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Competition Tasks and Metrics

• In a competition, you start by examining the target metric. 
Understanding how your model’s errors are evaluated is key for 
scoring highly in every competition. When your predictions are 
submitted to the Kaggle platform, they are compared to a ground 
truth based on the target metric.
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Example of metrics

• For instance, in the Titanic competition (https://www.kaggle.com/c/titanic/ ), all 
your submissions are evaluated based on accuracy, the percentage of surviving 
passengers you correctly predict. The organizers decided upon this metric 
because the aim of the competition is to find a model that estimates the 
probability of survival of a passenger under similar circumstances. 

• In another knowledge competition, House Prices - Advanced Regression 
Techniques (https://www.kaggle.com/c/house-pricesadvanced-regression-
techniques ), your work will be evaluated based on an average difference 
between your prediction and the ground truth. This involves computing the 
logarithm, squaring, and taking the square root, because the model is expected 
to be able to quantify as correctly as possible the order of the price of a house on 
sale.
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• Evaluation metrics and objective functions
• Basic types of tasks: regression, classification, and ordinal
• The Meta Kaggle dataset
• Handling never-before-seen metrics
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• Metrics for multi-class classification
• Metrics for object detection problems
• Metrics for multi-label classification and recommendation problems
• Optimizing evaluation metrics
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Where to find the metric?

• In a Kaggle competition, you can 
find the evaluation metric in the 
left menu on the Overview page of 
the competition. 

• By selecting the Evaluation tab, 
you will get details about the 
evaluation metric. Sometimes you 
will find the metric formula, the 
code to reproduce it, and some 
discussion of the metric. 

• On the same page, you will also 
get an explanation about the 
submission file format, providing 
you with the header of the file and 
a few example rows.
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Terminology

• The analysis of the Kaggle evaluation metric should be your first act in 
a competition as it conditions your ranking. But let us first discuss 
some terminology

• A loss function is a function that is defined on a single data point, 
and, considering the prediction of the model and the ground truth for 
the data point, computes a penalty. 

• A cost function takes into account the whole dataset used for training 
(or a batch from it), computing a sum or average over the loss 
penalties of its data points. It can comprise further constraints, such 
as the L1 or L2 penalties, for instance. The cost function directly 
affects how the training happens.
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Objective function

• An objective function is the most general (and safe-to-use) term 
related to the scope of optimization during machine learning training: 
it comprises cost functions, but it is not limited to them. An objective 
function, in fact, can also take into account goals that are not related 
to the target: for instance, requiring sparse coefficients of the 
estimated model or a minimization of the coefficients’ values, such as 
in L1 and L2 regularizations. 

• Moreover, whereas loss and cost functions imply an optimization 
based on minimization, an objective function is neutral and can imply 
either a maximization or a minimization activity performed by the 
learning algorithm.

9



Terminology last part

• A scoring function suggests better prediction results if scores from 
the function are higher, implying a maximization process.

• An error function instead suggests better predictions if smaller error 
quantities are reported by the function, implying a minimization 
process.
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Basic types of tasks

• The two most common tasks are regression tasks and 
classification tasks.

• Recently, there have also been reinforcement learning (RL) 
tasks, but RL doesn’t use metrics for evaluation; instead, it 
relies on a ranking derived from direct match-ups against 
other competitors
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Regression

• Regression requires you to build a model that can predict a real 
number; often a positive number, but there have been examples of 
negative number prediction too. 

• A classic example of a regression problem is House Prices - Advanced 
Regression Techniques, because you have to guess the value of a 
house. 

• The evaluation of a regression task involves computing a distance 
between your predictions and the values of the ground truth. This 
difference can be evaluated in different ways, for instance by squaring 
it in order to punish larger errors, or by applying a log to it in order to 
penalize predictions of the wrong scale.
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Classification

• When facing a classification task on Kaggle, there are more nuances 
to take into account. 

• The classification, in fact, could be binary, multi-class, or multi-label.

• In binary problems, you have to guess if an example should be 
classified or not into a specific class (usually called the positive class 
and compared to the negative one).
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Binary and imbalance

• Though counting the exact number of correct matches in a binary 
classification may seem a valid approach, this won’t actually work 
well when there is an imbalance, that is, a different number of 
examples, between the positive and the negative class.

• Classification based on an imbalanced distribution of classes requires 
evaluation metrics that take the imbalance into account, if you want 
to correctly track improvements on your model.
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Multi class

• When you have more than two classes, you have a multi-class 
prediction problem. This also requires the use of suitable functions 
for evaluation, since it is necessary to keep track of the overall 
performance of the model, but also to ensure that the performance 
across the classes is comparable (for instance, your model could 
underperform with respect to certain classes). 

• Here, each case can be in one class exclusively, and not in any others. 
A good example is Leaf Classification 
https://www.kaggle.com/c/leafclassification), where each image of a 
leaf specimen has to be associated with the correct plant species.
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Multi label

• Finally, when your class predictions are not exclusive and you can 
predict multiple class ownership for each example, you have a multi-
label problem that requires further evaluations in order to control 
whether your model is predicting the correct classes, as well as the 
correct number and mix of classes. 

• For instance, in Greek Media  Monitoring Multilabel Classification 
(WISE 2014) (https://www.kaggle.com/c/wise-2014), you had to 
associate each article with all the topics it deals with.
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Ordinal

• In a problem involving a prediction on an ordinal scale, you have to 
guess integer numeric labels, which are naturally ordered. As an 
example, the magnitude of an earthquake is on an ordinal scale. In 
addition, data from marketing research questionnaires is often 
recorded on ordinal scales (for instance, consumers’ preferences or 
opinion agreement).

