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Jérôme Lang Université Paris-Dauphine président
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Introduction

(P) = {Ax ≤ b} is TDI:

min{y>b : y>A ≥ w>}
= min{y>b : y>A ≥ w>, y integer} (∀w integer)

P = {x : Ax ≤ b} is integer:

max{w>x : x ∈ P}
= max{w>x : x ∈ P, x integer} (∀w)

A is 0-1: a clutter H = (E , C)

αw (H) := max{w>x : Ax ≤ 1, x ≥ 0, x integer} (packing)
τw (H) := min{w>x : Ax ≥ 1, x ≥ 0, x integer} (covering)
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The minimum biclique cover problem (with Fonlupt)

8

2

6

5

37

8

1

2

3

4

5

6 7

(b)(a) (c)

(f)(e)(d)

2

1

4
5

6

3

2

5

1

3

4

1

6 3

2

5 4 1 2

5

4

3

4

1

H = (E , C) is the minimal non-biclique clutter of G = (V ,E )

ω(G )− 1 ≤ max
C∈C
|C | ≤ ω(G ) (with equality at the right if ω(G ) is odd)
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A general method (with Fonlupt, Kerivin, and Mahjoub)

B is a set of edge subsets of G ,

C(B) := {C ⊆ E : C 6⊆ B but C ′ ⊆ B, ∀C ′ ⊂ C}

Finding a minimum cost C ∈ C(B) is P when B is:

(a) edge sets of complete bipartite subgraphs of G ,

(b) edge sets of complete multipartite subgraphs of G ,

(c) edge sets of vertex-induced bipartite subgraphs of G ,

(d) arc sets of vertex-induced acyclic subdigraphs of G .
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The maximum complete multipartite subgraph problem

H = (E , C) is the minimal non-multiclique clutter of G

|C | = 2 (∀C ∈ C) ⇐⇒ G is fan- and prism-free
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Chromatic Gallai identities (with Jost and Meurdesoif)

(f)(e)

(c)(a) (b)

(d)

~G is an orientation of G , without 3-dicycle

χ(G ) + α(S(~G )) = |V (G )|
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Chromatic Gallai identities (with Jost and Meurdesoif)

(d) (e)

(c)

(f)

(a) (b)

~G is an orientation of G , without 3-dicycle

χ(G ) + α(S(~G )) = |V (G )| = α(G ) + χ(S(~G ))
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Appl. in mathematical programming (with Meurdesoif)

χf (G ) =


max 1>x
s.t. x(K ) ≤ 1 (∀clique K )

xv ≥ 0 (∀v ∈ V )

=


min 1>y
s.t.

∑
K3v yK = 1 (∀v)

yK ≥ 0 (∀clique K )

y optimal for G ⇒ x feasible for S(~G )

xuv =
∑

clique-stars SK3uv
yK
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Appl. in mathematical programming (with Meurdesoif)

ϑ(G ) =


max

∑
v ‖xv‖2

s.t. ‖xo‖2 = 1
x>o xv = ‖xv‖2 (∀v)
x>u xv = 0 (∀uv ∈ E )

=


min ‖yo‖2

s.t. ‖yv‖2 = 1 (∀v)
y>o yv = 1 (∀v)
y>u yv = 0 (∀uv /∈ E )

x ∈ Rd×m+1 optimal for S(~G ) ⇒ y ∈ Rnd×n+1 feasible for G

yov = xo −
∑

u:uv∈E(~G)

xuv and yv u =


yov if u = v

xuv if uv ∈ E (~G )
0 otherwise
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Appl. in mathematical programming (with Meurdesoif)

If α(G ) ≤ β(G ) ≤ χ(G ), ∀G , then

α(G ) ≤ Φβ(G ) := |V (G )| − β(S(~G )) ≤ χ(G ) (∀G )

Improving Lovász’s ϑ bound for coloring

α(G ) ≤ Φχf
(G ) ≤ χf (G ) and ϑ(G ) ≤ Φϑ(G ) ≤ χ(G ) (∀G )

|V | |E | min ρ := Φϑ−ϑ
ϑ mean ρ max ρ

M3 5 5 − 23.6% −
M4 11 35 26.8% 27.3% 28.7%

M5 23 182 26.5% 27.6% 29.5%

M6 47 845 26.0% 27.8% 29.5%
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Coloring clustered graphs (with Bonomo, Ekim and Ries)

(d)

(a) (b) (c)

(e)

M(G ,V) =

 1 1 0 1
1 0 1 0
0 1 1 0

 and M(G/V) =

(
1 1 0 1
1 1 1 0

)

ω(G/V) ≤ χ(G/V) ≤ χsel(G ,V)
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Coloring clustered graphs (with Bonomo, Ekim and Ries)

