.2.(a) and the orientation of Figure 3.2.(b). See
also Figure 3.2.(d)-(f).

(d)

(a) (b) (c)

(f)(e)

Figure 3.2: Surjection from stable sets of G onto anti-simplicial stellar partitions of ~G which are
in 1-to-1 correspondences with the clique partitions of S(~G)

Finally, it is not di�cult to see:

Theorem 4 (Chromatic Gallai identities) (C. and Jost [19], C. and Meurdesoif [22])

Let G be a simple graph. For any orientation ~G of G without 3-dicycle, then

α(G) + χ(S(~G)) = |V (G)| = α(S(~G)) + χ(G)

where S(~G) is the sandwich line-graph of ~G.
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One can check the Chromatic Gallai identities in the graph ~G of Figure 3.1-3.2:

α(G) = 3 χ(S(~G)) = 5 |V (G)| = 8 α(S(~G)) = 5 χ(G) = 3

The name �Chromatic Gallai identities� comes from the classical Gallai identities

α(G) + τ(G) = |V (G)| = ν(G) + ρ(G)

which can be written
α(G) + χ(L(G)) = |V (G)| = α(L(G)) + χ(G)

if G is triangle-free, where L(G) is the line-graph which coincide in this case with S(~G).

The next section shows why Chromatic Gallai identities are interesting for mathematical pro-
gramming (SDP and LP).

3.2 Improving Lovász ϑ number

The main application for the chromatic Gallai identities is to improve Lovász theta lower bound
for coloring.
A graph parameter β associating a real number β(G) to any graph G is called sandwich if

α(G) ≤ β(G) ≤ χ(G) for all graph G

The most natural sandwich parameter is the fractional clique-covering number χf (G) which is
the optimum of the LP relaxation

χf (G) := max{1>x : Ax ≤ 1, x ≥ 0} where A is the clique-vertex matrix of G.

For instance, Figure 3.3.(b) shows a primal solution for χf ≥ 3.75 and Figure 3.3.(e) shows a dual
solution for χf ≤ 3.5.
Since χf (G) is NP-hard to compute, Lovász number ϑ(G) is the most interesting sandwich

parameter. Indeed, it can be computed in polynomial time using SDP. There are several sandwich
parameters but all that are computable in polynomial time are close to ϑ. (Unless considering
hierarchies).

De�nition 7 For any graph parameter β, let

Φβ(~G) := |V (G)| − β(S(~G))

where G is any graph and ~G is any orientation without 3-dicycle of G. If no orientation ~G is
given, then Φβ(G) is de�ned, not uniquely, as

Φβ(G) := |V (G)| − β(S(G))

where S(G) is any sandwich graph of G.

The chromatic Gallai identities implies that Φα = χ and that Φχ = α, moreover, Φβ is sandwich
for any sandwich graph parameter β, that is

α(G) ≤ β(G) ≤ χ(G) ∀G =⇒ α(G) ≤ Φβ(G) ≤ χ(G) ∀G

Theorem 5 (C. and Meurdesoif [22]) The operator Φ moves the fractional chromatic number
toward the stability number and it moves Lovász number toward the clique-partition number. More
precisely,

α(G) ≤ Φχf
(G) ≤ χf (G) and ϑ(G) ≤ Φϑ(G) ≤ χ(G) (for all graph G)
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In order to prove the above theorem, one needed a practical formulation for ϑ, similar to what we
already have for χf . Using the formulations of [33, 31] and classic tools, such as Gram's theorem
and the Shur complement, we proved that for any graph G = (V,E)

max
∑
v ‖xv‖2

s.t. ‖xo‖2 = 1
x>o xv = ‖xv‖2 (∀v)
x>u xv = 0 (∀uv ∈ E)

 = ϑ(G) =


min ‖yo‖2
s.t. ‖yv‖2 = 1 (∀v)

y>o yv = 1 (∀v)
y>u yv = 0 (∀uv /∈ E)

Note that Theorem 5 holds for any chosen orientation ~G of G. The choice of ~G may impact
drastically the transformation of the value by Φ.
To see this, suppose that G = W5 is the 5-wheel and let ~G1 be the orientation of Figure 3.3.(a)

and ~G2 be the orientation of Figure 3.3.(d). The sandwich line-graphs, S(~G1) in Figure 3.3.(b) and

S(~G2) in Figure 3.3.(e) are di�erent, moreover, χf (~G1) 6= χf (~G2) implies Φχf
(~G1) 6= Φχf

(~G2).

This works with other graph parameters. Let χ′f be the LP de�ning χf strengthen with the odd-

cycle inequalities. Figure 3.3.(c) shows a primal solution for χ′f (S(~G1)) ≥ 3.5 (since 1
2 + 1

3 + 1
6 = 1)

and Figure 3.3.(f) shows a dual solution for χ′f (S(~G2)) ≤ 3 (since the 5-cycle costs 2).

1/2

1/2

1/2

1/2

1/21/2

1/4 1/4

1/41/4

1/4

(d)

(b)(a)

(e)

(c)

(f)

1/2

1/6

1/3

1/2 1/3

1/3

1/6

1/6

1/6

1/2

2

11

1/2

1/2

1/2

1/2

Figure 3.3: Two orientations leading to di�erent values for Φχf
and Φχ′

f

Finally, the operator Φ has led to the following values:

α(G) χ′f (G) Φχf
(~G1) Φχf

(~G2) = χf (G) = Φχ′
f
(~G1) Φχ′

f
(~G2) = χ(G)

2 2.2 2.25 2.5 3

Observe that χ′f which is a good bound for α has led to the exact value of χ using Φ with the

orientation ~G2. Since ϑ is known to be also a good bound for α, one could use Φ to obtain a good
polynomial bound for χ. This indeed happens for Mycielski graphs as showed by Table 3.1.
With random graphs the interest of Φ seems to decrease with the size of the graph, see Table 3.2.
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|V | |E| ϑ χf minΦϑ meanΦϑ maxΦϑ minρ meanρ maxρ

