Structures and Duality in Combinatorial Programming

HDR — Denis Cornaz

Mourad BAIOU Gérard CORNUÉJOLS Jérôme LANG Ridha MAHJOUB Gianpaolo ORIOLO Christophe PICOULEAU András SEBŐ Université Blaise Pascal Carnegie Mellon University Université Paris-Dauphine Université Paris-Dauphine Università di Roma "Tor Vergata" Conservatoire national des arts et métiers Institut national polytechnique Grenoble examinateur rapporteur président coordinateur rapporteur examinateur rapporteur

LAMSADE, Paris-Dauphine

Introduction

•
$$(P) = \{Ax \leq b\}$$
 is TDI :

$$\min\{y^{\top}b: y^{\top}A \ge w^{\top}\}$$
=
$$\min\{y^{\top}b: y^{\top}A \ge w^{\top}, y \text{ integer}\}$$
 (\forall w integer)

• $P = \{x : Ax \le b\}$ is integer:

$$\max\{w^{\top}x: x \in P\}$$

$$= \max\{w^{\top}x: x \in P, x \text{ integer}\}$$
 $(\forall w)$

• A is 0-1: a clutter H = (E, C)

$$\alpha_w(H) := \max\{w^\top x : Ax \le \mathbf{1}, x \ge \mathbf{0}, x \text{ integer}\}$$
 (packing)
 $\tau_w(H) := \min\{w^\top x : Ax \ge \mathbf{1}, x \ge \mathbf{0}, x \text{ integer}\}$ (covering)

Contents

- Minimal forbidden structures
- Graph coloring
- Min-max relations
- Election problems

Contents

Minimal forbidden structures

The minimum biclique cover problem (with Fonlupt)

$$H = (E, C)$$
 is the minimal non-biclique clutter of $G = (V, E)$

 $\omega(\mathsf{G}) - 1 \leq \max_{\mathsf{C} \in \mathcal{C}} |\mathsf{C}| \leq \omega(\mathsf{G}) \quad \text{(with equality at the right if } \omega(\mathsf{G}) \text{ is odd)}$

The minimum biclique cover problem (with Fonlupt)

$$H = (E, C)$$
 is the minimal non-biclique clutter of $G = (V, E)$

 $\omega(\mathsf{G}) - 1 \leq \max_{\mathsf{C} \in \mathcal{C}} |\mathsf{C}| \leq \omega(\mathsf{G}) \quad \text{(with equality at the right if } \omega(\mathsf{G}) \text{ is odd)}$

A general method (with Fonlupt, Kerivin, and Mahjoub)

- \mathcal{B} is a set of edge subsets of G,
- $C(B) := \{ C \subseteq E : C \not\subseteq B \text{ but } C' \subseteq B, \forall C' \subset C \}$

Finding a minimum cost $C \in \mathcal{C}(\mathcal{B})$ is P when \mathcal{B} is:

- (a) edge sets of complete bipartite subgraphs of G,
- (b) edge sets of complete multipartite subgraphs of G,
- (c) edge sets of vertex-induced bipartite subgraphs of G,
- (d) arc sets of vertex-induced acyclic subdigraphs of G.

The maximum complete multipartite subgraph problem

$$H = (E, C)$$
 is the minimal non-multiclique clutter of G

$$|C|=2 \quad (\forall C \in C)$$

 $|C| = 2 \quad (\forall C \in C) \iff G \text{ is fan- and prism-free}$

- U
- Graph coloring
- 3
- 4

Chromatic Gallai identities (with Jost and Meurdesoif)

 \vec{G} is an orientation of G, without 3-dicycle

$$\overline{\chi}(G) + \alpha(S(\vec{G})) = |V(G)|$$

Chromatic Gallai identities (with Jost and Meurdesoif)

 \vec{G} is an orientation of G, without 3-dicycle

$$\overline{\chi}(G) + \alpha(S(\vec{G})) = |V(G)| = \alpha(G) + \overline{\chi}(S(\vec{G}))$$