• Since an ordinal scale is made of ordered values, ordinal tasks can be 
considered somewhat halfway between regression and 
classification, and you can solve them in both ways.
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Multi class approach

• The most common way is to treat your ordinal task as a multi-class 
problem. In this case, you will get a prediction of an integer value (the 
class label) but the prediction will not take into account that the 
classes have a certain order. 

• Often, probabilities will be distributed across the entire range of 
possible values, depicting a multi-modal and often asymmetric 
distribution (whereas you should expect a Gaussian distribution 
around the maximum probability class).
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Regression approach

• The other way to solve the ordinal prediction problem is to treat it as a 
regression problem and then post-process your result. 

• In this way, the order among classes will be taken into consideration, 
though the prediction output won’t be immediately useful for scoring on 
the evaluation metric. In fact, in a regression you get a float number as an 
output, not an integer representing an ordinal class; moreover, the result 
will include the full range of values between the integers of your ordinal 
distribution and possibly also values outside of it. Cropping the output 
values and casting them into integers by unit rounding may do the trick, 
but this might lead to inaccuracies requiring some more sophisticated 
post-processing that we will discuss
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The Meta Kaggle dataset

• The Meta Kaggle dataset (https://www.kaggle.com/kaggle/meta-
kaggle) is a collection of rich data about Kaggle’s community and 
activity, published by Kaggle itself as a public dataset. It contains CSV 
tables filled with public activity from Competitions, Datasets, 
Notebooks, and Discussions.

• The CSV tables are updated daily, so you’ll have to refresh your 
analysis often, but that’s worth it given the insights you can extract.
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Why looking at the Meta Kaggle dataset?

• Here, we are going to use it in order to figure out what evaluation 
metrics have been used most frequently for competitions in the last 
seven years. By looking at the most common ones in this chapter, 
you’ll be able to start any competition from solid ground and then 
refine your knowledge of the metric, picking up competition-specific 
nuances using the discussion you find in the forums.
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Looking at the most common metrics
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import numpy as np
import pandas as pd

comps = pd.read_csv("/kaggle/input/meta-kaggle/Competitions.csv")
evaluation = ['EvaluationAlgorithmAbbreviation', 'EvaluationAlgorithmName’,

'EvaluationAlgorithmDescription', ]
compt = ['Title', 'EnabledDate', 'HostSegmentTitle']
df = comps[compt + evaluation].copy()
df['year'] = pd.to_datetime(df.EnabledDate).dt.year.values
df['comps'] = 1
time_select = df.year >= 2015
competition_type_select = df.HostSegmentTitle.isin(['Featured', 'Research'])



Looking at the most common metrics
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pivot_table = pd.pivot_table(df[time_select & competition_type_select], 
values='comps’,
index=['EvaluationAlgorithmAbbreviation'], columns=['year'], fill_value=0.0,
aggfunc=np.sum, margins=True).sort_values(by=('All'), ascending=False)

# to print the 20 first rows 
pivot_table = pivot_table.iloc[1:, :].head(20)



Results
Number year 2015 2016 2017 2018 2019 2020 2021 2022 All

1 RMSE 8 23 42 115 193 300 203 73 957
2 AUC 13 31 42 66 137 129 161 43 622
3 FScoreMicro 5 2 13 40 69 83 100 39 351
4 MAE 3 8 21 39 39 46 62 22 240
5 MSE 0 2 10 10 14 57 38 18 149
6 F_{Beta} (deprecated) 0 2 2 8 20 33 28 8 101
7 LogLoss 3 4 11 8 16 24 18 7 91
8 MAP@{K} 1 5 6 17 15 15 11 10 80
9 FScoreMacro 0 0 0 3 1 26 35 12 77

10 RMSLE 3 1 9 8 18 19 14 3 75
11 Levenshtein Mean 5 1 0 2 18 19 20 6 71
12 NDCG@{K} 1 2 7 9 12 14 7 2 54
13 MulticlassLoss 5 9 7 11 5 7 5 2 51
14 MAPE 0 0 0 2 5 14 17 3 41
15 R2Score 0 0 1 3 3 12 13 5 37
16 Weighted Categorization Accuracy 0 0 1 1 6 6 11 2 27
17 Dice 0 1 1 1 6 6 5 1 21
18 Intersection Over Union Object SegmentationBeta 0 0 0 2 0 2 11 4 19
19 Mean Best Error AtK 0 0 2 5 5 2 3 1 18

20 MCAUC 1 0 1 1 3 6 6 0 18
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For a specific metric
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metric = 'AUC'
metric_select = df['EvaluationAlgorithmAbbreviation']==metric
print(df[time_select&competition_type_select&metric_select]
[['Title', 'year']])



Mean squared error (MSE) and R squared

• The root mean squared error is the root of the mean squared error 
(MSE), which is nothing else but the mean of the good old sum of 
squared errors (SSE) that you learned about when you studied how a 
regression works.

• Here is the formula for the MSE:
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Explanation 1/
• Let’s start by explaining how the formula works. 

• In the above formula, n indicates the number of cases, 𝑦𝑦𝑖𝑖 is the ground truth, and 
�𝑦𝑦𝑖𝑖 the prediction. 

• You first get the difference between your predictions and your real values. You 
square the differences (so they become positive or simply zero), then you sum 
them all, resulting in your SSE have to divide this measure by the number of 
predictions to obtain the average value, the MSE. 
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Explanation 2/

• Usually, all regression models minimize the SSE, so you won’t have 
great problems trying to minimize MSE or its direct derivatives such 
as R squared (also called the coefficient of determination), which is 
given by:
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Explanation 3/

• Here, SSE (the sum of squared errors) is compared to the sum of squares total 
(SST), which is just the variance of the response. In statistics, in fact, SST is 
defined as the  squared difference between your target values and their mean:

• To put it another way, R squared compares the squared errors of the model 
against the squared errors from the simplest model possible, the average of the 
response. Since both SSE and SST have the same scale, R squared can help you to 
determine whether transforming your target is helping to obtain better 
predictions.
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What about transformation?