M3 5 5 2.236 2.5 − 2.764 − − 23.6% −
M4 11 35 2.400 2.9 3.024 3.054 3.088 26.8% 27.3% 28.7%

M5 23 182 2.529 3.245 3.200 3.228 3.274 26.5% 27.6% 29.5%

M6 47 845 2.639 3.553 3.326 3.372 3.417 26.0% 27.8% 29.5%

Table 3.1: Experimental results with ratios ρ := (Φϑ − ϑ)/ϑ for Mycielski graphs.

|V | dens ϑ minΦϑ meanΦϑ maxΦϑ minρ meanρ maxρ
9 0.5 3.22 3.58 3.65 3.71 11.2% 13.4% 15.2%
10 0.5 3.28 3.61 3.66 3.70 10.0% 11.6% 12.8%
10 0.3 4.24 4.60 4.69 4.76 8.5% 10.6% 12.3%
15 0.3 5.43 5.90 5.94 5.98 8.7% 9.4% 10.1%

Table 3.2: Experimental results with ratios ρ for random graphs.

3.3 Special coloring problems

One chromatic Gallai identity has also an application to a batch scheduling problem called Max-
coloring, this is explained in the next section.

3.3.1 Max-coloring

Let c ∈ ZV be a cost vector on the vertex set of G.
Max-coloring is the problem of determining a clique-partition (coloring) K = K1, . . . ,Kp of G

which minimizes ψ(K) :=
∑p
i=1 ci where ci = maxv∈Ki

c(v), see [35]. So when c is a unit vector,
ψ(K) = p and we meet the classical clique-partition (coloring) problem. We denote χmax(G, c) the
optimum of Max-Coloring.
Take the acyclic orientation ~G of G implied by the natural linear order de�ned by c on V (G),

that is, e = uv is orientated from u to v if and only if c(u) ≥ c(v) (break ties arbitrarily). Let

S(~G) be the sandwich line-graph of ~G. De�ne w(e) := c(v) for each arc e = uv of S(~G), thus we

obtain a vertex-weight vector w ∈ ZV (S(~G)) for the sandwich graph.
Let S be a stable set of S(~G). The set S is also a simplicial stellar forest in ~G and, moreover,

observe that the weight w(S) of the stable set S of S(~G) is equal to the weight of all leaves of this

simplicial stellar forest S of ~G. It follows that c(V (G)) − w(S) is equal to the sum of the costs

of the centers of S in ~G. Furthermore, the way the orientation ~G was de�ned, the center of each
out-star is the maximum cost vertex of the star, and hence the sum of the costs of the centers is
equal to the objective value ψ(K) of the clique-partition K of G corresponding to S. Hence, we
obtain very easily:

Theorem 6 (C. and Jost [19]) αw(S(~G)) + χmax(G, c) = 1>c

This reduces the sophisticated Max-coloring in G to the familiar maximum weighted stable set
problem in S(~G).

3.3.2 Perfectness of clustered graphs

Let V = V1, . . . , Vp be a partition of the vertex-set V (G).
Selective-coloring, also known as the partition coloring problem, is to �nd an induced subgraph H

of G with exactly one vertex in Vi minimizing its chromatic number χ(H), with i ∈ I = {1, . . . , p}.
So when each Vi is a singleton we meet the classical coloring problem. Selective-coloring has
application in telecommunication for routing and wavelength assignment.
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Call cluster any set Vi of V, clearly, we can assume that each cluster is a stable set of G. For
any subset J ⊆ I, call cluster selection the set of all Vj with j ∈ J .

De�nition 8 Let (G,V) be a clustered graph.

• A cluster selection {Vj : j ∈ J} is a stable selection of (G,V) if there exists a stable set of G
intersecting all Vj of the selection.

• The auxiliary graph G/V is the graph with vertices the clusters where two vertices are linked
if the corresponding clusters are complete to each other.

For instance the clustered graph in Figure 3.4.(d) has for auxiliary graph that in Figure 3.4.(e).

(d)

(a) (b) (c)

(e)

Figure 3.4: Clustered graph and auxiliary graph

The (maximal) stable selection�cluster matrix M(G,V) of the clustered graph (G,V) of Fig-
ure 3.4.(d) and the (maximal) stable set�vertex matrix M(G/V) of its auxiliary graph are given
below:

M(G,V) =

 1 1 0 1
1 0 1 0
0 1 1 0

 and M(G/V) =

(
1 1 0 1
1 1 1 0

)
Given a 0-1 matrix A, let be the two polyhedrons

P (A) := {x ∈ Rn : Ax ≤ 1, x ≥ 0} and D(A) := {y ∈ Rm : y>A ≥ 1>, y ≥ 0}

So ω(G/V) is the max of 1>x over integer vectors x in P (M(G/V)), χ(G/V) is the min of y>1
over integer vectors y in D(M(G/V)), and Selective-coloring can be formulated naturally as

χsel(G,V) = min{y>1 : y ∈ D(M(G,V)), y integer}
One has

ω(G/V) ≤ χ(G/V) ≤ χsel(G,V)

Notice that ω(G/V) is both the integer dual of χ(G/V) and of χsel(G,V). The matrix M(G,V)
can be seen as the incidence matrix of not all, but of some stable sets of G/V (not necessarily
maximal), at least of all of size two.
A conformal matrix is a 0-1 matrix which is the stable set�vertex matrix of some graph (after

removing the dominated rows). We have that

M(G,V) = M(G/V) if and only if M(G,V) is conformal
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A perfect matrix is a conformal matrix which is the stable set�vertex matrix of a perfect graph.
Recall that the following are equivalent:

(i) for all w ∈ {0, 1}n, max{w>x : x ∈ P (A) ∩ Zn} = max{w>x : x ∈ P (A)},

(ii) P (A) is integral;

(iii) {Ax ≤ 1, x ≥ 0} is TDI;

(iv) A is perfect.

