
A derivative-free algorithm for continuous submodular
optimization

Clément Royer

Joint work with Marc Kaspar

COCANA Seminar - July 29, 2025

C. W. Royer Submodular DFO COCANA 2025 1



Story of an internship in Dauphine

Timeline
Fall 2023: Marc follows my Master 1 course.
May 2024: Starts an internship with me.
August 2024: The internship ends.
July 2025: This talk!

The topic: Submodular optimization

Popular in ML recently (part of my department).
Originally a discrete maths concept (the other part of my department).

→ Goal: Apply what I do (derivative-free optimization) to this setting!
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Submodular functions

Definition (Edmonds ’70?)

f : 2n → R is submodular if for every A ⊂ B ⊂ {1, . . . , n} and v /∈ B , one
has

f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B).

J. Bilmes, Submodular Functions, Optimization and Machine Learning (2020).

Discrete concept for set-valued functions.
Sometimes called diminishing returns (DR).
Arises in economics, network/graph theory, etc.
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Discrete submodular optimization

A submodular optimization problem (for today)

maximize
X⊂{1,...,n}

f (X ) s.t. X ∈ C

f submodular function.
C ⊂ 2n constraint set.

→ NP-hard problem in general!
→ Optimal value can be approximated up to a certain factor.

Example: Cardinality constraint

f nonnegative monotone, C = {|X | ≤ k}, k < n.
Can compute Xk such that f (Xk) ≥

(
1 − 1

e

)
max|X |≤k f (X )

in polynomial time!
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Continuous submodular functions

Continuous submodularity

Discrete submodularity (f : 2n → R)

∀(X ,Y ) ∈ 2n, f (X ) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y ).

Continuous submodularity (f : [0, 1]n → R)

∀(x , y) ∈ [0, 1]n, f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y),

∨/∧ componentwise max/min.

Several other concepts of submodularity exist, with connections to
concavity (An Bian et al ’17, Bilmes ’22).
Applications in information theory and natural language processing.
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Case study: Topic modeling and summarization

Topic modeling

Data: Text documents.
Goal: Identify topics
through occurrences of
certain words.

Example: Grievances from France’s 1789 cahiers!

Topic summarization (Lin & Bilmes ’11)

Input: Documents and probabilistic topic model for each document.
Goal: Select a subset of documents to maximize the probabilistic
coverage of topics.

Discrete: Select a subset of documents.
Continuous: Select document i with probability xi ∈ [0, 1].

→ Submodular maximization problem!
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From submodular to a internship

Continuous submodular optimization
Continuous submodular replaces discrete submodular.
Cool applications in natural language processing.

Solving those problems

Algorithms with various approximation guarantees
and complexity (An Bian et al ’17).
Derivative-free optimization techniques (Chen et al ’20).

My internship proposal

Given a submodular optimization problem and my favorite (derivative-free)
algorithm,

What can we prove in theory?
Does it work in practice?
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Derivative-free optimization

Today’s problem class{
maximizex∈Rn f (x)
subject to x ∈ F = {ℓ ≤ x ≤ u,Ax ≤ b}.

with f : Rn → R, F polytope.

Derivative-free/Black-box optimization setup

Derivatives of f not available for algorithmic purposes.
Algorithm must use only function values.

Two algorithmic paradigms in derivative-free optimization
Build a model of f .
Explore the space through directions→Direct search.
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Direct search for maximization

Problem maximizex∈Rn f (x) s.t. x ∈ F = {ℓ ≤ x ≤ u, Ax ≤ b}.

Inputs: x0 ∈ F , α0 > 0.
Iteration k: Given (xk , αk),

Choose a set Dk ⊂ Rn of m vectors.
If ∃ dk ∈ Dk such that

xk + αkd k ∈ F and f (xk + αk d k) > f (xk)+α2
k

set xk+1 := xk + αkd k , αk+1 := 2αk .
Otherwise, set xk+1 := xk , αk+1 := αk/2.

Key for theory and pratice: Choice of Dk .
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Choosing the directions Dk

Assumptions on directions Dk

Dk consists of m unit vectors.
Dk is a κ-descent set for the constraints

min
v∈T (xk ,αk )

v ̸=0

max
d∈Dk

vTd
∥v∥

≥ κ.

xk

T (xk , αk)

T (xk , αk)

xk
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Complexity result for maximizex∈F f (x)

Assumptions

f is C1, ∇f Lipschitz continuous.
f is concave, has a maximum f ∗.
Distance to maxima is bounded (technical condition).
Dk κ-descent, |Dk | = m ∀k .

Theorem (from Dodangeh & Vicente ’14, Gratton et al ’19)

Direct search reaches xk such that f ∗ − f (xk) ≤ ϵ in at most
O(κ−2ϵ−1) iterations.
O(mκ−2ϵ−1) evaluations of f .

→ ϵ−1: on par with derivative-based methods.
→ m κ−2: cost of being derivative-free.
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What about practice?

My code: dspfd

Deterministic and randomized techniques for choosing directions in
linearly-constrained problems.
MATLAB code from 2017, still works off the shelf!
Still beats MATLAB’s patternsearch (and sometimes Polytechnique
Montréal’s nomad).

Experiments on CUTEst linearly-constrained problems (Royer et al ’24).
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Same problem, different assumptions
{

maximizex∈Rn f (x)
subject to x ∈ F = {ℓ ≤ x ≤ u,Ax ≤ b}.

Key: Suppose f is (DR)-submodular!

Definition
f is DR-submodular if

∀x , y ∈ F2, x ≥ y ⇒ ∇f (x) ≥ ∇f (y).

x ≥ y ⇔ xi ≥ yi ∀i = 1, . . . , n.