• Linear transformations such as
• minmax 

https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
• or standardization 

https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

• do not change the performance of any regressor, since they are linear 
transformations of the target.
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What about transformation?

• Non-linear transformations, such as 
• the square root, 
• the cubic root,
• the logarithm,
• the exponentiation, and their combinations, 

• should instead definitely modify the performance of your regression model on 
the evaluation  metric (hopefully for the better, if you decide on the right 
transformation).
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Root mean squared error (RMSE)

• RMSE is just the square root of MSE, but this implies some subtle change. Here is its 
formula:

• In the above formula, n indicates the number of cases, 𝑦𝑦𝑖𝑖 is the ground truth, and �𝑦𝑦𝑖𝑖 the 
prediction. 

• In MSE, large prediction errors are greatly penalized because of the squaring activity.
• In RMSE, this dominance is lessened because of the root effect (however, you should 

always pay attention to outliers; they can affect your model performance a lot, no 
matter whether you are evaluating based on MSE or RMSE).
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What it means in practice?

• Consequently, depending on the problem, you can get a better fit with an 
algorithm using MSE as an objective function by first applying the square root to 
your target (if possible, because it requires positive values), then squaring the 
results. Functions such as the TransformedTargetRegressor in Scikit-learn help 
you to appropriately transform your regression target in order to get be er-
fitting results with respect to your evaluation metric.
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Mean absolute error (MAE) 1/

• The MAE (mean absolute error) evaluation metric is the absolute value of the difference 
between the predictions and the targets. Here is the formulation of MAE:

• In the formula, n stands for the number of cases, 𝑦𝑦𝑖𝑖 is the ground truth, and �𝑦𝑦𝑖𝑖 the 
prediction. 

• MAE is not particularly sensitive to outliers (unlike MSE, where errors are squared), 
hence you may find it is an evaluation metric in many competitions whose datasets 
present outliers. 

• Moreover, you can easily work with it since many algorithms can directly use it as an 
objective function; otherwise, you can optimize for it indirectly by just training on the 
square root of your target and then squaring the predictions. 
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Mean absolute error (MAE) 2/

• In terms of downside, using MAE as an objective function results in much slower 
convergence, since you are actually optimizing for predicting the median of the 
target (also called the L1 norm), instead of the mean (also called the L2 norm), as 
occurs by MSE minimization. 

• This results in more complex computations for the optimizer, so the training time 
can even grow exponentially based on your number of training cases 

• see, for instance, this Stack Overflow question:
https://stackoverflow.com/questions/57243267/why-is-training-a-randomforest-
regressor-with-mae-criterion-so-slow-compared-to).
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Root mean squared log error (RMSLE)

• Another common transformation of MSE is root mean squared log error 
(RMSLE). MCRMSLE is just a variant made popular by the COVID-19 forecasting 
competitions, and it is the column-wise average of the RMSLE values of each 
single target when there are multiple ones. Here is the formula for RMSLE:

• In the formula, n stands for the number of cases, 𝑦𝑦𝑖𝑖 is the ground truth, and �𝑦𝑦𝑖𝑖
the prediction. 
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Intuition and tips

• Since you are applying a logarithmic transformation to your predictions and your 
ground truth before all the other squaring, averaging, and rooting operations, you 
don’t penalize huge differences between the predicted and the actual values, 
especially when both are large numbers. 

• In other words, what you care the most about when using RMSLE is the scale of 
your predictions with respect to the scale of the ground truth. 

• As with RMSE, machine learning algorithms for regression can better optimize for 
RMSLE if you apply a logarithmic transformation to the target before fitting it 
(and then reverse the effect using the exponential function).
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Metrics for classification (label prediction
and probability)
• Having discussed the metrics for regression problems, we are going 

now to illustrate the metrics for classification problems, starting from 
the binary classification problems (when you have to predict 
between two classes), moving to the multi-class (when you have 
more than two classes), and then to the multi-label (when the classes 
overlap).
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Accuracy

• When analyzing the performance of a binary classifier, the most 
common and accessible metric that is used is accuracy. A 
misclassification error is when your model predicts the wrong class 
for an example. The accuracy is just the complement of the 
misclassification error and it can be calculated as the ratio between  
the number of correct numbers divided by the number of answers:
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Intuition 1/

• As a metric, the accuracy is focused strongly on the effective performance of the 
model in a real setting: it tells you if the model works as expected. 

• However, if your purpose is to evaluate and compare and have a clear picture of 
how effective your approach really is, you have to be cautious when using the 
accuracy because it can lead to wrong conclusions when the classes are 
imbalanced (when they have different frequencies).

• For instance, if a certain class makes up just 10% of the data, a predictor that 
predicts nothing but the majority class will be 90% accurate, proving itself quite 
useless in spite of the high accuracy. 
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Spotting imbalance data?

• How can you spot such a problem? You can do this easily by using a 
confusion matrix. 

• In a confusion matrix, you create a two-way table comparing the 
actual classes on the rows against the predicted classes on the 
columns. 
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Confusion matrix

• You can create a straightforward one using the Scikit-learn 
confusion_matrix function: 
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Import sklearn
sklearn.metrics.confusion_matrix(y_true, y_pred, *, labels=None, 

sample_weight=None, normalize=None)



Rules

• Providing the y_true and y_pred vectors will suffice to return you a 
meaningful table, but you can also provide row/column labels and 
sample weights for the examples in consideration, and normalize (set 
the marginals to sum to 1) over the true examples (the rows), the 
predicted examples (the columns), or all the examples.  