The term �conformal� can be applied to the hypergraph of the matrix as well (or the clutter of the
matrix, when it has no dominated rows). Gilmore showed that a clutter is conformal if and only if,
for any three edges, there is some edge which contains the union of the three possible intersections
between two edges among the three. So a triangle is the smallest example of a non-conformal
clutter.
Another non-conformal matrix is

J4 − I4 :=


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


Observe that if one removes any column of J4−I4 one obtains a conformal matrix, as it is isomorphic
to
(

1 1 1
)
after removing dominated rows. In this sense, J4−I4 is a minimally non-conformal

matrix.
Thanks to Gilmore's characterization, it can be decided whether or not a given matrix is con-

formal or not in a time polynomial in the size of the matrix. However, the particular 0-1 matrices
which are matrices of stable selections of a clustered graph can be encoded by (G,V). We showed
in [5] that, given (G,V), it is NP-hard to decide whether M(G,V) is conformal or not. On the
positive side, we proved that these particular 0-1 matrices have an interesting property concerning
conformality, namely:

The minimal conformality lemma. M(G,V) is minimally non-conformal with respect to delet-
ing vertices of G if and only if (G,V) is isomorphic to either (a), (b) or (c) in Figure 3.4.

The proof of the minimal conformality lemma is in fact independent from Gilmore's characteri-
zation. This lemma can be used to characterize selective-perfection:

De�nition 9 A graph G is selective-perfect if the stable selection�cluster matrix M(G,V) is per-
fect for all vertex partition V.

Since any member of V can be a singleton, a graph G is selective-perfect only if it is perfect.
A graph G = (V,E) is threshold if there exists t ∈ RV such that uv ∈ E ⇔ t(u) + t(v) > 0.
We introduce a superclass of threshold graphs by extending the domain of t with the imaginary

unit i of complex numbers z = <(z) + i=(z).

De�nition 10 A graph G = (V,E) is i-threshold if one can assign a complex number t(v) ∈
R ∪ {−i,+i} to each vertex v ∈ V such that:

uv ∈ E ⇔ <(t(u) + t(v))−=(t(u))=(t(v)) > 0.

Theorem 7 (Bonomo, C., Elkim, Ries [5]) G is selective-perfect if and only if G is i-threshold.
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3.4 Polyhedral aspects

A forest F of G = (V,E) is clique-connecting if V (T ) is a clique for any tree T of F .
An integer vector x ∈ ZE is the characteristic vector of a clique-connecting forest of G = (V,E)

if and only if x satis�es

(CCFO)


0 ≤ xe ≤ 1 for each e ∈ E,

x(E(U)) ≤ |U | −
{

1 if U is a clique of G
2 otherwise

for each nonempty U ⊆ V

After showing in [14] that the separation problem over (CCFO) is polynomial, we investigated
the clique-connecting forest polytope (that is, the convex-hull of characteristic vectors of clique-
connecting forests).
Since |F ∩ S| ≤ 1 for any clique-connecting forest F and any induced star S (for instance, the

edges in bold of the graph in Figure 3.5(a) form an induced star), the most natural valid inequalities
that one may want to use for strengthening (CCFO) are

x(S) ≤ 1 for any induced star S

There are two ways for generalizing these inequalities.

The �rst is to consider a more general structure than induced stars.

De�nition 11 Let K be a not necessarily maximal clique of G = (V,E) with at least two vertices.
Call K-complete set a maximal set Q ⊆ E(K) ∪ δ(K) such that

(i) uv ∈ Q, v /∈ K ⇒ u′v /∈ E for some vertex u′ ∈ K incident to no edge in Q ∩ δ(K);

(ii) uv, uw ∈ Q, v, w /∈ K ⇒ vw /∈ E.

See for instance Figure 3.5(b).

(a) (b)

Figure 3.5: K-complete sets

Observe that induced stars are precisely the K-complete sets with |K| = 2. The following
complete sets inequalities are valid:

x(Q) ≤ |K| − 1 for any K-complete set Q

The second way is to use the inequalities of the clique polytope (stable set polytope). Given
a vertex u of G, let us denote each edge uv ∈ δ(u) by ev. Observe that any valid inequality∑
v∈N(u) avxv ≤ β for the clique polytope of G[N(u)] induces the valid inequality∑

ev∈δ(u)

avxev ≤ β
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for the clique-connecting forest polytope of G.

De�nition 12 A non-trivial facet a>x ≤ β of the clique polytope is called degenerate if there
exists an edge uv such that:

a(K) = β =⇒ either u ∈ K or v ∈ K (for every clique K)

Theorem 8 (C. [14]) The complete sets inequalities and the inequalities induced by non-trivial
and non-degenerate facets of the clique polytope are facets of the clique-connecting forest polytope.
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Chapter 4

Min-max relations

Let G = (V,E) be a graph with possibly multiple edges.
Restricted to line-graphs L(G), the coloring problem amounts to �nd the minimum number

χ′(G) of matchings in the original graph G covering the edge-set E. Its combinatorial dual is the
maximum degree ∆(G) of G. One has (except if G has a triangle and no degree-3 vertex)

∆(G) = ω(L(G)) ≤ χ(L(G)) = χ′(G)

K®nig's edge-coloring theorem (1916) is:

∆(G) = χ′(G) if G is bipartite.

A (titanic) generalization of this is of course the strong perfect graph theorem [9]. We give in the
next section a new generalization. It is independent from the notion of perfectness since it involves
matrices with entries in {0, 12 , 1}.

4.1 The star polytope

A star of G is a set S ⊆ E contained in δ(v) for some vertex v ∈ V . The star polytope of G is the
convex-hull of incidence vectors its stars.
The bipartite graph B(G) of G = (V,E) is the graph with vertex-set two copies V1, V2 of V where

there are two edges u1v2, u2v1 for each edge uv ∈ E. To a subset D of edges of B(G) corresponds
naturally a vector x ∈ {0, 12 , 1}

E de�ned as

x :=
1

2
χC + χM where

C := {uv ∈ E : u1v2 ∈ D or u2v1 ∈ D exclusively}, and
M := {uv ∈ E : u1v2 ∈ D and u2v1 ∈ D}

In particular, any matching of B(G) corresponds to a vector x where C is the vertex-disjoint
union of paths and cycles, and where M is a matching. Call pcm set such a pair (C,M) (pcm
stands for path, cycle, matching).