Appl. in mathematical programming (with Meurdesoif)

$$\overline{\chi}_f(G) = \begin{cases} \max & \mathbf{1}^\top x \\ \text{s.t.} & x(K) \le 1 \pmod{K} \\ x_v \ge 0 & (\forall v \in V) \end{cases}$$

$$= \begin{cases} \min & \mathbf{1}^\top y \\ \text{s.t.} & \sum_{K \ni v} y_K = 1 \pmod{K} \\ y_K \ge 0 & (\forall \text{clique } K) \end{cases}$$

y optimal for $G \Rightarrow x$ feasible for $S(\vec{G})$

$$x_{uv} = \sum_{\text{clique-stars } S_K \ni uv} y_K$$

Appl. in mathematical programming (with Meurdesoif)

$$\vartheta(G) = \begin{cases}
\max & \sum_{v} ||x_{v}||^{2} \\
\text{s.t.} & ||x_{o}||^{2} = 1 \\
& x_{o}^{\top} x_{v} = ||x_{v}||^{2} \\
& x_{u}^{\top} x_{v} = 0
\end{cases} (\forall v)$$

$$= \begin{cases}
\min & ||y_{o}||^{2} \\
\text{s.t.} & ||y_{v}||^{2} = 1 \\
& y_{o}^{\top} y_{v} = 1 \\
& y_{u}^{\top} y_{v} = 0
\end{cases} (\forall v)$$

$$x \in \mathbb{R}^{d \times m+1}$$
 optimal for $S(\vec{G}) \Rightarrow y \in \mathbb{R}^{nd \times n+1}$ feasible for G

$$y_{ov} = x_o - \sum_{u: uv \in E(\vec{G})} x_{uv} \text{ and } y_{vu} = \left\{ \begin{array}{ll} y_{ov} & \text{if } u = v \\ x_{uv} & \text{if } uv \in E(\vec{G}) \\ 0 & \text{otherwise} \end{array} \right.$$

Appl. in mathematical programming (with Meurdesoif)

If
$$\alpha(G) \leq \beta(G) \leq \overline{\chi}(G)$$
, $\forall G$, then
$$\alpha(G) < \Phi_{\beta}(G) := |V(G)| - \beta(S(\vec{G})) < \overline{\chi}(G) \qquad (\forall G)$$

Improving Lovász's ϑ bound for coloring

$$\alpha(G) \le \Phi_{\overline{\chi}_f}(G) \le \overline{\chi}_f(G)$$
 and $\vartheta(G) \le \Phi_{\vartheta}(G) \le \overline{\chi}(G)$ $(\forall G)$

	V	E	$ ho := rac{\Phi_{artheta} - artheta}{artheta}$	$mean\ \rho$	$\max \rho$
$\overline{M_3}$	5	5	_	23.6%	_
$\overline{M_4}$	11	35	26.8%	27.3%	28.7%
$\overline{M_5}$	23	182	26.5%	27.6%	29.5%
$\overline{M_6}$	47	845	26.0%	27.8%	29.5%

Coloring clustered graphs (with Bonomo, Ekim and Ries)

(e)

$$M(G,\mathcal{V}) = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array}\right) \text{ and } M(G/\mathcal{V}) = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

and
$$M(G/V) = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\omega(G/V) \leq \chi(G/V) \leq \chi_{sel}(G,V)$$

Coloring clustered graphs (with Bonomo, Ekim and Ries)

 ${\it G}$ is selective-perfect if ${\it M}({\it G},{\it V})$ is perfect for all ${\it V}$

$$uv \in E$$
 \circlearrowleft if \Leftrightarrow $\Re(t(u)+t(v))-\Im(t(u))\Im(t(v))>0$

Minimal clustered graphs such that $M(G, V) \neq M(G/V)$ are (a)-(c) G is selective-perfect $\iff G$ is i-threshold

