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@ Direct search
© Reduced subspace approach

© More on 1D subspaces
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0 Direct search
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Introductory assumptions and definitions

minimizexcrn f(x).

o f bounded below;

o f continuously differentiable (nonconvex).

Blackbox/Derivative-free setup

o Derivatives unavailable for algorithmic use.
@ Only access to values of f.

o Important paradigm (cf Anne Auger's plenary).
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Complexity in blackbox optimization

My goal as a derivative-free/blackbox optimizer

Develop algorithms with controlled
@ Number of calls to f;

@ Dependency on n.
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My goal as a derivative-free/blackbox optimizer

Develop algorithms with controlled
@ Number of calls to f;

o Dependency on n. )

Complexity bound

Given € € (0,1) and, bound the number of function evaluations needed
by a method to reach x such that

IVE(x)|| <€,

deterministically or in expectation/probability.
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Complexity in blackbox optimization

My goal as a derivative-free/blackbox optimizer

Develop algorithms with controlled
@ Number of calls to f;

o Dependency on n. )

Complexity bound

Given € € (0,1) and, bound the number of function evaluations needed
by a method to reach x such that

IVE(x)|| <€,

deterministically or in expectation/probability.

Focus: dependency w.r.t. n.
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DFO algorithms

Main algorithmic families

@ Direct search: Explore the space through selected directions.
@ Model based: Build a surrogate for the objective function.

Choosing a family for a Friday talk

@ Direct search simpler to explain.

@ All results have a model-based counterpart.
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A (simplified) direct-search framework

Inputs: xg € R", o > 0.
Iteration k: Given (xy, k),

@ Choose a set D, C R” of m vectors.
o If 3 dy € Dy such that

f(xk + 0 di) < f(xi) — 67| di]?

set X1 1= X) + Oxdy, 5k+1 = 20.
o Otherwise, set xx11 := Xk, Okr1 := 0 /2.
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A (simplified) direct-search framework

Inputs: xg € R", o > 0.
Iteration k: Given (xy, k),

@ Choose a set D, C R” of m vectors.
o If 3 dy € Dy such that

f(xk + 0 di) < f(xi) — 67| di]?

set X1 1= X) + Oxdy, 5k+1 = 20.
o Otherwise, set xx11 := Xk, Okr1 := 0 /2.

Which vectors should we use? }
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A measure of set quality

The set Dy is called x-descent for f at xj if

—dVf(xy)
max ——————~=— > x € (0,1].
deDy ||d||[[VF(xk)ll (®.1
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Choosing Dy

A measure of set quality
The set Dy is called k-descent for f at xy if
—dTVf(Xk)

max —————>- > g € (0,1].
deDy ||d||[[VF(xk)ll (®.1

.

o Guaranteed when Dy is a Positive Spanning Set (PSS);
e D PSS = |Dk| >n+1;
e Ex) Dg :={e1,...,e,,-€1,...,-€,} is always %-descent.

.
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Complexity of deterministic direct search

Assumption: For every k, Dy is k-descent and contains m unit directions.

Theorem (Vicente '12)

Let € € (0,1) and N, be the number of function evaluations needed to
reach x, such that |Vf(x,)|| <e. Then,

N, < O (mff2 672).
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Complexity of deterministic direct search

Assumption: For every k, Dy is k-descent and contains m unit directions.

Theorem (Vicente '12)

Let € € (0,1) and N, be the number of function evaluations needed to
reach x, such that |Vf(x,)|| <e. Then,

N, < O (mff2 672).

A

@ Unit norm can be replaced by bounded norm.
e Choosing Dy = Dg, one has k = % m = 2n, and the bound
becomes
N. < O (n2 672) .

=Best possible dependency w.r.t. n for deterministic direct-search
algorithms.

A
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Randomizing direct search

Classical direct search
o Set Dy C R”, |Dk| = m, cm(Dy) > k;
o Complexity:

O(mk—2e72).

o mdependsonn(m>n+1).
o K depends on n (approximate Vf(xx) € R").
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o Set Dy C R”, |Dk| = m, cm(Dy) > k;
o Complexity:

O(mk—2e72).

o mdependsonn(m>n+1).
o K depends on n (approximate Vf(xx) € R").