Since ∆(B(G)) = ∆(G), K®nig's edge-coloring theorem implies that the star polytope of any
graph G is described by the following TDI system:

(PCM)

{
xe ≥ 0 for all e ∈ E,
1
2x(C) + x(M) ≤ 1 for all pcm set (C,M) of G

So we have a linear description of the star polytope of all graph.

A TDI system with integer right-and-side is also called a �min-max relation�. A minimal-TDI
system is such that the removing of any row either describes a strict subset, or is not TDI any-
more. They may have two �best-possible� min-max relations associated with a full-dimensional 0-1
polytope:
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1. its so-called Schrijver system, which is the unique minimal-TDI system with all entries integer
describing it (it may have redundant inequalities),

2. a minimal-TDI facet-de�ning system with integer right-hand-side (it may have fractional
left-hand-side).

Given an integer k and a graph G = (V,E), a k-matching of G is a subset M ⊆ E such that
|δ(v) ∩M | ≤ k for all vertex v ∈ V . (A 1-matching is a matching).
A k-matching family is a k-tuple (M1, . . . ,Mk) where Mi is a i-matching and where the Mi's

are pairwise vertex-disjoint.
A k-matching covering of G is a collection of edge subsets Mi, i ∈ I covering E such that Mi is

a k(i)-matching with k(i) ≤ k. The cost of a k-matching covering is
∑
i∈I k(i).

Let us consider the following system:

(k-MAF)

{
xe ≥ 0 for all e ∈ E,∑k

i=1(k − i+ 1)x(Mi) ≤ k for all k-matching family (M1, . . . ,Mk) of G

(2-MAF) is the system obtained from (PCM) by multiplying by 2 all pcm set inequalities.
Remark that

• The system (k-MAF) is TDI if and only if G (with duplication of edges allowed) admits a
k-matching covering with cost ∆(G).

The 3-regular graph of Figure 4.1.(a) does not admits a 2-matching covering with cost 3. It follows
that (2-MAF) is not TDI in general.

(b)
(a)

Figure 4.1: 3-regular graph, without 2-matching covering of cost 3, covered by 3 ocm's

The Schrijver system of the star polytope is given by the minimum integer k such that G admits
a k-matching covering with cost ∆(G). Trivially, any graph G admits a ∆(G)-matching covering
with cost ∆(G), and hence 1 ≤ k ≤ ∆(G). For bipartite graphs k = 1 but, in general, the integer
k might be so big that the min-max relation is trivial.
In fact the construction used in Figure 4.1.(a) can be extended to show that there is no �xed k

such that every graph admits a k-matching covering with cost ∆(G). Figure 4.2.(a) shows a
5-regular graph which does not admit a 4-matching covering with cost 5.
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(b)(a)

Figure 4.2: 5-regular graph, without 4-matching covering of cost 5, covered by 5 ocm's

Note that (PCM) is not facet-de�ning even if we take only inclusionwise maximal pcm sets.
Indeed, any vector x = 1

2x(C) + x(M) where (C,M) is a pcm set is the half combination of two
such vectors where (C,M) is a particular pcm set, namely an ocm set, that is, the vertex-disjoint
union C of odd-circuits C1, . . . , Ck and one matching M . Figure 4.1(b) shows an ocm set. See also
Figure 4.2(b).

De�nition 13 An ocm covering is a collection of ocm sets (Ci,Mi), i ∈ I, such that, for all edge e,
either e ∈Mi for some i, or e ∈ Ci ∩ Cj for some i 6= j, i, j ∈ I.

For instance:

• The 3-regular graph in Figure 4.1(a) can be covered by the three ocm sets obtained by 2π/3
rotation of the ocm set in Figure 4.1(b).

• The 5-regular graph in Figure 4.2(a) can be covered by the �ve ocm sets obtained by 2π/5
rotation of the ocm set in Figure 4.2(b).

The following min-max relation implies that (PCM) restricted to maximal ocm sets is a minimal-
TDI facet-de�ning system for the star polytope.

Theorem 9 (C. and Nguyen [23]) Let G be a graph without loop and with multiple edges al-
lowed, then the maximum size ∆(G) of a star is equal to the minimum number |I| of ocm sets in
an ocm covering of G.

Theorem 9 restricted to bipartite graphs is exactly K®nig's edge-coloring theorem. Note that it
implies K®nig's matching theorem (1931) τ(G) = ν(G). Indeed, if G = (V,E) is bipartite, then
the star polytope is described by the non-negativity constraints together with x(M) ≤ 1 for all
matching M . It follows that

QE 3 x̄ := ν(G)−1 · 1 = λ1χ
S1 + . . .+ λkχ

Sk (λ1 + . . .+ λk = 1, λi ≥ 0)

for some stars S1, . . . , Sk since x̄ belongs to the star polytope of G. Since x̄(M) = 1 =
∑
i λi

for any maximum matching M , then |M ∩ Si| = 1. Now K®nig's matching theorem follows by
induction since ν(G′) = ν(G)− 1 where G′ is obtained from G by removing some Si.
Using the same polyhedral argument, one can show that there always exists an ocm set covering

all maximum degree vertices. It suggests that a greedy algorithm might succeed in �nding a
minimum ocm covering. It is however not the case as shown by the graph of Figure 4.3(a). Indeed,
suppose that we �rst choose the ocm set ({12, 13, 23}, ∅) which misses no max-degree vertex. Then
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we are left with the graph of Figure 4.3(b) where the edges in dot-line are half-covered. Roughly
speaking the max-degree is now 2. So ({23, 24, 34}, ∅) is the only ocm set covering all max-degree
vertices. But we have only one ocm set to use and it is impossible to cover the remaining even
cycle of Figure 4.3(c).