The clique-connecting forest polytope

$$(\text{CCFO}) \left\{ \begin{array}{ll} 0 \leq x_{\mathsf{e}} \leq 1 & (\forall \mathsf{e} \in E) \\ x(E(U)) \leq |U| - \left\{ \begin{array}{ll} 1 & \text{if U is a clique of G} \\ 2 & \text{otherwise} \end{array} \right. & (\forall U \subseteq V) \end{array} \right.$$

Facets of the clique-connecting forest polytope

Inequalities induced by complete sets or by the clique polytope are facets

4

Z

Min-max relations

4

The star polytope (with Nguyen)

- $G_1 \cup \ldots \cup G_k = G$ with $G_i \subseteq G$
- Cost = $\sum_i \Delta(G_i)$

Figure : If $\max \Delta(G_i) = 2$, then $\text{Cost} > \Delta(G)$

The star polytope (with Nguyen)

ocm set (C, M):

- M is a matching
- $C = C_1 \cup \ldots \cup C_k$ (C_i odd-circuit)
- C_1, \ldots, C_k, M are pairwise vertex-disjoint

Generalizing Kőnig's min-max relation to a "best-posible" one

$$(P_{star})\left\{\begin{array}{c} x_e \geq 0 & \text{ for all } e \in E \\ \frac{1}{2}x(C) + x(M) \leq 1 & \text{ for all maximal ocm set } (C,M) \text{ of } G, \end{array}\right.$$

is minimally TDI

Max-multiflow vs. min-multicut

• A multicut disconnects the demands

Max-multiflow vs. min-multicut

The multicut polytope: $conv.hull\{\chi^{\delta(V_1,\dots,V_p)}\}$ $(\forall p)$

$$(\text{MCUT}) \left\{ \begin{array}{c} 0 \leq x_e \leq 1 & (\forall e) \\ x(C \setminus \{e\}) \leq x_e & (\forall \text{ circuit } C \ni e) \end{array} \right.$$

Weights: (+) demands and (-) links

 (MCUT) is TDI \iff the graph is series-parallel

G + H is series-parallel \implies max-multiflow=min-multicut

- U
- (3)
- Election problems

$$\mathcal{P}' = \left(\begin{array}{ccc} a & c & b \\ b & b & a \\ c & a & c \end{array}\right) \quad \text{is a subprofile of} \quad \mathcal{P} = \left(\begin{array}{cccc} a & c & b & b & a \\ b & d & a & a & c \\ c & b & c & d & b \\ d & a & d & c & d \end{array}\right)$$

- $\chi^c_v :=$ position of candidate $c \in C$ in voter $v \in V$
- representative k-set $C' \subseteq C$ minimizes $\sum_{v \in V} \min_{c \in C'} \chi_v^c$
- P single-peaked if \exists path P with vertex-set C:

 $\{c \in C : \chi_v^c \le i\}$ induces a connected subgraph of P

$$(\forall v \in V, \forall i \in \{1, \ldots, |C|\})$$

• Kemeny voter u minimizes $\sum_{v \in V} d(u, v)$, where

$$d(u,v) = \sum_{ab \text{ pair of } C} (\mathbf{1}^u_{ab} - \mathbf{1}^v_{ab})^2 \quad , \quad \mathbf{1}^u_{ab} = \left\{ \begin{array}{ll} 1 & \text{if } \chi^a_u < \chi^b_u \\ 0 & \text{otherwise} \end{array} \right.$$

(u may be outside V)