My original thought

o Generate directions in random subspaces of R";
@ Use results from dimensionality reduction;

@ Remove all dependencies on n!
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Randomizing direct search

Classical direct search
o Set Dy C R”, |Dk| = m, cm(Dy) > k;
o Complexity:

O(mk—2e72).

o mdependsonn(m>n+1).
o K depends on n (approximate Vf(xx) € R").

My original thought

o Generate directions in random subspaces of R";
@ Use results from dimensionality reduction;

@ Remove all dependencies on n!

Spoiler alert: You can only reduce the dependency on n.

C. W. Royer Random subspace direct search MODE 2024 10



What can you do?

o Consider a random subspace of dimension r < n;
@ Use a PSS to approximate the projected gradient in the subspace;
@ Guarantee sufficient gradient information in probability.

What it brings us

@ Use random directions.
@ Possibly less than n.

@ Possibly unbounded.
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Not the only game in town (1/2)

Probabilistic descent (Gratton et al '15)
@ Use directions [d —d] with d ~ U(S"1).
o Complexity improves from O(n?¢~2) to O(ne~2) (m = 2).

@ Limited to one distribution.
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Not the only game in town (1/2)

Probabilistic descent (Gratton et al '15)
@ Use directions [d —d] with d ~ U(S"1).
o Complexity improves from O(n?¢~2) to O(ne~2) (m = 2).

@ Limited to one distribution.

Gaussian smoothing approach: Draw d ~ A/(0, 1) and use

fx+dd) — F(x) f(x + 0d) — f(x — od)

5 o 5
Random gradient-free method (Nesterov and Spokoiny 2017),
Stochastic three-point method (Bergou et al, 2020).
@ Also achieve O(ne=2) bound.
@ Use one-dimensional subspace based on Gaussian vectors.

@ Use fixed or decreasing stepsizes.

d.

v
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Not the only game in town (2/2)

Zeroth-order (Kozak et al '21, '22)
o Estimate directional derivatives directly.
@ Use orthogonal random directions.

o Complexity results for convex/PL functions.
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Not the only game in town (2/2)

Zeroth-order (Kozak et al '21, '22)
o Estimate directional derivatives directly.
@ Use orthogonal random directions.

o Complexity results for convex/PL functions.

Our goals

@ Analyze a general subspace-based framework.

@ Inspiration: Model-based methods (Cartis and Roberts '23, Dzahini
and Wild '22a).
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© Reduced subspace approach
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Algorithm

Inputs: xg € R" , §g > 0.
Iteration k: Given (xy, k),

@ Choose P, € R™" at random.
@ Choose Dy C R" having m vectors.
o If 3 dy € Dy such that

f(xk + 0k Pidy) < f(xk) — 6xl|Prdil?,

set Xy41 1= X) + 6kPEdky Okt1 := 20k.

o Otherwise, set xx+1 := Xk, 041 := Ik /2.
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Probabilistic properties

New polling sets

{Pid|deDi} CR"

@ P, € R™"™ Maps onto r-dimensional subspace;

@ Dy: Direction set in R".

What do we want?

o Preserve information while applying Py/P}.

o Approximate —P,Vf(xx) using Dy.
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Probabilistic properties for P

Py is (1,0, Pmax)-well aligned for (f, xy) if

I1PVE(xK)[ = nl[VE(xe)ll,
Umin(Pk) g,
Umax(Pk) 'Dmax-

IN IV
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Probabilistic properties for P

Py is (1,0, Pmax)-well aligned for (f, xy) if

I1PVE(xK)[ = nl[VE(xe)ll,
Umin(Pk) > o,
Umax(Pk) < 'Dmax-

Ex) Py =1, € R™" js(1,1,1)-well aligned.
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Probabilistic properties for P

Py is (1,0, Pmax)-well aligned for (f, xy) if

I1PVE(xK)[ = nl[VE(xe)ll,
Umin(Pk) > o,
Umax(Pk) < 'Dmax-

Ex) Py =1, € R™" js(1,1,1)-well aligned.

