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Introductory assumptions and definitions

minimizex∈Rn f (x).

Assumptions
f bounded below;
f continuously differentiable (nonconvex).

Blackbox/Derivative-free setup

Derivatives unavailable for algorithmic use.
Only access to values of f .
Important paradigm (cf Anne Auger’s plenary).
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Complexity in blackbox optimization

My goal as a derivative-free/blackbox optimizer

Develop algorithms with controlled
Number of calls to f ;
Dependency on n.

Complexity bound

Given ϵ ∈ (0, 1) and, bound the number of function evaluations needed
by a method to reach x such that

∥∇f (x)∥ ≤ ϵ,

deterministically or in expectation/probability.

Focus: dependency w.r.t. n.

C. W. Royer Random subspace direct search MODE 2024 5



Complexity in blackbox optimization

My goal as a derivative-free/blackbox optimizer

Develop algorithms with controlled
Number of calls to f ;
Dependency on n.

Complexity bound

Given ϵ ∈ (0, 1) and, bound the number of function evaluations needed
by a method to reach x such that

∥∇f (x)∥ ≤ ϵ,

deterministically or in expectation/probability.

Focus: dependency w.r.t. n.

C. W. Royer Random subspace direct search MODE 2024 5



Complexity in blackbox optimization

My goal as a derivative-free/blackbox optimizer

Develop algorithms with controlled
Number of calls to f ;
Dependency on n.

Complexity bound

Given ϵ ∈ (0, 1) and, bound the number of function evaluations needed
by a method to reach x such that

∥∇f (x)∥ ≤ ϵ,

deterministically or in expectation/probability.

Focus: dependency w.r.t. n.

C. W. Royer Random subspace direct search MODE 2024 5



DFO algorithms

Main algorithmic families
Direct search: Explore the space through selected directions.
Model based: Build a surrogate for the objective function.

Choosing a family for a Friday talk
Direct search simpler to explain.
All results have a model-based counterpart.
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A (simplified) direct-search framework

Inputs: x0 ∈ Rn, δ0 > 0.
Iteration k: Given (xk , δk),

Choose a set Dk ⊂ Rn of m vectors.
If ∃ d k ∈ Dk such that

f (xk + δk d k) < f (xk)− δ2
k∥d k∥2

set xk+1 := xk + δkd k , δk+1 := 2δk .
Otherwise, set xk+1 := xk , δk+1 := δk/2.

Which vectors should we use?
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Choosing Dk

A measure of set quality
The set Dk is called κ-descent for f at xk if

max
d∈Dk

−dT∇f (xk)

∥d∥∥∇f (xk)∥
≥ κ ∈ (0, 1].

Guaranteed when Dk is a Positive Spanning Set (PSS);
Dk PSS ⇒ |Dk | ≥ n + 1;
Ex) D⊕ := {e1, . . . , en, -e1, . . . , -en} is always 1√

n
-descent.
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Complexity of deterministic direct search

Assumption: For every k , Dk is κ-descent and contains m unit directions.

Theorem (Vicente ’12)

Let ϵ ∈ (0, 1) and Nϵ be the number of function evaluations needed to
reach xk such that ∥∇f (xk)∥ ≤ ϵ. Then,

Nϵ ≤ O
(
m κ−2 ϵ−2) .

Unit norm can be replaced by bounded norm.
Choosing Dk = D⊕, one has κ = 1√

n
, m = 2n, and the bound

becomes
Nϵ ≤ O

(
n2 ϵ−2) .

⇒Best possible dependency w.r.t. n for deterministic direct-search
algorithms.

C. W. Royer Random subspace direct search MODE 2024 9



Complexity of deterministic direct search

Assumption: For every k , Dk is κ-descent and contains m unit directions.

Theorem (Vicente ’12)

Let ϵ ∈ (0, 1) and Nϵ be the number of function evaluations needed to
reach xk such that ∥∇f (xk)∥ ≤ ϵ. Then,

Nϵ ≤ O
(
m κ−2 ϵ−2) .

Unit norm can be replaced by bounded norm.
Choosing Dk = D⊕, one has κ = 1√

n
, m = 2n, and the bound

becomes
Nϵ ≤ O

(
n2 ϵ−2) .

⇒Best possible dependency w.r.t. n for deterministic direct-search
algorithms.