• P single-crossing if \exists path P with vertex-set V:

$$\{v \in V : \chi_v^a < \chi_v^b\}$$
 induces a connected subgraph of P

 $(\forall ab \text{ pair of } C)$

 $oldsymbol{\circ}$ $\mathcal{C}=$ partition of \mathcal{C} into intervals

$$\mathcal{P} = \begin{pmatrix} d & d \\ x & a \\ y & v \\ c & b \\ b & c \\ a & x \\ v & y \end{pmatrix} = \begin{pmatrix} d & d \\ x & a \\ y & v \\ c & b \\ b & c \\ a & x \\ v & y \end{pmatrix}$$

ullet $\mathcal{P}/\mathcal{C}=$ subprofile with one candidate per interval of \mathcal{C}

$$\mathcal{P}/(abcv, d, x, y) = \begin{pmatrix} d & d \\ x & a \\ y & x \\ a & y \end{pmatrix} \text{ and } \mathcal{P}/(abv, d, cxy) = \begin{pmatrix} d & d \\ c & a \\ a & c \end{pmatrix}$$

```
\begin{array}{c} \textit{single-peaked width:=} \\ \textit{maximum size of an interval in } \mathcal{C} \textit{ such that } \mathcal{P}/\mathcal{C} \textit{ is single-peaked} \\ \textit{finding the single-peaked width } \Rightarrow \textit{representative } \textit{k-set becomes P} \end{array}
```

```
single-crossing width:= maximum size of an interval in \mathcal C such that \mathcal P/\mathcal C is single-crossing finding the single-crossing width is P bounded single-crossing width \Longrightarrow Kemeny voter becomes P
```

Question: Max-multiflow vs. min-multicut

- (G, R) signed graph: R is the set of demands (red)
- C odd-circuit: $|C \cap R|$ odd
- C flow: $|C \cap R| = 1$
- $T = R \triangle D$

(D cut or multicut)

Question: The star polytope

Figure : If $\max \Delta(G_i) = 4$, then $\text{Cost} > \Delta(G)$

Publications

- Denis Cornaz, Hervé Kerivin, Ali Ridha Mahjoub: Structure of minimal arc-sets vertex-inducing dicycles. (submitted)
- Denis Cornaz, Philippe Meurdesoif: Chromatic Gallai identities operating on Lovász number.
 Mathematical Programming, Series A (to appear) (online springer.com)
- Flavia Bonomo, Denis Cornaz, Tinaz Ekim, Bernard Ries: Perfectness of clustered graphs.
 Discrete Optimization 10(4): 296-303 (2013)
- Denis Cornaz, Viet Hung Nguyen: Kőnig's edge-colouring theorem for all graphs.
 Operations Research Letters 41: 592-596 (2013)
- Denis Cornaz, Lucie Galand, Olivier Spanjaard: Kemeny elections with bounded single-peaked or single-crossing width. In Proceedings of 23rd. IJCAI: 76-82 (2013)
- Cédric Bentz, Denis Cornaz, Bernard Ries: Packing and covering with linear programming: A survey.
 European Journal of Operational Research 227(3): 409-422 (2013)
- Denis Cornaz, Lucie Galand, Olivier Spanjaard: Bounded single-peaked width and proportional representation. In Proceedings of 20th. ECAI: 270-275 (2012)
- Denis Cornaz: Max-multiflow/min-multicut for G+H series-parallel.
 Discrete Mathematics 311(17): 1957-1967 (2011)
- Denis Cornaz, Philippe Meurdesoif: The sandwich line graph.
 Electronic Notes in Discrete Mathematics 36: 955-960 (2010)
- Denis Cornaz: Clique-connecting forest and stable set polytopes.
 RAIRO Operations Research 44(1): 73-83 (2010)
- Denis Cornaz, Vincent Jost: A one-to-one correspondence between colorings and stable sets.
 Operations Research Letters 36(6): 673-676 (2008)
- Denis Cornaz: On co-bicliques.
 RAIRO Operations Research 41(3): 295-304 (2007)
- Denis Cornaz, Ali Ridha Mahjoub: The maximum induced bipartite subgraph problem with edge weights.
 SIAM Journal on Discrete Mathematics 21(3): 662-675 (2007)
- Denis Cornaz: A linear programming formulation for the maximum complete multipartite subgraph problem.
 Mathematical Programming. Series B 105(2-3): 329-344 (2006)
- Denis Cornaz, Jean Fonlupt: Chromatic characterization of biclique covers.
 Discrete Mathematics 306(5): 495-507 (2006)