
IASD M2 at Paris Dauphine

Become a Kaggle Master

2: Competition, metrics

Eric Benhamou

1

Acknowledgement
The materials of this course is entirely based on the seminal book

Agenda

Part I: general concepts
1. Introduction to Kaggle (concept and API)
2. Competition, metrics
3. Validation
4. Hyper parameters tuning
5. Model ensemble with blending and stacking

Part II: Competitions
5. Predict Financial markets
6. Analyze News
7. Design your portfolio

3

Competition Tasks and Metrics

• In a competition, you start by examining the target metric.
Understanding how your model’s errors are evaluated is key for
scoring highly in every competition. When your predictions are
submitted to the Kaggle platform, they are compared to a ground
truth based on the target metric.

4

Example of metrics

• For instance, in the Titanic competition (https://www.kaggle.com/c/titanic/), all
your submissions are evaluated based on accuracy, the percentage of surviving
passengers you correctly predict. The organizers decided upon this metric
because the aim of the competition is to find a model that estimates the
probability of survival of a passenger under similar circumstances.

• In another knowledge competition, House Prices - Advanced Regression
Techniques (https://www.kaggle.com/c/house-pricesadvanced-regression-
techniques), your work will be evaluated based on an average difference
between your prediction and the ground truth. This involves computing the
logarithm, squaring, and taking the square root, because the model is expected
to be able to quantify as correctly as possible the order of the price of a house on
sale.

5

https://www.kaggle.com/c/titanic/
https://www.kaggle.com/c/house-pricesadvanced-regression-techniques
https://www.kaggle.com/c/house-pricesadvanced-regression-techniques

Agenda

• Evaluation metrics and objective functions
• Basic types of tasks: regression, classification, and ordinal
• The Meta Kaggle dataset
• Handling never-before-seen metrics
• Metrics for regression (standard and ordinal)
• Metrics for binary classification (label prediction and probability)
• Metrics for multi-class classification
• Metrics for object detection problems
• Metrics for multi-label classification and recommendation problems
• Optimizing evaluation metrics

6

Where to find the metric?

• In a Kaggle competition, you can
find the evaluation metric in the
left menu on the Overview page of
the competition.

• By selecting the Evaluation tab,
you will get details about the
evaluation metric. Sometimes you
will find the metric formula, the
code to reproduce it, and some
discussion of the metric.

• On the same page, you will also
get an explanation about the
submission file format, providing
you with the header of the file and
a few example rows.

7

Terminology

• The analysis of the Kaggle evaluation metric should be your first act in
a competition as it conditions your ranking. But let us first discuss
some terminology

• A loss function is a function that is defined on a single data point,
and, considering the prediction of the model and the ground truth for
the data point, computes a penalty.

• A cost function takes into account the whole dataset used for training
(or a batch from it), computing a sum or average over the loss
penalties of its data points. It can comprise further constraints, such
as the L1 or L2 penalties, for instance. The cost function directly
affects how the training happens.

8

Objective function

• An objective function is the most general (and safe-to-use) term
related to the scope of optimization during machine learning training:
it comprises cost functions, but it is not limited to them. An objective
function, in fact, can also take into account goals that are not related
to the target: for instance, requiring sparse coefficients of the
estimated model or a minimization of the coefficients’ values, such as
in L1 and L2 regularizations.

• Moreover, whereas loss and cost functions imply an optimization
based on minimization, an objective function is neutral and can imply
either a maximization or a minimization activity performed by the
learning algorithm.

9

Terminology last part

• A scoring function suggests better prediction results if scores from
the function are higher, implying a maximization process.

• An error function instead suggests better predictions if smaller error
quantities are reported by the function, implying a minimization
process.

10

Basic types of tasks

• The two most common tasks are regression tasks and
classification tasks.

• Recently, there have also been reinforcement learning (RL)
tasks, but RL doesn’t use metrics for evaluation; instead, it
relies on a ranking derived from direct match-ups against
other competitors

11

Regression

• Regression requires you to build a model that can predict a real
number; often a positive number, but there have been examples of
negative number prediction too.

• A classic example of a regression problem is House Prices - Advanced
Regression Techniques, because you have to guess the value of a
house.

• The evaluation of a regression task involves computing a distance
between your predictions and the values of the ground truth. This
difference can be evaluated in different ways, for instance by squaring
it in order to punish larger errors, or by applying a log to it in order to
penalize predictions of the wrong scale.

12

Classification

• When facing a classification task on Kaggle, there are more nuances
to take into account.

• The classification, in fact, could be binary, multi-class, or multi-label.

• In binary problems, you have to guess if an example should be
classified or not into a specific class (usually called the positive class
and compared to the negative one).

13

Binary and imbalance

• Though counting the exact number of correct matches in a binary
classification may seem a valid approach, this won’t actually work
well when there is an imbalance, that is, a different number of
examples, between the positive and the negative class.