Probabilistic version

{P«} is (q,7, 0, Pmax)-well aligned if:

P (Po (q,7, 0, Pmax)-well aligned ) > ¢
Vk > 1, P((q,7n,0, Pmax)-well aligned | Po,Do,...,Px_1,Dk-1) > q,
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Probabilistic properties for D

Deterministic descent
The set Dy is (K, dmax)-descent for (£, xy) if

—dTkaf(Xk)
MaXdeD; TP, vl =

Vd € Dy, d-l <|d| < dmax-

max
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Probabilistic properties for D

Deterministic descent
The set Dy is (K, dmax)-descent for (£, xy) if

—dTkaf(Xk)
MaXdeD; TP, vl =

Vd € Dy, d-l <|d| < dmax-

max

Ex) Dy = {e1,...,en, —€1,...,—€p} is (\%, 1)-descent.
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Probabilistic properties for D

The set Dy is (K, dmax)-descent for (£, xy) if

—dTkaf(Xk)
MaXdeD; TP, vl =

Vd € Dy, dil <|d| < dmax-

max

Ex) Dy = {e1,...,en, —€1,...,—€p} is (\%, 1)-descent.

Probabilistic descent sets
{Dx} is (p, K, dmax)-descent if:

P (Do (K, dmax)-descent | Pg)
Yk > 1, P (Dk (K), dmax)—descent ’ Po, Do, 00y Pk_]_, Dk_]_, Pk)
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Complexity analysis

Theorem (Roberts, R. '23)
Assume:
° {Dk} (p7 R, dmax)‘descent, ’,Dk’ =m;

C {Pk} (q777707 Pmax)‘We” aligned, pq > %
Let N, the number of function evaluations needed to have ||V f(xx)|| < e.

P (NE <0 ( mee”> >> >1—exp (—(’) <2pq_1¢62)>.
2pg —1 pPq

where ¢ = n~2072P4_ d8 k2.
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Complexity analysis

Theorem (Roberts, R. '23)
Assume:
° {Dk} (p7 R, dmax)‘descent, ’,Dk’ =m;

C {Pk} (q777707 Pmax)‘We” aligned, pq > %
Let N, the number of function evaluations needed to have ||V f(xx)|| < e.

P (NE <0 ( mee”> >> >1—exp (—(’) <2pq_1¢62)>.
2pg —1 pPq

where ¢ = n~2072P4_ d8 k2.

Does this bound depend on n?
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Complexity and dimension dependencies

-2 _—2p4 8 —2 -2
mn 0 “Pradmax & € °.
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Complexity and dimension dependencies

-2 —2p4 48 -2 -2
mn 0 “Pradmax & € °.

A first simplification

e Dy=1{e1,...,e,,—e1,...,—e,} in R";
° m:%,m:h, dmax = 1.

= Bound becomes 2r?n~2072P% 2.
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Complexity and dimension dependencies

-2 _—-2p4 8 72 —2
mn —o Pmaxdmax € .

A first simplification

e Dy=1{e1,...,e,,—e1,...,—e,} in R";
° m:%,m:h, dmax = 1.

= Bound becomes 2r’n~20 2P _ 2.

\

Using sketching techniques

P ‘ % Prmax
Identity 1 1
Gaussian o(\/n/r) o(\/n/r)
Hashing | ©(y/n/r) (Dzahini & Wild '22b) Vvn

Orthogonal \/n/r \/n/r.

= Get a bound in O(ne~2) even when r = O(1) and n = O(1)!

V.
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Experiments in large dimensions

Benchmark:
@ Medium-scale test set (90 CUTEst problems of dimension ~ 100);
@ Large-scale test set (28 CUTEst problems of dimension ~ 1000).
Budget: 200(n + 1) evaluations.

Comparison:
@ Deterministic DS with Dy = Dg, or Dy = {e1,...,€5,— Y 1_; €i};
@ Probabilistic direct search with 2 uniform directions;
@ Stochastic Three Point;

@ Probabilistic direct search with Gaussian/Hashing/Orthogonal P
matrices + 2 directions in the subspace.