(c)

1

2 3

4

(a) (b)

Figure 4.3: Greedy fails

4.2 Max-multi�ow vs. min-multicut

In chapter 2, we have in fact considered signed graphs, that is, a pair (G,R) composed of a graph
G = (V,E) together with a subset of edges R ⊆ E.
In the study of complete bipartite subgraphs, the graph G was the rooted graph and R was the

set of edges of the original graph and we looked for particular cycles C of G with |C ∩ R| is odd.
For complete multipartite subgraphs we looked for cycles C of G with |C ∩R| = 1.

Now consider a signed graph (G+H,R) where G+H is the union of the supply graph G = (V,E)
and of the demand graph H = (V,R) of the multi�ow problem. An edge e of H is called a demand.
An edge of G is called a link and its multiplicity is called its capacity. A cycle C of G + H such
that C ∩R = {e} is called a �ow; this �ow satis�es the demand e ∈ R on the path C \R.
In the maximum (integer) multi�ow problem one asks for the maximum number of edge-disjoint

paths of G so that each path links the extremities of some edge of H.
A multicut of (G,H) is a subset of edges of G the removing of which disconnects any pair of

vertices forming a demand.

(c)(a) (b)

Figure 4.4: Multi�ow and multicut

For instance:
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• Figure 4.4(a) depicts a graph G+H where the demand edges are in bold.

• Figure 4.4(b) depicts a multi�ow of G,H with value 6, that is, 6 edge-disjoint paths of G
each of them linking both extremities of some edge of H (in bold).

• Figure 4.4(c) depicts the graph G + H after the removing of 6 edges of G letting no path
of G linking both extremities of some edge of H; so the missing edges form a multicut.

We denote by max-m�ow(G,H) the maximum value of a multi�ow of G,H, and we denote by
min-mcut(G,H) the minimum value of a multicut of G,H. As it is clear that

max-m�ow(G,H) ≤ min-mcut(G,H) for all G,H

one can conclude that the pair G,H of Figure 4.4(a) satis�es:

max-m�ow(G,H) = min-mcut(G,H)

This is of course not always the case see for instances Figure 4.5(a)-(b).

(b)(a)

Figure 4.5: Max-multi�ow is not equal to min-multicut

We proved the following:

Corollary 1 (C. [15]) If G+H is series-parallel, then max-m�ow(G,H) = min-mcut(G,H).

The interest of Corollary 1 lays in the fact that it truly deals with the original multi�ow problem
and not only with the feasibility version of it, which arises if the demand is bounded.
In the feasibility version both G andH have multiple edges and the multiplicity of a demand edge

e of H is called the amount (of demand) of e. One asks whether or not there are |R| edge-disjoint
�ows of G+H. Such a �ow collection is called a multi�ow satisfying the demand.
The instance of Figure 4.4 is clearly feasible as there are |R| = 3 edge-disjoint �ows. Also clearly,

none of the instances of Figure 4.5(a)-(b) is feasible.

In Corollary 1, neither the number of demands is bounded, nor the cut-condition

(cut-condition) |D \R| ≥ |D ∩R| for all cut D of G+H

is asked. The cut-condition is a necessary condition for having a multi�ow satisfying the demand.

4.2.1 The multicut polytope

A subset of edges D ⊆ E(G) is a multicut of G if it is the set D = δ(V1, . . . , Vp) of all edges between
the members of some partition V1, . . . , Vp of V (G).
The characteristic vectors of the multicuts of G are the integer vectors in

(MCUT)

{
0 ≤ xe ≤ 1 for all edge e of G,

x(C \ {e}) ≤ xe for all circuit C of G and for all edge e of C

Corollary 1 is a consequence of the following:
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Theorem 10 (C. [15]) A graph G is series-parallel if and only if (MCUT) is TDI.

It was already known that (MCUT) is integral if and only if G is series-parallel [8]. Theorem 10
clearly improves this since TDIness implies integrality.

It was already known that

(CONE)

{
xe ≥ 0 for all edge e of G,

x(C \ {e}) ≤ xe for all circuit C of G and for all edge e of C

is TDI if and only if G is series-parallel, see [37] (p. 505). To see that Theorem 10 improves this,
let us consider a weighted graph (G,w) where w ∈ ZE(G).
The weighted graph (G,w) can play the role of both unweighted graphs G,H: the edges e with

we > 0 play the role of demand edges and the other edges, with non-positive weight, are links.
The value |we| is just the multiplicity of the edge e.
The cut-condition in (G,w) is that no cut has a positive weight (equivalently, no multicut).

Observe that:

• the cut-condition holds if and only if the maximum of w>x over x ∈ ZE(G) in (CONE) is
bounded (that is, x = 0 is the optimal solution);

• the dual of maximizing w>x over (CONE) is feasible if and only if there is a multi�ow which
satis�es all the demands.
(The multi�ow is integer if the dual admits an integer solution.)

So

• (CONE) is TDI ⇔ for all w ∈ ZE(G), the cut-condition is su�cient for the existence of an
integer multi�ow satisfying the demand;

• (CONE) is integral ⇔ for all w ∈ ZE(G), the cut-condition is su�cient for the existence of a
fractional multi�ow satisfying the demand.

Besides one has

• (MCUT) is TDI ⇔ for all w ∈ ZE(G), the maximum weighted multicut is equal to the total
amount of demand minus the maximum integer multi�ow.

Hence, the TDIness of (MCUT) is stronger than that of (CONE); which shows that the new
characterization of series-parallel graphs implied by Theorem 10 is stronger then the previous one.

