Long-term office space reallocation: A case study

Clément W. Royer

25^{ème} congrès ROADEF - Amiens, 7 mars 2024

Dauphine | PSL LAMSADE

A joint effort

The LAMSADE team

- Stéphane Airiau, Lucie Galand, Jérôme Lang, Sonia Toubaline (+ CR).
- Expertise: computational social choice, multicriteria decision aiding, optimization.

+ Our clients: V. Renaudin, P.-F. Guimont, Dauphine.

Reallocation plan

- Nouveau Campus

The Nouveau Campus project

- New wing in construction \Rightarrow 2024.
- Others renovated in order: B, P, C+D, A.
- Expected year of completion: 2027.

Main task

Given the current and final office allocations, allocate office space during all phases of the renovation process.

Main task

Given the current and final office allocations, allocate office space during all phases of the renovation process.

Sub-tasks

- Shortage of offices in first two phases \Rightarrow Compression.
- Take available space \Rightarrow Dispersion.
- Maximize global satisfaction of entities (departements, research centers, etc).

Main task

Given the current and final office allocations, allocate office space during all phases of the renovation process.

Sub-tasks

- Shortage of offices in first two phases \Rightarrow Compression.
- Take available space \Rightarrow Dispersion.
- Maximize global satisfaction of entities (departements, research centers, etc).

Real-world challenges

- This is all happening once!
- Deadlines set by the university and the construction company.
- \Rightarrow We need something that works.

Problem data (1/2)

- \mathcal{P} : phases from 0 (initial) to 5 (final).
- E: 22 entities (departments, research centers, services).
- \mathcal{B} : \approx 1000 offices, with capacities { κ_b } (either 2 or 3).
- \mathcal{I} : ≈ 1000 "individuals", with weights $\{\rho_i\}_{i \in \mathcal{I}}$ in $\{1, 2, 3\}$ and entities $\{e_i\} \in \mathcal{E}^{|\mathcal{I}|}$.

An Excel spreadsheet⇒Lots of data cleaning!

Problem data (1/2)

- \mathcal{P} : phases from 0 (initial) to 5 (final).
- E: 22 entities (departments, research centers, services).
- \mathcal{B} : \approx 1000 offices, with capacities { κ_b } (either 2 or 3).
- \mathcal{I} : ≈ 1000 "individuals", with weights $\{\rho_i\}_{i\in\mathcal{I}}$ in $\{1,2,3\}$ and entities $\{e_i\}\in\mathcal{E}^{|\mathcal{I}|}$.

An Excel spreadsheet⇒Lots of data cleaning!

Renovation phases

- 5 (remaining) phases of planned durations τ_p .
- For every phase p, \mathcal{B}_p : offices in renovation at phase p.
- \mathcal{I}^c : individuals that can share their office during renovation.

Problem data (2/2)

Dauphine's graph

- Built by hand (!)
- $|\mathcal{B}|$ vertices.
- Three edge types:
 - Next door offices (distance 1).
 - Change wing (distance 5).
 - Change floor (distance 10).

Problem data (2/2)

Dauphine's graph

- Built by hand (!)
- $|\mathcal{B}|$ vertices.
- Three edge types:
 - Next door offices (distance 1).
 - Change wing (distance 5).
 - Change floor (distance 10).

Resulting graph

- Connected, easy to build once.
- Distances vary between 1 and $98 \Rightarrow \text{Problematic}!$

Reallocation plan

Mathematical model

- Variables and constraints
- Criteria and aggregation

Main boolean variables

- x_{bep} : Office b allocated to entity e at phase p.
- r_{bep} : Office b remains in e at phases p-1 and p.

Main boolean variables

- x_{bep} : Office b allocated to entity e at phase p.
- r_{bep} : Office b remains in e at phases p-1 and p.

Distance-related variables

- *v*_{bep}: Number of neighbors of *b* at phase *p* that belong to a different entity (out-of-entity).
- t_{bdep} : Number of offices in entity e_b that are at distance d of b at phase p.

$$\sum_{e \in \mathcal{E}} x_{bep} \leq 1 \qquad \forall b \in \mathcal{B}, \forall p \in \mathcal{P}.$$

$$\sum_{e \in \mathcal{E}} x_{bep} \leq 1 \qquad \forall b \in \mathcal{B}, \forall p \in \mathcal{P}.$$

• All individuals from an entity should have an office at every phase:

$$\sum_{b\in\mathcal{B}}\kappa_b\,d_{bep}\geq\sum_{i:e_i=e}\rho_i\qquad\forall p\in\mathcal{P},\forall e\in\mathcal{E}.$$

$$\sum_{e \in \mathcal{E}} x_{bep} \leq 1 \qquad \forall b \in \mathcal{B}, \forall p \in \mathcal{P}.$$

• All individuals from an entity should have an office at every phase:

$$\sum_{b\in\mathcal{B}}\kappa_b\,d_{bep}\geq\sum_{i:e_i=e}\rho_i\qquad\forall p\in\mathcal{P},\forall e\in\mathcal{E}.$$