C. W. Royer Random subspace direct search MODE 2024 9



Randomizing direct search

Classical direct search
Set Dk ⊂ Rn, |Dk | = m, cm(Dk) ≥ κ;
Complexity:

O(mκ−2 ϵ−2).

m depends on n (m ≥ n + 1).
κ depends on n (approximate ∇f (xk) ∈ Rn).

My original thought
Generate directions in random subspaces of Rn;
Use results from dimensionality reduction;
Remove all dependencies on n!

Spoiler alert: You can only reduce the dependency on n.
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What can you do?

Our approach
Consider a random subspace of dimension r ≤ n;
Use a PSS to approximate the projected gradient in the subspace;
Guarantee sufficient gradient information in probability.

What it brings us
Use random directions.
Possibly less than n.
Possibly unbounded.

C. W. Royer Random subspace direct search MODE 2024 11



Not the only game in town (1/2)

Probabilistic descent (Gratton et al ’15)

Use directions [d −d ] with d ∼ U(Sn−1).

Complexity improves from O(n2ϵ−2) to O(nϵ−2) (m = 2).

Limited to one distribution.

Gaussian smoothing approach: Draw d ∼ N (0, I ) and use

f (x + δd )− f (x)
δ

d or
f (x + δd )− f (x − δd )

δ
d .

Random gradient-free method (Nesterov and Spokoiny 2017),
Stochastic three-point method (Bergou et al, 2020).

Also achieve O(nϵ−2) bound.

Use one-dimensional subspace based on Gaussian vectors.

Use fixed or decreasing stepsizes.
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Not the only game in town (2/2)

Zeroth-order (Kozak et al ’21, ’22)
Estimate directional derivatives directly.
Use orthogonal random directions.
Complexity results for convex/PL functions.

Our goals
Analyze a general subspace-based framework.
Inspiration: Model-based methods (Cartis and Roberts ’23, Dzahini
and Wild ’22a).
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Algorithm

Inputs: x0 ∈ Rn , δ0 > 0.
Iteration k: Given (xk , δk),

Choose Pk ∈ Rr×n at random.
Choose Dk ⊂ Rr having m vectors.
If ∃ d k ∈ Dk such that

f (xk + δk PT
k d k) < f (xk)− δ2

k∥PT
k d k∥2,

set xk+1 := xk + δkPT
k d k , δk+1 := 2δk .

Otherwise, set xk+1 := xk , δk+1 := δk/2.
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Probabilistic properties

New polling sets {
PT

k d
∣∣ d ∈ Dk

}
⊂ Rn.

Pk ∈ Rr×n: Maps onto r -dimensional subspace;
Dk : Direction set in Rr .

What do we want?

Preserve information while applying Pk/PT
k .

Approximate −Pk∇f (xk) using Dk .
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Probabilistic properties for Pk

Pk is (η, σ,Pmax)-well aligned for (f , xk) if
∥Pk∇f (xk)∥ ≥ η∥∇f (xk)∥,

σmin(Pk) ≥ σ,
σmax(Pk) ≤ Pmax.

Ex) Pk = I n ∈ Rn×n is (1, 1, 1)-well aligned.

Probabilistic version
{Pk} is (q, η, σ,Pmax)-well aligned if:

P (P0 (q, η, σ,Pmax)-well aligned ) ≥ q

∀k ≥ 1, P ((q, η, σ,Pmax)-well aligned | P0,D0, . . . ,Pk−1,Dk−1) ≥ q,
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Probabilistic properties for Dk

Deterministic descent
The set Dk is (κ, dmax)-descent for (f , xk) if

maxd∈Dk

−dTPk∇f (xk )
∥d∥∥Pk∇f (xk )∥ ≥ κ,

∀d ∈ Dk , d−1
max ≤ ∥d∥ ≤ dmax.

Ex) D⊕ = {e1, . . . , en,−e1, . . . ,−en} is ( 1√
n
, 1)-descent.

Probabilistic descent sets
{Dk} is (p, κ, dmax)-descent if:

P (D0 (κ, dmax)-descent | P0) ≥ p

∀k ≥ 1, P (Dk (κ, dmax)-descent | P0,D0, . . . ,Pk−1,Dk−1,Pk) ≥ p,
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Complexity analysis

Theorem (Roberts, R. ’23)

Assume:
{Dk} (p, κ, dmax)-descent, |Dk | = m;
{Pk} (q, η, σ,Pmax)-well aligned, pq > 1

2 .
Let Nϵ the number of function evaluations needed to have ∥∇f (xk)∥ ≤ ϵ.