4.2.2 The �ow clutter

If the cut-condition is satis�ed, then the multi�ow problem becomes a packing problem on a
binary hypergraph. Corollary 1 deals with the general case, that is with not necessarily binary
hypergraphs. To see this let (G,R) be the signed graph with G = (V,E) and R ⊆ E.
A circuit C of (G,R) is odd if |C ∩ R| is odd. The well-studied odd-circuit clutter of (G,R) is

the hypergraph with vertex-set E(G) and with (hyper) edge-set the odd-circuits of (G,R).
The �ow clutter of (G,R) is the hypergraph with vertex-set E(G) and with edge-set the circuits

C with |C ∩R| = 1.

A crucial di�erence between the two clutters is that the odd-circuit clutter is binary, that is, the
symmetric di�erence between an odd number of edges is contained in another edge, but not the
�ow clutter.
For instance, in the signed graph of Figure 4.6(a) one has 144 254 345 = 123 where 14, 25, 345

are edges of the �ow clutter, and then also of the odd-circuit clutter, but 123 is only an edge of
the odd-circuit clutter.
An hypergraph is balanced if no submatrix of its edge-vertex incidence matrix is the matrix of

an odd-cycle. Even if G is series-parallel, the �ow clutter, and then the odd-circuit clutter, might
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not be balanced: For the �ow clutter of the signed graph of Figure 4.6(b), the vertices 4, 5, 6 and
the edges 156, 246, 345 induce the matrix of a C3.

(d)

3

21

4 5

3

21

4 5

6

(b)(a) (c)

Figure 4.6: Packing/covering of odd circuits and �ows

Let us de�ne:

νodd(G,R) := maximum number of edge-disjoint odd circuits of (G,R)
ν�ow(G,R) := maximum number of edge-disjoint �ows of (G,R)
τodd(G,R) := minimum cardinality of a T ⊆ E intersecting every odd circuit of (G,R)
τ�ow(G,R) := minimum cardinality of a T ⊆ E intersecting every �ow of (G,R)

For instances, in the signed graph of Figure 4.6(c), one has νodd(G,R) = 2 = τodd(G,R) and one has
ν�ow(G,R) = 1 6= 2 = τ�ow(G,R). In the signed graph of Figure 4.6(d), one has νodd(G,R) = 2 6=
3 = τodd(G,R) and one has ν�ow(G,R) = 2 = τ�ow(G,R). Obviously, one has the four inequalities

νodd(G,R) ≤ τodd(G,R)

≤ ≤
ν�ow(G,R) ≤ τ�ow(G,R)

for all (G,R)

For all signed graphs (G,R) in which the cut-condition holds, then

ν�ow(G,R) = τ�ow(G,R) if and only if νodd(G,R) = τodd(G,R)

moreover, when the two equalities hold, then

ν�ow(G,R) = νodd(G,R) = |R| = τ�ow(G,R) = τodd(G,R).

Known classes of signed graphs (G,R) for which the odd-circuit clutter min-max relation holds are

νodd(G,R) = τodd(G,R) if
(G,R) has no odd-K4 minor [39], or
(G,R) is Eulerian and has no odd-K5 minor [28].
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Chapter 5

Further work

The concept of minimal forbidden structure in hypergraph, e.g. forbidden minor or forbidden
subgraph, can be applied to another domain.
We explain our contribution in applying this concept to social choice theory, which deals with

pro�le matrices instead of 0-1 matrices, in the next section. In the second section we list some
problems.

5.1 Structure and algorithm in elections

Let C be a �nite set of candidate. A vector is called a voter if it is a permutation of C.
A matrix P is called a pro�le if each column is a voter. A subpro�le P ′ of P is a pro�le obtained

from P by deleting candidates and voters.
For instance

P ′ =

 a c b
b b a
c a c

 is a subpro�le of P =


a c b b a
b d a a c
c b c d b
d a d c d


obtained by removing candidate d and the two last voters.

Throughout we let P be a pro�le with candidate set C and voter set V .
Let c be a candidate and v a voter. Denote the position of c in v by χcv ∈ I := {1, . . . , |C|}. For

instance, if v is the second column in the above pro�le P, then χav = 4, χbv = 3, χcv = 1 and χdv = 2.
A subset C ′ ⊆ C of k candidates is a representative k-set if it minimizes∑

v∈V
min
c∈C′

χcv

The problem of determining a representative k-set is NP-hard in general. It becomes polynomial
if P is single-peaked, that is, if there exists a path P with vertex-set C such that, for all voter
v ∈ V , the subgraph of P induced by {c ∈ C : χcv ≤ i} is connected, for all i ∈ I.
For instance the above subpro�le P ′ is single-peaked: take a path P with extremities a and c.

The above pro�le P is not single-peaked because it has three distinct candidates in its last row.

An interval of P is a (non-trivial) subset of candidates which are consecutive on every voter
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of P. For instance, the interval incidence matrix of

P =



a a f
b c g
c b h
d d e
e e d
f h c
g g a
h f b


is I(P) =

a b c d e f g h

1 1 1
1 1 1 1
1 1 1 1 1

1 1
1 1 1 1 1

1 1 1 1
1 1
1 1 1

1 1


Given a partition C of C into intervals, let P/C be the subpro�le obtained by removing all

candidate but one in each interval of the partition.

De�nition 14 The single-peaked width of P is the maximum size of an interval in a partition C
such that P/C is single-peaked.

Theorem 11 (C., Galand and Spanjaard [17, 18]) The single-peaked width of any pro�le can
be determined in a polynomial time. Moreover, a representative k-set can be found in a polynomial
time in bounded single-peaked width pro�les.

We used a minimal forbidden structure characterization for the proof:

• A pro�le is single-peaked if and only if it has no subpro�le isomorphic to:

 a b c
b c a
c a b

 ,

 a a b
b c c
c b a

 ,


d d
a c
b b
c a

 ,


a d
d c
b b
c a

 , or


a c
d d
b b
c a


This approach turns out to be successful to generalize positive results for another hard problem.