• Offices under renovation cannot be allocated:

$$\sum_{e\in\mathcal{E}}x_{bep}=0\qquad\forall b\in\mathcal{B}_p.$$

$$\sum_{e \in \mathcal{E}} x_{bep} \leq 1 \qquad \forall b \in \mathcal{B}, \forall p \in \mathcal{P}.$$

• All individuals from an entity should have an office at every phase:

$$\sum_{b\in\mathcal{B}}\kappa_b\,d_{bep}\geq\sum_{i:e_i=e}\rho_i\qquad\forall p\in\mathcal{P},\forall e\in\mathcal{E}.$$

• Offices under renovation cannot be allocated:

$$\sum_{e \in \mathcal{E}} x_{bep} = 0 \qquad \forall b \in \mathcal{B}_p.$$

• Initial allocation set:
$$x_{be0} = x_{be0}^0$$
.

$$\sum_{e \in \mathcal{E}} x_{bep} \leq 1 \qquad \forall b \in \mathcal{B}, \forall p \in \mathcal{P}.$$

• All individuals from an entity should have an office at every phase:

$$\sum_{b\in\mathcal{B}}\kappa_b\,d_{bep}\geq\sum_{i:e_i=e}\rho_i\qquad\forall p\in\mathcal{P},\forall e\in\mathcal{E}.$$

• Offices under renovation cannot be allocated:

$$\sum_{e \in \mathcal{E}} x_{bep} = 0 \qquad \forall b \in \mathcal{B}_p.$$

- Initial allocation set: $x_{be0} = x_{be}^0$.
- Final allocation set: $x_{be5} = x_{be}^5$.

Constraints ('ed)

Topological constraints

- Restriction of locations: Ex) PhD student offices
- Forbidden configurations:

Ex) President next-door neighbor of unions

Constraints ('ed)

Topological constraints

- Restriction of locations: Ex) PhD student offices
- Forbidden configurations:

Ex) President next-door neighbor of unions

Many special cases

- Part of an entity moves out for one or more phase(s).
- Entities may change over the renovation period (Individual will).

For every entity e,

Number of moves (to be minimized)

$$\mathcal{M}(e) = \sum_{p \in \mathcal{P}} n_{ep}, \quad n_{ep} = \max\left\{\sum_{b \in \mathcal{B}} (x_{be(p-1)} - r_{bep}), \sum_{b \in \mathcal{B}} (x_{bep} - r_{bep})\right\}$$

For every entity e,

Number of moves (to be minimized)

$$M(e) = \sum_{p \in \mathcal{P}} n_{ep}, \quad n_{ep} = \max\left\{\sum_{b \in \mathcal{B}} (x_{be(p-1)} - r_{bep}), \sum_{b \in \mathcal{B}} (x_{bep} - r_{bep})\right\}$$

Oppression ratio (to be maximized)

$$C(e) = \sum_{p \in \mathcal{P}} \tau_p \, \frac{\sum_{b \in \mathcal{B}} x_{bep}}{\sum_{b \in \mathcal{B}} x_{be}^0}$$

For every entity e,

Number of moves (to be minimized)

$$M(e) = \sum_{p \in \mathcal{P}} n_{ep}, \quad n_{ep} = \max\left\{\sum_{b \in \mathcal{B}} (x_{be(p-1)} - r_{bep}), \sum_{b \in \mathcal{B}} (x_{bep} - r_{bep})\right\}$$

Compression ratio (to be maximized)

$$C(e) = \sum_{p \in \mathcal{P}} \tau_p \, \frac{\sum_{b \in \mathcal{B}} x_{bep}}{\sum_{b \in \mathcal{B}} x_{be}^0}$$

Solution Dispersion measure S(e) (to be minimized).

The dispersion objective

Several possible choices

• Take all possible distances into account:

The dispersion objective

Several possible choices

• Take all possible distances into account:

$$S(e) = \sum_{p \in \mathcal{P}} \sum_{b \in \mathcal{B}} \sum_{d=1}^{98} d t_{bdep}.$$

• Choose a coarser grid of distance values, e.g. 5:

$$\mathcal{S}(e) = \sum_{p \in \mathcal{P}} \sum_{b \in \mathcal{B}} \sum_{\ell=1}^{5} \ell \, g_{b\ell ep}.$$

where $g_{b\ell ep}$ corresponds to an interval of distances.

The dispersion objective

Several possible choices

• Take all possible distances into account:

$$S(e) = \sum_{p \in \mathcal{P}} \sum_{b \in \mathcal{B}} \sum_{d=1}^{98} d t_{bdep}.$$

• Choose a coarser grid of distance values, e.g. 5:

$$\mathcal{S}(e) = \sum_{p \in \mathcal{P}} \sum_{b \in \mathcal{B}} \sum_{\ell=1}^{5} \ell g_{b\ell ep}.$$

where $g_{b\ell ep}$ corresponds to an interval of distances.