• A perfect classifier will have all the cases on the principal diagonal of 
the matrix. Serious problems with the validity of the predictor are 
highlighted if there are few or no cases on one of the cells of the 
diagonal.
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sklearn

• In order to give you a better idea of how it works, you can try the 
graphical example offered by Scikit-learn at https://scikit-
learn.org/stable/auto_examples/model_selection/plot_confusion_ma
trix.html
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Precision and recall

• To obtain the precision and recall metrics, we again start from the 
confusion matrix. First, we have to name each of the cells:

45



Definition

• TP (true positives): These are located in the upper-left cell, containing 
examples that have correctly been predicted as positive ones.

• FP (false positives): These are located in the upper-right cell, 
containing examples that have been predicted as positive but are 
actually negative.

• FN (false negatives): These are located in the lower-left cell, 
containing examples that have been predicted as negative but are 
actually positive.

• TN (true negatives): These are located in the lower-right cell, 
containing examples that have been correctly predicted as negative 
ones.
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Accuracy, precision, recall

• Using these cells, you can actually get more precise information about how your 
classifier works and how you can tune your model better. First, we can easily 
revise the accuracy formula:

• Then, the first informative metric is called precision (or specificity) and it is 
actually the accuracy of the positive cases:
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Why choose precision?

• In the computation, only the number of true positives and the number of false 
positives are involved. In essence, the metric tells you how often you are correct 
when you predict a positive. 

• Clearly, your model could get high scores by predicting positives for only the 
examples it has high confidence in. That is actually the purpose of the measure: 
to force models to predict a positive class only when they are sure and it is safe 
to do so. 
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Recall

• However, if it is in your interest also to predict as many positives as possible, then 
you’ll also need to watch over the recall (or coverage or sensitivity or even true 
positive rate) metric:

• Here, you will also need to know about false negatives. 
• The interesting thing about these two metrics is that, since they are based on 

examples classification, and a classification is actually based on probability 
(which is usually set between the positive and negative class at the 0.5 
threshold), you can change the threshold and have one of the two metrics 
improved at the expense of the other.
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Precision/recall trade-off 1/

• For instance, if you increase the threshold, you will get more precision 
(the classifier is more confident of the prediction) but less recall. If 
you decrease the threshold, you get less precision but more recall. 

• This is also called the precision/recall trade-off. The Scikit-learn 
website offers a simple and practical overview of this trade-off

• https://scikitlearn.org/stable/auto_examples/model_selection/plot_p
recision_recall.html ), helping you to trace a precision/recall curve 
and thus understand how these two measures can be exchanged to 
obtain a result that be er fits your needs:
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Precision/recall trade-off 2/
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Average precison

• One metric associated with the precision/recall trade-off is the 
average precision.

• Average precision computes the mean precision for recall values from 
0 to 1 (basically, as you vary the threshold from 1 to 0). 

• Average precision is very popular for tasks related to object 
detection, which we will discuss a bit later on, but it is also very 
useful for classification in tabular data. 

• In practice, it proves valuable when you want to monitor model 
performance on a very rare class (when the data is extremely 
imbalanced) in a more precise and exact way, which is often the case 
with fraud detection problems.
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In picture
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The F1 score

• At this point, you have probably already figured out that using 
precision or recall as an evaluation metric is not an ideal choice 
because you can only optimize one at the expense of the other. For 
this reason, there are no Kaggle competitions that use only one

• of the two metrics. You should combine them (as in the average 
precision). A single metric, the F1 score, which is the harmonic mean 
of precision and recall, is commonly considered to be the best 
solution:
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Formula

𝐹𝐹1 =
2

1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 1

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 2 ×
𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
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The F1 score 1/

• If you get a high F1 score, it is because your model has improved in 
precision or recall or in both. You can find a fine example of the usage 
of this metric in the Quora Insincere Questions Classification 
competition https://www.kaggle.com/c/quora-insincerequestions-
classification
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F-beta

• In some competitions, you also get the F-beta score. This is simply the 
weighted harmonic mean between precision and recall, and beta 
decides the weight of the recall in the combined score:

• Since we have already introduced the concept of threshold and 
classification probability, we can now discuss the log loss and ROC-
AUC, both quite common classification metrics.
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Log loss and ROC-AUC

• Let’s start with the log loss, which is also known as cross-entropy in 
deep learning models. The log loss is the difference between the 
predicted probability and the ground truth probability

• In the formula, n stands for the number of cases, 𝑦𝑦𝑖𝑖 is the ground 
truth, and �𝑦𝑦𝑖𝑖 the prediction. 

58



Tips

• If a competition uses the log loss, it is implied that the objective is to 
estimate as correctly as possible the probability of an example being 
of a positive class. You can actually find the log loss in quite a lot of 
competitions.

• We suggest you have a look, for instance, at the recent Deepfake 
Detection Challenge (https://www.kaggle.com/c/deepfake-detection-
challenge) or at the older Quora Question Pairs 
(https://www.kaggle.com/c/quora-question-pairs).
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ROC Curve AUC

• The ROC curve, or receiver operating characteristic curve, is a graphical 
chart used to evaluate the performance of a binary classifier and to 
compare multiple classifiers. It is the building block of the ROC-AUC metric, 
because the metric is simply the area delimited under the ROC curve. 