Goal: Satisfy f(xx) — fopr < 0.1(f(x0) — fopt)-
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Comparison of all methods

10 1.0
—— DSn 1 —— DSn+1
DS 2n DS 2n

0.84 — Prob DS 08 — Prob DS
T — STP T — STP
3 —=- Gaussian r = 1 3 ==+ Gaussian r = 1
£ 06 Hashing r = 1 2 £ 06 Hashing r = 1
= - Orthog r =1 = ==+ Orthog r = 1
204 £ 04
g g
& &

0.0 0.0

1 2 1 8 16 32 1 2 1l 8 16 32
Budget / min budget of any solver Budget / min budget of any solver

Left: Medium scale; Right: Large scale.

@ Can use less directions through sketching;

@ But always a (hidden) dependency on n!
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Gaussian matrices and the value of r

L0 L0
—— r=1
— -9
0.8 - =3
% ——
S r=>5
206
&
2041
£ - .
5
5
£ oSO O === ——0—— e ——

0.2 » p—— I
L=
-
/
7’
- - - - 0.0 +=ta= T T -
1 2 A 8 16 32 1 2 A 8 16 32

Budget / min budget of any solver Budget / min budget of any solver

Left: Medium scale; Right: Large scale.

@ Sketches of dimension > 1 may improve things...

@ ...but in general opposite (Gaussian) directions work best!
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Summary of our findings

If you want to scale up...

@ Can use less directions through sketching;
@ But always a (hidden) dependency on n!

@ Sketches of dimension > 1 may improve things...

@ ...but in general opposite Gaussian directions are quite good!
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© More on 1D subspaces
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Warren: “But why does this work?"

Why one-dimensional subspaces?

@ Best performance for 1-dimensional subspaces in general.

@ Unclear why.
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Warren: “But why does this work?"

Why one-dimensional subspaces?

@ Best performance for 1-dimensional subspaces in general.

@ Unclear why.

Our approach: Expected decrease guarantees

@ Use Taylor approximation to focus on linear models

f(x +d) — f(x) < Vf(x)'d + £|d|%

@ Analyze the expected decrease guarantees for those functions.
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Key result (Hare, Roberts, R. '22)

letg S, PcR™ and D = {ey,...,e,,—€1,...,—€,}.
Then, the expected decrease ratio

E [mindep gTPTd]
2r

is minimized at r = 1. )

@ Proof based on the quantity

Eyv(sn-1) [Tgﬂ["]i!] .

o Exact values hard to find in the literature!

@ When g is a gradient, guarantees that r = 1 gives the best “bang for
your buck”.
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Numerical validation

@ Monte-Carlo approximations of expected decrease.

o Quadratic functions with a random linear term x — gTx + 5||x||2.

@ Normalization by the number of function evaluations.

£ 00304% —— r=1,L=1

E 1 @ p=1 L=0

£ 0.0251 r=9—F=1
= % r=2 L=0
£ 0,020 —— r=n/2, L=1
z . @ p=n/2 L=0
i1 k4 s v

g 0.015 1 . —— r=n L=1
Zu ‘ ol apin. Ll
£ 0.0101 .

o

% 0.005 1

< 0.000

10! 102 10°
Ambient dimension n
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Our findings

@ A revised probabilistic analysis/subspace viewpoint;
e Good complexity (O(n)).

@ Motivation for using low-dimensional subspaces (works for other DFO
methods!).
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Our findings

@ A revised probabilistic analysis/subspace viewpoint;
e Good complexity (O(n)).

@ Motivation for using low-dimensional subspaces (works for other DFO
methods!).

Perspectives

@ Stochastic function values.

o Correlated subspaces.
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That's it!

o Direct search based on probabilistic descent in reduced spaces
L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.

o Expected decrease for derivative-free algorithms using random

subspaces
W. Hare, L. Roberts and C. W. Royer, Technical report
arXiv:2308.04734v2, 2024.

The package
@ https://github.com/lindonroberts/directsearch

@ In Python, has all experiments.

@ Recently used in the Meta Nevergrad software.
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That's it!

o Direct search based on probabilistic descent in reduced spaces
L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.

o Expected decrease for derivative-free algorithms using random

subspaces
W. Hare, L. Roberts and C. W. Royer, Technical report
arXiv:2308.04734v2, 2024.

The package
@ https://github.com/lindonroberts/directsearch

@ In Python, has all experiments.

@ Recently used in the Meta Nevergrad software.

Thank you for your attention!
clement.royer@lamsade.dauphine. fr
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