• Use the number of out-of-entity neighbors:

$$S(e) = \sum_{p \in \mathcal{P}} \sum_{b \in \mathcal{B}} v_{bep}.$$

Criteria normalization and aggregation

Normalization

- Map criteria into [0,1].
- For entity e,

$$M(e) \leftarrow rac{M(e)}{|\mathcal{P}|\sum_{b \in \mathcal{B}} x_{be}^5}, C(e) \leftarrow 1 - rac{C(e)}{\sum_{p \in \mathcal{P}} \tau_p}$$

• Normalization for *S*(*e*) depends on maximum distance considered and/or maximum number of neighbors.

Criteria normalization and aggregation

Normalization

- Map criteria into [0, 1].
- For entity e,

$$M(e) \leftarrow rac{M(e)}{|\mathcal{P}|\sum_{b \in \mathcal{B}} x_{be}^5}, C(e) \leftarrow 1 - rac{C(e)}{\sum_{p \in \mathcal{P}} \tau_p}$$

• Normalization for *S*(*e*) depends on maximum distance considered and/or maximum number of neighbors.

Aggregation

$$\sum_{e\in\mathcal{E}}w_M M(e) + w_C C(e) + w_S S(e).$$

- Simple choice $w_M = w_C = w_S = 1$ (to be adjusted).
- We are thinking of something less utilitarian!

Setup

- Problem solved using Gurobi.
- Run on LAMSADE server.
- Orders: 10⁶ variables/constraints.

Setup

- Problem solved using Gurobi.
- Run on LAMSADE server.
- Orders: 10⁶ variables/constraints.

Tuning the function dispersion

- No dispersion metric >> Very different solution from the current one.
- Use full distances > Struggle to find a feasible point.
- Surrogates
 - Use a smaller number of distance values \Rightarrow 2 days to find a feasible point!
 - Use the number of out-of-entity neighbors $\Rightarrow 2$ days to go beyond 10% optimality gap.

- We optimize over all phases.
- The Nouveau Campus team computes the next phase by hand.

Our last results

- We optimize over all phases.
- The Nouveau Campus team computes the next phase by hand.

Next phase comparison

- Hand-coded solution is better on all three criteria!
- Number of moves similar (206 vs 216).
- Many exchanges to refine ours without significant change in next phase.

- We optimize over all phases.
- The Nouveau Campus team computes the next phase by hand.

Next phase comparison

- Hand-coded solution is better on all three criteria!
- Number of moves similar (206 vs 216).
- Many exchanges to refine ours without significant change in next phase.

What now?

- Their solution has been adopted (time constraints).
- But the following phases will be obtained through our model.

G Current and future work

Weighting our objectives

Current objective

$$\sum_{e\in\mathcal{E}}f(e)=M(e)+C(e)+S(e)$$

- Sums the three terms equally.
- Our goal: Add (fixed) weights for every entity

$$\sum_{e \in \mathcal{E}} w^e_M M(e) + w^e_C C(e) + w^e_S S(e), \quad w^e_M + w^e_C + w^e_S = 1$$

About the entities

- Different priorities!
- Compression/Dispersion do not have the same importance.
- \Rightarrow Entities will select their own weights.

Ongoing approach

- Based on ordered weighted averaging (Yager, '88)
- MILP model (Ogryczak & Olender, '12).

Current objective

$$\sum_{e\in\mathcal{E}}\omega(e,f)f(e)$$

- ω(e, f): Ordered weights from saddest to happiest entity (linearization)
- Our first test: $(5, 2, 1, \ldots, 1)$.
- Several others in the pipeline!

ROADEF-related

- Constraint programming: Finding a feasible solution.
- Benders decomposition: Split the main variables from the distance ones.

ROADEF-related

- Constraint programming: Finding a feasible solution.
- Benders decomposition: Split the main variables from the distance ones.

ROADEF-adjacent

- Continuous relaxation (given as a course project in M1 at Dauphine).
- Could use modern solvers for generalized linear programming (Summer internship).

What we have

- An MILP model that can be solved in reasonable time.
- A certificate that the next moving plan compares to the optimum.
- A flexible framework through OWA.

Moving forward

- Including entity preference data (poll).
- Explore alternate solving techniques (decomposition, continuous relaxations).
- We have limited time but appreciate all suggestions!

What we have

- An MILP model that can be solved in reasonable time.
- A certificate that the next moving plan compares to the optimum.
- A flexible framework through OWA.

Moving forward

- Including entity preference data (poll).
- Explore alternate solving techniques (decomposition, continuous relaxations).
- We have limited time but appreciate all suggestions!

What we have

- An MILP model that can be solved in reasonable time.
- A certificate that the next moving plan compares to the optimum.
- A flexible framework through OWA.

Moving forward

- Including entity preference data (poll).
- Explore alternate solving techniques (decomposition, continuous relaxations).
- We have limited time but appreciate all suggestions!

Thank you for your attention! clement.royer@lamsade.dauphine.fr