• The ROC curve consists of the true positive rate (the recall) plotted against 
the false positive rate (the ratio of negative instances that are incorrectly 
classified as positive ones). It is equivalent to one minus the true negative 
rate (the ratio of negative examples that are correctly classified). 

• Here are a few examples:
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Tips

• Ideally, a ROC curve of a well-performing classifier should quickly climb up 
the true positive rate (recall) at low values of the false positive rate. 

• A ROC-AUC between 0.9 to 1.0 is considered very good. 
• A bad classifier can be spotted by the ROC curve appearing very similar, if 

not identical, to the diagonal of the chart, which represents the 
performance of a purely random classifier, as in the top left of the figure 
above; ROC-AUC scores near 0.5 are considered to be almost random 
results. 

• If you are comparing different classifiers, and you are using the area under 
the curve (AUC), the classifier with the higher area is the more 
performant one.
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Tips 1/

• If classes are balanced, or not too imbalanced, increases in the AUC 
are proportional to the effectiveness of the trained model and they 
can be intuitively thought of as the ability of the model to output 
higher probabilities for true positives. 

• We also think of it as the ability to order the examples more 
properly from positive to negative. 
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Tips 2/

• However, when the positive class is rare, the AUC starts high and its 
increments may mean very little in terms of predicting the rare class 
better. As we mentioned before, in such a case, average precision is a 
more helpful metric.

• More details can be found in the paper:  Su, W., Yuan, Y., and Zhu, M. 
A relationship between the average precision and the area under the 
ROC curve. Proceedings of the 2015 International Conference on The 
Theory of Information Retrieval. 2015.
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Matthews correlation coefficient (MCC)

• We complete our overview of binary classification metrics with the 
Mathews correlation coefficient (MCC), which made its appearance in 
VSB Power Line Fault Detection (https://www.kaggle.com/c/vsb-
power-line-fault-detection) and Bosch Production Line Performance 
(https://www.kaggle.com/c/bosch-productionline-performance)

• The formula for the MCC is:
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Explanation

• In the above formula, TP stands for true positives, TN for true 
negatives, FP for false positives, and FN for false negatives. It is the 
same nomenclature as we met when discussing precision and recall.

• Behaving as a correlation coefficient, in other words, ranging from +1 
(perfect prediction) to -1 (inverse prediction), this metric can be 
considered a measure of the quality of the classification even when 
the classes are quite imbalanced.
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Neuron engineer

• In spite of its complexity, the formula can be reformulated and 
simplified, as demonstrated by Neuron Engineer 
(https://www.kaggle.com/ratthachat) in his Notebook: 
www.kaggle.com/ratthachat/demythifying-matthew-
correlationcoefficients-mcc .

• The work done by Neuron Engineer in understanding the ratio of the 
evaluation metric is indeed exemplary. In fact, his reformulated MCC 
becomes:

67

https://www.kaggle.com/ratthachat
http://www.kaggle.com/ratthachat/demythifying-matthew-correlationcoefficients-mcc
http://www.kaggle.com/ratthachat/demythifying-matthew-correlationcoefficients-mcc


Formula explained 1/

• where
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Formula explained 2/

• The reformulation helps to clarify, in a more intelligible form than the 
original, that you can get higher performance from improving both 
positive and negative class precision, but that’s not enough: you also 
have to have positive and negative predictions in proportion to the 
ground truth, or your submission will be greatly penalized.
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Metrics for multi-class classification

• When moving to multi-class classification, you simply use the binary 
classification metrics that we have just seen, applied to each class, 
and then you summarize them using some of the averaging strategies 
that are commonly used for multi-class situations.
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Averaging methods

• For instance, if you want to evaluate your solution based on the F1 
score, you have three possible averaging choices:
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Macro averaging

• Simply calculate the F1 score for each class and then average all the 
results. In this way, each class will count as much the others, no 
matter how frequent its positive cases are or how important they are 
for your problem, resulting therefore in equal penalizations when the 
model doesn’t perform well with any class:
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Micro averaging

• This approach will sum all the contributions from each class to 
compute an aggregated F1 score. It results in no particular favor to or 
penalization of any class, since all the computations are made 
regardless of each class, so it can more accurately account for class 
imbalances:
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Weighted macro

• As with macro averaging, you first calculate the F1 score for each 
class, but then you make a weighted average mean of all of them 
using a weight that depends on the number of true labels of each 
class. By using such a set of weights, you can take into account the 
frequency of positive cases from each class or the relevance of that 
class for your problem. This approach clearly favors the majority 
classes, which will be weighted more in the computations:
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Common multi-class metrics

• Common multi-class metrics that you may encounter in Kaggle
competitions are:

• Multiclass accuracy (weighted): Bengali.AI Handwritten Grapheme Classification 
(https://www.kaggle.com/c/bengaliai-cv19)

• Multiclass log loss (MeanColumnwiseLogLoss): Mechanisms of Action (MoA) 
Prediction (https://www.kaggle.com/c/lish-moa/)

• Macro-F1 and Micro-F1 (NQMicroF1): University of Liverpool - Ion Switching 
(https://www.kaggle.com/c/liverpool-ion-switching), Human Protein Atlas Image 
Classification (https://www.kaggle.com/c/human-protein-atlas-imageclassification/), 
TensorFlow 2.0 Question Answering (https://www.kaggle.com/c/tensorflow2-question-
answering)

• Mean-F1: Shopee - Price Match Guarantee (https://www.kaggle.com/c/shopeeproduct-
matching/). Here, the F1 score is calculated for every predicted row, then averaged, whereas 
the Macro-F1 score is defined as the mean of classwise/ label-wise F1 scores.
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Quadratic Weighted kappa