Continuous submodularity+concavity along positive directions.
Example Nonconvex quadratics

f (x) =
1
2
xTAx + bTx , Aij ≤ 0 ∀(i , j).
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Assumptions on f and previous complexity

Assume f is
DR-submodular.
Monotone: f (x) ≥ f (y) if x ≥ y .

Goal: Approach the value (1 − 1
e )f

∗.

Derivative-based Frank-Wolfe method (Bian et al ’17)

After K iterations, get xFW
K such that

f (xFW
K ) ≥ (1 − e−δ)f ∗ − L

2

K−1∑
k=0

γ2
k + e−δ f (x0).

γk : Stepsize, predefined (constant).
δ ∈ (0, 1).
Translates in complexity O(ϵ−1) to get within ϵ of

(
1 − 1

e

)
f ∗.
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Direct search for maximization on [ℓ,u]

Inputs: x0 ∈ F , α0 > 0.
Iteration k: Given (xk , αk),

Choose a set Dk ⊂ Rn of m vectors.
If ∃ dk ∈ Dk such that

xk + αk d k ∈ F and f (xk + αk d k) > f (xk) + α2
k

set xk+1 := xk + αkd k , αk+1 := 2αk .
Otherwise, set xk+1 := xk , αk+1 := αk/2.

Difference from before: complete polling.
Needed for the analysis, not in practice.
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Direction quality

Classical assumption: Dk has m unit vectors.

Main assumption on Dk

At every iteration k ,

max
d∈Dk

dT∇f (xk) ≥ κ max
v∈F ,∥v∥≤1

vT∇f (xk) where κ ∈ (0, 1].

Stronger than the assumption from the concave case.
Link to Frank-Wolfe requirements.

The case F = {0 ≤ x ≤ 1}
Natural choice: Dk = [I n −I n].

Concave case: κ-descent with κ = 1√
n
.

Submodular case: κ = 1
n (worse!).
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Results in the submodular case

Theorem (Kaspar, R. ’24-25)

After K ≥ 1 successful iterations j1, . . . , jK , the method satisfies

f (xjK ) ≥ f ∗ −
(
1 − e−O(κ2)

∑K
i=1 α

2
ji

)
(f ∗ − f (x0))−

L

2

K∑
i=1

α2
ji
.

Corollary

Reaches xk such that f (xk) ≥ (1 − 1
e )f

∗ + ϵ in at most

Õ(κ−2 ϵ−1) iterations.
Õ(m κ−2 ϵ−1) iterations.

→ ϵ−1: On par with (derivative-based) Frank-Wolfe approach
→ m κ−2: Similar to concave maximization (but values of m/κ may differ!)
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Other stepsize choices

Previous work: Predefined stepsizes (fixed, adaptive).
Variant of direct search without distinction between success/failure.

αk Guarantee after K iterations Complexity (its/evals)

1
K f (xK ) ≥ (1 − e−κ)f (x∗)− L

2K + e−κ f (x0) O(κ−1ϵ−1)/O(mκ−1ϵ−1)

1
κK f (xK ) ≥ (1 − e−1)f (x∗)− Lκ

2K + e−1 f (x0) O(κ−1ϵ−1)/O(mκ−1ϵ−1).

Better complexities than before (factor κ−1).
Should we use those instead?
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The best stepsize choice

Two variants of direct search
Fixed/Decreasing step sizes.
adaptatif (pardon my French): Classical updating rule.

Run on a submodular quadratic over [0, 1]10 using 100 simplex gradients.
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A topic summarization problem

Data
40 lectures that I gave on optimization for machine learning.
4 courses (1-8, 9-16, 17-24, 25-40).
Discrete probability distribution of the lectures around 4 topics
(derivatives/convexity/algorithms/applications).

→ A matrix of topic probabilities T ∈ [0, 1]40×1.

Topic summarization in this setting
Find a subset of lectures that covers the four topics as best as possible.
Constraints: At most two lectures from the first three courses, four
from the last course.
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A topic summarization problem (’ed)

The problem

maximizex∈R40
1
4
∑4

t=1

(
1 −

∏40
i=1(1 − pi (t)xi )

)
s.t.

∑8
i=1 xi ≤ 2,

∑16
i=9 xi ≤ 2∑24

i=17 xi ≤ 2,
∑40

i=25 xi ≤ 4
0 ≤ x ≤ 1.

Continuous submodular optimization problem!
Probabilities explicit here, could result from a blackbox process.

Comparison

Deterministic and randomized direct-search variants (dspfd).
Budget: 200n evaluations (n = 40).
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Results: Deterministic VS Randomized approach

Best function value: Deterministic (0.96 VS 0.94).
Sparser solution: Randomized (10 nonzero VS 25).
⇒ Randomized better at finding integer solutions!

Lectures selected by randomized approach
Course 1: Basics of Optimization, Gradient descent.
Course 2: Basics of Optimization, Last year’s exam.
Course 3: Basics of Optimization, Lab gradient descent.
Course 4: Optimality conditions, Advanced gradient descent,
Stochastic gradient, Course homework.

Good coverage of the four topics
(derivatives/convexity/algorithms/applications).
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Summing up

Submodular optimization
Discrete and continuous concepts!
Applications in machine learning.

Direct search and concave maximization
Existing algorithms for linearly constrained problems.
Guarantees for concave and non-concave maximization.

Our method for submodular optimization
Guarantees even with adaptive stepsizes (under complete polling?)
Encouraging behavior of randomized variants.
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Bonus: Randomized strategy for direct search

Decomposition T (xk , αk) = Ck + Sk

In Ck : Random subset of generators.

In Sk : Random one-dimensional subspace [d − d ].

xkSk = ∅

Ck
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