G is selective-perfect if M(G ,V) is perfect for all V

uv ∈ E
G is i -threshold if m

<(t(u) + t(v))−=(t(u))=(t(v)) > 0

Minimal clustered graphs such that M(G ,V) 6= M(G/V) are (a)-(c)

G is selective-perfect ⇐⇒ G is i-threshold
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The clique-connecting forest polytope

(CCFO)


0 ≤ xe ≤ 1 (∀e ∈ E )

x(E (U)) ≤ |U| −
{

1 if U is a clique of G
2 otherwise

(∀U ⊆ V )

(b)(a)

Facets of the clique-connecting forest polytope

Inequalities induced by complete sets or by the clique polytope are facets
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3 Min-max relations

4
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The star polytope (with Nguyen)

G1 ∪ . . . ∪ Gk = G with Gi ⊆ G

Cost =
∑

i ∆(Gi )

(a)
(b)

Figure : If max ∆(Gi ) = 2, then Cost > ∆(G )
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The star polytope (with Nguyen)

ocm set (C ,M):

M is a matching

C = C1 ∪ . . . ∪ Ck (Ci odd-circuit)

C1, . . . ,Ck ,M are pairwise vertex-disjoint

Generalizing Kőnig’s min-max relation to a “best-posible” one

(Pstar )

{
xe ≥ 0 for all e ∈ E

1
2x(C ) + x(M) ≤ 1 for all maximal ocm set (C ,M) of G ,

is minimally TDI
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Max-multiflow vs. min-multicut

(a) (b) (c)

A multicut disconnects the demands
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Max-multiflow vs. min-multicut

The multicut polytope: conv .hull{χδ(V1,...,Vp)} (∀p)

(MCUT)

{
0 ≤ xe≤ 1 (∀e)

x(C \ {e}) ≤ xe (∀ circuit C 3 e)

Weights: (+) demands and (−) links

(MCUT) is TDI ⇐⇒ the graph is series-parallel

⇓

G + H is series-parallel =⇒ max-multiflow=min-multicut
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Structure and algorithm in elections (with Galand and
Spanjaard)

P ′ =

 a c b
b b a
c a c

 is a subprofile of P =


a c b b a
b d a a c
c b c d b
d a d c d


χc
v := position of candidate c ∈ C in voter v ∈ V

representative k-set C ′ ⊆ C minimizes
∑

v∈V minc∈C ′ χc
v

P single-peaked if ∃ path P with vertex-set C :

{c ∈ C : χc
v ≤ i} induces a connected subgraph of P

(∀v ∈ V , ∀i ∈ {1, . . . , |C |})
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Structure and algorithm in elections (with Galand and
Spanjaard)

Kemeny voter u minimizes
∑

v∈V d(u, v), where

d(u, v) =
∑

ab pair of C

(1uab − 1vab)2 , 1uab =

{
1 if χa

u < χb
u

0 otherwise

(u may be outside V )

P single-crossing if ∃ path P with vertex-set V :

{v ∈ V : χa
v < χb

v} induces a connected subgraph of P

(∀ab pair of C )

HDR — Denis Cornaz Structures and Duality in Comb. Prog. LAMSADE, Paris-Dauphine 22 / 24



Structure and algorithm in elections (with Galand and
Spanjaard)

C = partition of C into intervals

P =



d d
x a
y v
c b
b c
a x
v y


=



d d
x a
y v
c b
b c
a x
v y


P/C = subprofile with one candidate per interval of C

P/(abcv , d , x , y) =


d d
x a
y x
a y

 and P/(abv , d , cxy) =

 d d
c a
a c


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Structure and algorithm in elections (with Galand and
Spanjaard)

single-peaked width:=
maximum size of an interval in C such that P/C is single-peaked

finding the single-peaked width is P
bounded single-peaked width =⇒ representative k-set becomes P

single-crossing width:=
maximum size of an interval in C such that P/C is single-crossing

finding the single-crossing width is P
bounded single-crossing width =⇒ Kemeny voter becomes P

HDR — Denis Cornaz Structures and Duality in Comb. Prog. LAMSADE, Paris-Dauphine 24 / 24



Question: Max-multiflow vs. min-multicut

(c)(a)
(b)

(G ,R) signed graph: R is the set of demands (red)

C odd-circuit: |C ∩ R| odd

C flow: |C ∩ R| = 1

T = R 4 D (D cut or multicut)

HDR — Denis Cornaz Structures and Duality in Comb. Prog. LAMSADE, Paris-Dauphine 24 / 24



Question: The star polytope

(b)(a)

Figure : If max ∆(Gi ) = 4, then Cost > ∆(G )
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