• Then there is also Quadratic Weighted Kappa, which we will explore 
later on as a smart evaluation metric for ordinal prediction problems. 
In its simplest form, the Cohen Kappa score, it just measures the 
agreement between your predictions and the ground truth. The 
metric was actually created for measuring inter-annotation 
agreement, but it is really versatile and has found even better uses.
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Inter-Annotation agreement

• What is inter-annotation agreement? Let’s imagine that you have a 
labelling task: classifying some photos based on whether they contain 
an image of a cat, a dog, or neither. If you ask a set of people to do 
the task for you, you may incur some erroneous labels because 
someone (called the judge in this kind of task) may misinterpret a dog 
as a cat or vice versa. The smart way to do this job correctly is to 
divide the work among multiple judges labeling the same photos, and 
then measure their level of agreement based on the Cohen Kappa 
score.
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Cohen kappa

• Therefore, the Cohen Kappa is devised as a score expressing the level 
of agreement between two annotators on a labeling (classification) 
problem:

• In the formula, p0 is the relative observed agreement among raters, 
and pe is the hypothetical probability of chance agreement. Using the 
confusion matrix nomenclature, this can be rewritten, as:
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Some comment on the formula

• The interesting aspect of this formula is that the score takes into 
account the empirical probability that the agreement has happened 
just by chance, so the measure has a correction for all the most 
probable classifications. The metric ranges from 1, meaning complete 
agreement, to -1, meaning the judges completely oppose each other 
(total disagreement).

• Values around 0 signify that agreement and disagreement among the 
judges is happening by mere chance. This helps you figure out if the 
model is really performing better than chance in most situations.
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Specific case of object detection

• In case your Kaggle competition is about object detection and 
localization, there are slight twists compared to standard machine 
learning problems
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Object detection

• In object detection, you don’t have to classify an image, but instead 
find relevant portions of a picture and label them accordingly.
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How to handle this?

• In order to describe the spatial location of an object, in object detection we 
use bounding boxes, which define a rectangular area in which the object 
lies. A bounding box is usually specified using two (x, y) coordinates: the 
upper-left and lower-right corners. In terms of a machine learning 
algorithm, finding the coordinates of bounding boxes corresponds to 
applying a regression problem to multiple targets. However, you probably 
won’t frame the problem from scratch but rely on pre-built and often pre-
trained models such as Mask R-CNN

• (https://arxiv.org/abs/1703.06870), RetinaNet
• (https://arxiv.org/abs/2106.05624v1), FPN
• (https://arxiv.org/abs/1612.03144v2), YOLO
• (https://arxiv.org/abs/1506.02640v1), Faster R-CNN
• (https://arxiv.org/abs/1506.01497v1), or SDD
• (https://arxiv.org/abs/1512.02325).
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What about image segmentation?

• In segmentation, you instead have a classification at the pixel level
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Metrics recommended

• There are two metrics that are used much more, especially in 
competitions: the intersection over union and the dice coefficient.
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Intersection over union (IoU)

• The intersection over union (IoU) is also known as the Jaccard index. When used 
in segmentation problems, using IoU implies that you have two images to 
compare: one is your prediction and the other is the mask revealing the ground 
truth, which is usually a binary matrix where the value 1 stands for the ground 
truth and 0 otherwise. 

• In the case of multiple objects, you have multiple masks, each one labeled with 
the class of the object. When used in object detection problems, you have the 
boundaries of two rectangular areas (those of the prediction and the ground 
truth), expressed by the coordinates of their vertices. For each classified class, 
you compute the area of overlap between your prediction and the ground truth 
mask, and then you divide this by the area of the union between your prediction 
and the ground truth, a sum that takes into account any overlap. 

• In this way, you are proportionally penalized both if you predict a larger area than 
what it should be (the denominator will be larger) or a smaller one (the 
numerator will be smaller):
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Visually
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Examples

• Here are some examples of competitions where IoU has been used:
• TGS Salt Identification Challenge (https://www.kaggle.com/c/tgssalt-

identification-challenge/) with Intersection Over Union Object Segmentation
• iMaterialist (Fashion) 2019 at FGVC6 (https://www.kaggle.com/c/imaterialist-

fashion-2019-FGVC6) with Intersection Over Union Object Segmentation With 
Classification

• Airbus Ship Detection Challenge (https://www.kaggle.com/c/airbus-ship-
detection) with Intersection Over Union Object Segmentation Beta
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Dice

• The other useful metric is the Dice coefficient, which is the area of 
overlap between the prediction and ground truth doubled and then 
divided by the sum of the prediction and ground truth areas:
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Difference with Jaccardi

• In this case, with respect to the Jaccardi index, you do not take into 
account the overlap of the prediction with the ground truth in the 
denominator. Here, the expectation is that, as you maximize the area of 
overlap, you predict the correct area size. Again, you are penalized if you 
predict areas larger than you should be predicting. In fact, the two metrics 
are positively correlated and they produce almost the same results for a 
single classification problem. 