Namely, �nding a Kemeny voter, that is, a voter u (not necessarily belonging to V ) minimizing
the sum

∑
v∈V d(u, v) of its distances with all voters of the pro�le P. Here the distance d(u, v) of

u with v is

d(u, v) :=
∑

ab pair of C

(1uab − 1vab)
2 where 1uab :=

{
1 if χau < χbu
0 otherwise

The problem of determining a Kemeny voter is NP-hard in general. It becomes polynomial if P
is single-peaked or single-crossing, that is, if there exists a path P with vertex-set V such that, for
all ordered pair ab of candidates, the subgraph of P induced by {v ∈ V : χav < χbv} is connected.
It is NP-hard to determine the minimum number of intervals in a partition C such that P/C is

single-crossing.

De�nition 15 The single-crossing width of P is the maximum size of an interval in a partition C
such that P/C is single-crossing.

Theorem 12 (C., Galand and Spanjaard [18]) The single-crossing width of any pro�le can
be determined in a polynomial time. Moreover, a Kemeny voter can be found in a polynomial time
in bounded single-crossing (-peaked) width pro�les.

5.2 Open questions

Here is a list of problems with a various level of di�culty.
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5.2.1 Graph classes

Sandwich line-graphs

A graph is a sandwich line-graph is if it is the graph with vertex-set the arc-set of an orientated
graph ~G where two vertices are linked if they correspond to adjacent arcs which are not simplicial.
A sandwich line-graph can contain any graph H as induced subgraph. To see this, let G = H

and add a universal tail u, so δ(u) induce H in S(G). If the underlaying graph G is complete, the

sandwich line-graph S(~G) coincide with the facility location graph (up to reversing the orientation)
which is hard to recognize in general [2].

Problem 1 Is it hard to recognize a sandwich line-graph?

Complex threshold graphs

We can generalize the class of i-threshold graphs with weights taking values in the whole complex
set.
A graph G = (V,E) is complex threshold if there is a t ∈ CV such that

uv ∈ E ⇔ <(t(u) + t(v))−=(t(u))=(t(v)) > 0

Figure 5.1 shows two complex threshold graphs.

(a)

1−4i

2−i 2−i

−3+i

(b)

10

−11−7i−11+7i

−9−3i −9+3i

Figure 5.1: Complex threshold graphs

Notice that this graph class is closed under taking induced subgraphs and that it is not contained
in the class of perfect graphs.

Problem 2 What are the forbidden induced subgraphs for the class of complex threshold graphs?

5.2.2 Polytopes

Degenerated facets of the stable set polytope

A facet a>x ≤ β of the stable set polytope is called trivial if the vector a has only one non-zero
entries. A non-trivial facet is called degenerate if there exist two vertices u and v, non-adjacent,
such that:

a(S) = β ⇒ either u ∈ S or v ∈ S (for every stable set S)

Clearly clique, odd-circuit, and odd-wheel inequalities are non-trivial and non-degenerate facets.

Problem 3 Is there a graph with a stable set polytope having a degenerate facet ?
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Minimally 2-edge-connected

A 2-edge-connected graph is minimally 2-edge-connected if and only if it contains no Theta-graph,
that is, a cycle (not necessarily elementary) with one chord.
In K4 the 2-edge-connected spanning subgraph polytope has dimension six. The dimension falls

down to only two if one requires minimality. The Theta-graph inequalities can be separated using
basic �ow technique.

Problem 4 Given a 2-edge-connected graph G and an edge e, is it possible to determine whether
or not e belongs to at least one minimality 2-edge-connected spanning subgraph of G?

Series-parallel graphs

Chen, Ding and Zang [6] proved that G is series-parallel if and only if (2CON) is box-TDI.

(2CON)

{
xe ≥ 0 for all edge e of G,

1
2x(D) ≥ 1 for all cut D of G

Such a characterization of series-parallel graphs could exists with a generalized max-multi�ow/min-
multicut relation.

Problem 5 Is it true that (CONE) is box-TDI if and only if G is series-parallel?

5.2.3 Grids and bicliques

We denote by bc(G) the minimum number of bicliques covering the edges of G. Let Gp×q be the
complete grid-graph on pq vertices with p ≤ q.
Maximal bicliques of a grid-graph are 3- and 4-stars and 4-cycles. We proved that

τ(Gp×q)− 1 ≤ bc(Gp×q) ≤ τ(Gp×q) =
⌊pq

2

⌋
and that, moreover, if p is odd, the right inequality holds with equality. A covering using only stars
shows that the right inequality holds. The left inequality follows from a construction of half-integer
dual solutions (with the ILP formulation of Chapter 2).
If p is even and if the Frobenius equation (p− 1)x1 + (p+ 1)x2 = q− p has a solution (that is, it

is satis�ed by some x ∈ Z2
+), one can construct a biclique covering showing that the left inequality

holds with equality in this case.
Using Sylvester's formula (1884), the Frobenius equation has a solution if q ≥ p2 − p. However

for p even and q < p2 − p, we could not determine when the left or the right inequality holds with
equality.

Problem 6 Is it true that, if p is even and if (p− 1)x1 + (p+ 1)x2 6= q − p for all x ∈ Z2
+, then

bc(Gp×q) = pq
2 ?

Computational experiments show that for G6×17 the gap between pq
2 and the optimum of the

relaxation is greater than one.

5.2.4 Strong minors of the �ow clutter

In a signed graph (G,R) the collection of odd circuits of (G,R) is closed under resigning, that is,
resetting R := R4 D for some cut D of G. A minor of (G,R) is a signed graph obtained from
(G,R) by a series of deletion of edges, resigning, and contraction of unsigned edges (one can always
resign so an edge becomes unsigned). So the minors of (G,R) are in 1-to-1 correspondence with
the minors of its odd-circuit clutter.
An odd-K4 is a signed K4 where each triangle is odd.