P
(
Nϵ ≤ O

(
mϕϵ−2

2pq − 1

))
≥ 1 − exp

(
−O

(
2pq − 1

pq
ϕϵ−2

))
.

where ϕ = η−2σ−2P4
maxd

8
maxκ

−2.

Does this bound depend on n?
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Complexity and dimension dependencies

m η−2σ−2P4
maxd

8
max κ

−2ϵ−2.

A first simplification

Dk = {e1, . . . , er ,−e1, . . . ,−er} in Rr ;
κ = 1√

r
, m = 2r , dmax = 1.

⇒ Bound becomes 2r2η−2σ−2P4
maxϵ

−2.

Using sketching techniques

Pk σ Pmax

Identity 1 1
Gaussian Θ(

√
n/r) Θ(

√
n/r)

Hashing Θ(
√
n/r) (Dzahini & Wild ’22b)

√
n

Orthogonal
√

n/r
√
n/r .

⇒ Get a bound in O(nϵ−2) even when r = O(1) and η = O(1)!
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Experiments in large dimensions

Benchmark:
Medium-scale test set (90 CUTEst problems of dimension ≈ 100);
Large-scale test set (28 CUTEst problems of dimension ≈ 1000).

Budget: 200(n + 1) evaluations.

Comparison:
Deterministic DS with Dk = D⊕ or Dk = {e1, . . . , en,−

∑n
i=1 e i};

Probabilistic direct search with 2 uniform directions;
Stochastic Three Point;
Probabilistic direct search with Gaussian/Hashing/Orthogonal Pk

matrices + 2 directions in the subspace.
Goal: Satisfy f (xk)− fopt ≤ 0.1(f (x0)− fopt).
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Comparison of all methods
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Left: Medium scale; Right: Large scale.

Can use less directions through sketching;
But always a (hidden) dependency on n!
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Gaussian matrices and the value of r
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Numerically
Sketches of dimension > 1 may improve things...
...but in general opposite (Gaussian) directions work best!
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Summary of our findings

If you want to scale up...
Can use less directions through sketching;
But always a (hidden) dependency on n!

Numerically
Sketches of dimension > 1 may improve things...
...but in general opposite Gaussian directions are quite good!
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Outline

1 Direct search

2 Reduced subspace approach

3 More on 1D subspaces
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Warren: “But why does this work?”

Why one-dimensional subspaces?
Best performance for 1-dimensional subspaces in general.
Unclear why.

Our approach: Expected decrease guarantees
Use Taylor approximation to focus on linear models

f (x + d )− f (x) ≤ ∇f (x)Td + L
2∥d∥

2.

Analyze the expected decrease guarantees for those functions.
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Theory

Key result (Hare, Roberts, R. ’22)

Let g ∈ Sn−1, P ∈ Rr×n and D = {e1, . . . , er ,−e1, . . . ,−er}.
Then, the expected decrease ratio

E
[
mind∈D gTPTd

]
2r

is minimized at r = 1.

Side notes
Proof based on the quantity

Eu∼U(Sn−1)

[
max
1≤r

|[u]i |
]
.

Exact values hard to find in the literature!
When g is a gradient, guarantees that r = 1 gives the best “bang for
your buck”.
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Numerical validation

Setup
Monte-Carlo approximations of expected decrease.
Quadratic functions with a random linear term x 7→ gTx + L

2∥x∥
2.

Normalization by the number of function evaluations.
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Summary

Our findings

A revised probabilistic analysis/subspace viewpoint;
Good complexity (O(n)).
Motivation for using low-dimensional subspaces (works for other DFO
methods!).

Perspectives
Stochastic function values.
Correlated subspaces.
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That’s it!

References
Direct search based on probabilistic descent in reduced spaces
L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
Expected decrease for derivative-free algorithms using random
subspaces
W. Hare, L. Roberts and C. W. Royer, Technical report
arXiv:2308.04734v2, 2024.

The package
https://github.com/lindonroberts/directsearch

In Python, has all experiments.
Recently used in the Meta Nevergrad software.

Thank you for your attention!
clement.royer@lamsade.dauphine.fr
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