• The differences actually arise when you are working with multiple classes. 
In fact, both with IoU and the Dice coefficient, when you have multiple 
classes you average the result of all of them. However, in doing so, the IoU
metric tends to penalize the overall average more if a single class 
prediction is wrong, whereas the Dice coefficient is more lenient and tends 
to represent the average performance.
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Going further

• IoU and Dice constitute the basis for all the more complex metrics in 
segmentation and object detection. By choosing an appropriate 
threshold level for IoU or Dice (usually 0.5), you can decide whether 
or not to confirm a detection, therefore a classification. At this point, 
you can use previously discussed metrics for classification, such as 
precision, recall, and F1, such as is done in popular object detection 
and segmentation challenges such as Pascal VOC 
(http://host.robots.ox.ac.uk/pascal/VOC/voc2012) or COCO 
(https://cocodataset.org).
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Metrics for multi-label classification and
recommendation problems
• Recommender systems are one of the most popular applications of 

data analysis and machine learning, and there are quite a few 
competitions on Kaggle that have used the recommendation 
approach. For instance, the Quick, Draw! Doodle Recognition 
Challenge was a prediction evaluated as a recommender system. 
Some other competitions on Kaggle, however, truly strived to build 
effective recommender systems (such as Expedia Hotel 
Recommendations: 
https://www.kaggle.com/c/expediahotelrecommendations)

• and RecSYS, the conference on recommender systems 
(https://recsys.acm.org/), even hosted one of its yearly contests on 
Kaggle (RecSYS2013: https://www.kaggle.com/c/yelp-recsys-2013).
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MAP@{K})

• Mean Average Precision at K (MAP@{K}) is typically the metric of choice 
for evaluating the performance of recommender systems, and it is the 
most common metric you will encounter on Kaggle in all the competitions 
that try to build or approach a problem as a recommender system. 

• There are also some other metrics, such as the precision at k, or P@K, and 
the average precision at k, or AP@K, which are loss functions, in other 
words, computed at the level of each single prediction.  

• Understanding how they work can help you better understand the MAP@K 
and how it can perform both in recommendations and in multi-label 
classification.
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What about multi-label classifications

• In fact, analogous to recommender systems, multi-label classifications 
imply that your model outputs a series of class predictions. 

• Such results could be evaluated using some average of some binary 
classification metrics (such as in Greek Media Monitoring Multilabel 
Classification (WISE 2014), which used the mean F1 score: 
https://www.kaggle.com/c/wise-2014) as well as metrics that are more 
typical of recommender systems, such as MAP@K. 

• In the end, you can deal with both recommendations and multi-label 
predictions as ranking tasks, which translates into a set of ranked 
suggestions in a recommender system and into a set of labels (without a 
precise order) in multi-label classification. MAP@{K}
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MAP@{K}

• MAP@K is a complex metric and it derives from many computations. In order to 
understand the MAP@K metric fully, let’s start with its simplest component, the 
precision at k (P@K). In this case, since the prediction for an example is a ranked 
sequence of predictions (from the most probable to the least), the function takes into 
account only the top k predictions, then it computes how many matches it got with 
respect to the ground truth and divides that number by k. In a few words, it is quite 
similar to an accuracy measure averaged over k predictions. 

• A bit more complex in terms of computation, but conceptually simple, the average 
precision at k (AP@K) is the average of P@K computed over all the values ranging from 1 
to k. In this way, the metric evaluates how well the prediction works overall, using the 
top prediction, then the top two predictions, and so on until the top k predictions.

• Finally, MAP@K is the mean of the AP@K for the entire predicted sample, and it is  a 
metric because it comprises all the predictions in its evaluation. 
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MAP@5

• Here is the MAP@5 for instance you can find in the Expedia Hotel 
Recommendations competition (https://www.kaggle.com/c/expedia-hotel-
recommendations):

• In the formula, is the number of user recommendations, P(k) is the 
precision at cutoff k, and n is the number of predicted hotel clusters (you 
could predict up to 5 hotels for each recommendation).
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Optimizing evaluation metrics

• Summing up what we have discussed so far, an objective function is a 
function inside your learning algorithm that measures how well the 
algorithm’s internal model is fitting the provided data. The objective 
function also provides feedback to the algorithm in order for it to 
improve its fit across successive iterations. Clearly, since the entire 
algorithm’s efforts are recruited to perform well based on the 
objective function, if the Kaggle evaluation metric perfectly matches 
the objective function of your algorithm, you will get the best results.
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In practice!

• Unfortunately, this is not frequently the case. Often, the evaluation 
metric provided can only be approximated by existing objective 
functions. Getting a good approximation, or striving to get your 
predictions performing better with respect to the evaluation criteria, 
is the secret to performing well in Kaggle competitions. When your 
objective function does not match your evaluation metric, you have a 
few alternatives:
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Strategies

• Modify your learning algorithm and have it incorporate an objective 
function that matches your evaluation metric, though this is not possible 
for all algorithms (for instance, algorithms such as LightGBM and XGBoost
allow you to set custom objective functions, but most Scikit-learn models 
don’t allow this).

• Tune your model’s hyperparameters, choosing the ones that make the 
result shine the most when using the evaluation metric.

• Post-process your results so they match the evaluation criteria more 
closely. For instance, you could code an optimizer that performs  
transformations on your predictions (probability calibration algorithms are 
an example, and we will discuss them at the end of the chapter).
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In reality

• Having the competition metric incorporated into your machine 
learning algorithm is really the most effective method to achieve 
better predictions, though only a few algorithms can be hacked into 
using the competition metric as your objective function.