Problem 7 Does ν�ow(G,R) = τ�ow(G,R) holds if (G,R) has no minor odd-K4?
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For an odd-K4, the incidence matrices of the odd-circuit clutter and of the �ow clutter are
respectively

Q6 =


1 1 1
1 1 1

1 1 1
1 1 1

 and Q−6 =

 1 1 1
1 1 1

1 1 1


It is well known that Q6 is minimally non-Mengerian. On the contrary, Q−6 is non-Mengerian but
not minimally as it has a minor C23 . Thus no minor operation in (G,R) can correspond to minor
operation in its �ow clutter.
Call strong minor of (G,R) a signed graph that arises from (G,R) by a series of deletion of edges

in E and contraction of edges in E \R.
Call �ow odd-wheel a signed odd wheel with signed edges the odd cycle (so the odd-K4 with

three signed edges is a �ow odd wheel). Call �ow-K4 the odd-K4 with two signed edges.

Problem 8 Does ν�ow(G,R) = τ�ow(G,R) holds if (G,R) has no strong minor �ow odd-wheel nor
�ow-K4?
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Chapter 6

Conclusion

Let us summarize our results.

1. Let H = (E, C) be the minimal non-biclique clutter of a graph G = (V,E), then

ω(G)− 1 ≤ max
C∈C
|C| ≤ ω(G) (with equality at the right if ω(G) is odd)

2. Let H = (E, C) be the minimal non-multiclique clutter of a graph G = (V,E), then

|C| = 2 (∀C ∈ C) ⇐⇒ G is fan- and prism-free

3. Several di�cult problems over a graph G = (V,E), including �nding a maximum edge-weight
vertex-induced bipartite subgraph, can be formulate as �nding τw(H) where H = (E, C) is a
clutter such that

Finding a C ∈ C minimizing w(C) is polynomial in the size of G (∀w ∈ QE+)

4. For any sandwich line-graph S(~G) of G, where ~G has no 3-dicycle, then

α(G) + χ(S(~G)) = |V (G)| = α(S(~G)) + χ(G)

5. The operator Φβ for graph parameters β satis�es

α(G) ≤ Φχf
(G) ≤ χf (G) and ϑ(G) ≤ Φϑ(G) ≤ χ(G) (for all graph G)

6. Let G = (V,E) be a graph with c ∈ ZV+. There is a sandwich line-graph S(~G) with vertex-
weight w ∈ ZE+ such that

αw(S(~G)) + χmax(G, c) = 1>c

7. Let G = (V,E) be a graph with a partition V = {Vi, i ∈ I} of V and let M(G,V) be the
incidence matrix of the clutter H = (I,J ) where J ∈ J if G has a stable set intersecting all
Vj , j ∈ J . Then

M(G,V) is minimally non-conformal =⇒ V = {V1, V2, V3} with |Vi| ≤ 2
and, M(G,V) is perfect for all V ⇐⇒ G is i-threshold

8. The complete sets inequalities and the inequalities induced by non-trivial and non-degenerate
facets of the clique polytope are facets of the clique-connecting forest polytope.
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9. Let χ′′(G) be the minimum number of ocm sets covering G (so χ′′(G) = χ′(G) if G bipartite).
Then

∆(G) = χ′′(G), for all graph G

In other words, the following system is minimal-TDI and describes the star polytope of all
graphs

(OCM)

{
xe ≥ 0 for all e ∈ E,
1
2x(C) + x(M) ≤ 1 for all maximal ocm set (C,M) of G

10. If G + H is series-parallel, then the maximum integer multi�ow is equal to the minimum
multicut. More generally, a graph G is series-parallel if and only if the following system
is TDI

(MCUT)

{
0 ≤ xe ≤ 1 for all edge e of G,

x(C \ {e}) ≤ xe for all circuit C of G and for all edge e of C

11. The single-peaked width of any pro�le can be determined in a polynomial time. Moreover,
a representative k-set can be found in a polynomial time in bounded single-peaked width
pro�les.

12. The single-crossing width of any pro�le can be determined in a polynomial time. Moreover,
a Kemeny voter can be found in a polynomial time in bounded single-crossing or -peaked
width pro�les.
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Résumé

Nous étudions des structures interdites minimales que l'on peut voir comme des homologues sophis-
tiqués des cycles impairs dans les graphes signés. Initiée avec les structures associées aux bicliques,
cette approche s'avère être plus générale. Elle relie plusieurs problèmes complexes de graphes.
De plus, elle nous conduit à une version chromatique de deux identités bien connues de Gallai.

Ces identités chromatiques permettent d'opérer sur les paramètres classiques liés à la coloration de
graphes, on déplace ainsi la relaxation semi-dé�nie positive de Lovász vers le nombre chromatique
et la relaxation linéaire vers le nombre clique. Une application concerne un problème de coloration
spécial, où le coût d'une couleur est le poids maximum d'un sommet de cette couleur. Par ailleurs,
nous montrons comment sont liés le polytope des stables et celui des forêts clique-connectantes,
qui sont à la base des identités de Gallai chromatiques.
Pour un autre problème de coloration, où l'on colore un sous-graphe induit par exactement un

sommet par cluster, il est di�cile de reconnaitre si la matrice 0-1 associée est conforme, c'est-à-dire,
si c'est une matrice clique-sommet. Après avoir prouvé que, pour toutes les matrices provenant
des graphes clusterisés, il su�t d'une conformalité locale pour avoir la conformalité totale, nous
caractérisons les graphes avec une propriété de perfection dé�nie non seulement pour les graphes,
mais pour les graphes clusterisés.
Concernant le problème de coloration d'arêtes, nous donnons une relation min-max décrivant

le polytope des étoiles, cette relation est optimale puisqu'elle correspond à un système linéaire
minimal. Un autre relation min-max, de type max-multi�ot/min-multicoupe, est donnée pour
caractériser les graphes série-parallèles, et elle améliore une caractérisation similaire antérieure.
En�n, nous étudions l'intérêt d'une approche par structures interdites minimales dans un autre

domaine que la théorie des graphes: les problèmes électoraux en choix social. Puis nous énumérons
quelques questions que nous avons laissées ouvertes.