• The second approach is therefore the more common one, and many 
competitions end up in a struggle to get the best hyperparameters for 
your models to perform on the evaluation metric.
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Leverage Kaggle

• If you already have your evaluation function coded, then doing the 
right crossvalidation or choosing the appropriate test set plays the 
lion share. If you don’t have the coded function at hand, you have to 
first code it in a suitable way, following the formulas provided by 
Kaggle. 
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Tips 1/

• Invariably, doing the following will make the difference:
• Looking for all the relevant information about the evaluation metric and its coded 

function on a search engine Browsing through the most common packages (such as 
Scikit-learn: https://scikitlearn.org/stable/modules/model_evaluation.html#model-
evaluation or TensorFlow: 
https://www.tensorflow.org/api_docs/python/tf/keras/losses)

• Browsing GitHub projects (for instance, Ben Hammer’s Metrics project: 
https://github.com/benhamner/Metrics)

• Asking or looking around in the forums and available Kaggle Notebooks (both for the 
current competition and for similar competitions) 

• In addition, as we mentioned before, querying the Meta Kaggle dataset 
(https://www.kaggle.com/kaggle/meta-kaggle) and looking in the Competitions table 
will help you find out which other Kaggle competitions used that same evaluation 
metric, and immediately provides you with useful code and ideas to try out
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Example: Custom metrics and custom 
objective functions
• As a first option when your objective function does not match your 

evaluation metric, we learned above that you can solve this by creating 
your own custom objective function, but that only a few algorithms can 
easily be modified to incorporate a specific objective function.

• The good news is that the few algorithms that allow this are among the 
most effective ones in Kaggle competitions and data science projects. Of 
course, creating your own custom objective function may sound a little bit 
tricky, but it is an incredibly rewarding approach to increasing your score in 
a competition. 

• For instance, there are options to do this when using gradient boosting 
algorithms such as XGBoost, CatBoost, and LightGBM, as well as with all 
deep learning models based on TensorFlow or PyTorch.
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Change the metric

• You can find great tutorials for custom metrics and objective 
functions in TensorFlow and PyTorch here:

• https://towardsdatascience.com/custom-metrics-in-keras-and-howsimple-
they-are-to-use-in-tensorflow2-2-6d079c2ca279

• https://petamind.com/advanced-keras-custom-loss-functions/
• https://kevinmusgrave.github.io/pytorch-metriclearning/extend/losses/

• These will provide you with the basic function templates and some 
useful suggestions about how to code a custom objective or 
evaluation function.
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Example

• If you want just to get straight to the custom objective function you 
need, you can try this Notebook by RNA

• (https://www.kaggle.com/bigironsphere):
• https://www.kaggle.com/bigironsphere/loss-function-librarykeras-

pytorch/notebook

• It contains a large range of custom loss functions for both TensorFlow
and PyTorch that have appeared in different competitions.
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GBDT case

• If you need to create a custom loss in LightGBM, XGBoost, or 
CatBoost, as indicated in their respective documentation, you have to 
code a function that takes as inputs the prediction and the ground 
truth, and that returns as outputs the gradient and the hessian.

• You can consult this post on Stack Overflow for a better 
understanding of what a gradient and a hessian are:

• https://stats.stackexchange.com/questions/231220/how-tocompute-
the-gradient-and-hessian-of-logarithmic-lossquestion-is-based
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Code implementation perspective

• From a code implementation perspective, all you have to do is to 
create a function, using closures if you need to pass more parameters 
beyond just the vector of predicted labels and true labels. 

• Here is a simple example of a focal loss (a loss that aims to heavily 
weight the minority class in the loss computations as described in Lin, 
T-Y. et al. Focal loss for dense object detection: 
https://arxiv.org/abs/1708.02002 ) function that you can use as a 
model for your own custom functions:
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Code your own loss
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from scipy.misc import derivative
import xgboost as xgb

def focal_loss(alpha, gamma):
def loss_func(y_pred, y_true):

a, g = alpha, gamma

def get_loss(y_pred, y_true):
p = 1 / (1 + np.exp(-y_pred))

loss = (-(a * y_true + (1 - a) * (1 - y_true)) * ((1 - (y_true * p + (1 - y_true) * (1 - p))) ** g) * (
y_true * np.log(p) + (1 - y_true) * np.log(1 - p)))

return loss
partial_focal = lambda y_pred: get_loss(y_pred, y_true)
grad = derivative(partial_focal, y_pred, n=1, dx=1e-6)
hess = derivative(partial_focal, y_pred, n=2, dx=1e-6)
return grad, hess

return loss_func

xgb = xgb.XGBClassifier(objective=focal_loss(alpha=0.25, gamma=1))



Comment

• In the above code snippet, we have defined a new cost function, focal_loss, 
which is then fed into an XGBoost instance’s object parameters. 

• The example is worth showing because the focal loss requires the 
specification of some parameters in order to work properly on your 
problem (alpha and gamma). 

• The more simplistic solution of having their values directly coded into the 
function is not ideal, since you may have to change them systematically as 
you are tuning your model

• Instead, in the proposed function, when you input the parameters into the 
focal_loss function, they reside in memory and they are referenced by the 
loss_func function that is returned to XGBoost. The returned cost function, 
therefore, will work, referring to the alpha and gamma values that you 
have initially instantiated.
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Summary
• In this chapter, we have discussed evaluation metrics in Kaggle competitions. First, we explained 

how an evaluation metric can differ from an objective function. We also remarked on the 
differences between regression and classification problems.

• For each type of problem, we analyzed the most common metrics that you can find in a Kaggle
competition. After that, we discussed the metrics that have never previously been seen in a 
competition and that you won’t likely see again. Finally, we explored and studied different 
common metrics, giving examples of where they have been used in previous Kaggle competitions. 

• We then proposed a few strategies for optimizing an evaluation metric. In particular, we 
recommended trying to code your own custom cost function and provided suggestions on 
possible useful post-processing steps.

• You should now have grasped the role of an evaluation metric in a Kaggle competition. You should 
also have a strategy to deal with every common or uncommon metric, by retracing past 
competitions and by gaining a full understanding of the way a metric works. In the next chapter, 
we are going to discuss how to use evaluation metrics and properly estimate the performance of 
your Kaggle solution by means of a validation strategy.
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Example of a regression challenge

• House Prices - Advanced Regression Techniques
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