• Classification based on an imbalanced distribution of classes requires
evaluation metrics that take the imbalance into account, if you want
to correctly track improvements on your model.

14

Multi class

• When you have more than two classes, you have a multi-class
prediction problem. This also requires the use of suitable functions
for evaluation, since it is necessary to keep track of the overall
performance of the model, but also to ensure that the performance
across the classes is comparable (for instance, your model could
underperform with respect to certain classes).

• Here, each case can be in one class exclusively, and not in any others.
A good example is Leaf Classification
https://www.kaggle.com/c/leafclassification), where each image of a
leaf specimen has to be associated with the correct plant species.

15

https://www.kaggle.com/c/leafclassification

Multi label

• Finally, when your class predictions are not exclusive and you can
predict multiple class ownership for each example, you have a multi-
label problem that requires further evaluations in order to control
whether your model is predicting the correct classes, as well as the
correct number and mix of classes.

• For instance, in Greek Media Monitoring Multilabel Classification
(WISE 2014) (https://www.kaggle.com/c/wise-2014), you had to
associate each article with all the topics it deals with.

16

https://www.kaggle.com/c/wise-2014

Ordinal

• In a problem involving a prediction on an ordinal scale, you have to
guess integer numeric labels, which are naturally ordered. As an
example, the magnitude of an earthquake is on an ordinal scale. In
addition, data from marketing research questionnaires is often
recorded on ordinal scales (for instance, consumers’ preferences or
opinion agreement).

• Since an ordinal scale is made of ordered values, ordinal tasks can be
considered somewhat halfway between regression and
classification, and you can solve them in both ways.

17

Multi class approach

• The most common way is to treat your ordinal task as a multi-class
problem. In this case, you will get a prediction of an integer value (the
class label) but the prediction will not take into account that the
classes have a certain order.

• Often, probabilities will be distributed across the entire range of
possible values, depicting a multi-modal and often asymmetric
distribution (whereas you should expect a Gaussian distribution
around the maximum probability class).

18

Regression approach

• The other way to solve the ordinal prediction problem is to treat it as a
regression problem and then post-process your result.

• In this way, the order among classes will be taken into consideration,
though the prediction output won’t be immediately useful for scoring on
the evaluation metric. In fact, in a regression you get a float number as an
output, not an integer representing an ordinal class; moreover, the result
will include the full range of values between the integers of your ordinal
distribution and possibly also values outside of it. Cropping the output
values and casting them into integers by unit rounding may do the trick,
but this might lead to inaccuracies requiring some more sophisticated
post-processing that we will discuss

19

The Meta Kaggle dataset

• The Meta Kaggle dataset (https://www.kaggle.com/kaggle/meta-
kaggle) is a collection of rich data about Kaggle’s community and
activity, published by Kaggle itself as a public dataset. It contains CSV
tables filled with public activity from Competitions, Datasets,
Notebooks, and Discussions.

• The CSV tables are updated daily, so you’ll have to refresh your
analysis often, but that’s worth it given the insights you can extract.

20

https://www.kaggle.com/kaggle/meta-kaggle
https://www.kaggle.com/kaggle/meta-kaggle

Why looking at the Meta Kaggle dataset?

• Here, we are going to use it in order to figure out what evaluation
metrics have been used most frequently for competitions in the last
seven years. By looking at the most common ones in this chapter,
you’ll be able to start any competition from solid ground and then
refine your knowledge of the metric, picking up competition-specific
nuances using the discussion you find in the forums.

21

Looking at the most common metrics

22

import numpy as np
import pandas as pd

comps = pd.read_csv("/kaggle/input/meta-kaggle/Competitions.csv")
evaluation = ['EvaluationAlgorithmAbbreviation', 'EvaluationAlgorithmName’,

'EvaluationAlgorithmDescription',]
compt = ['Title', 'EnabledDate', 'HostSegmentTitle']
df = comps[compt + evaluation].copy()
df['year'] = pd.to_datetime(df.EnabledDate).dt.year.values
df['comps'] = 1
time_select = df.year >= 2015
competition_type_select = df.HostSegmentTitle.isin(['Featured', 'Research'])

Looking at the most common metrics

23

pivot_table = pd.pivot_table(df[time_select & competition_type_select],
values='comps’,
index=['EvaluationAlgorithmAbbreviation'], columns=['year'], fill_value=0.0,
aggfunc=np.sum, margins=True).sort_values(by=('All'), ascending=False)

to print the 20 first rows
pivot_table = pivot_table.iloc[1:, :].head(20)

Results
Number year 2015 2016 2017 2018 2019 2020 2021 2022 All

1 RMSE 8 23 42 115 193 300 203 73 957
2 AUC 13 31 42 66 137 129 161 43 622
3 FScoreMicro 5 2 13 40 69 83 100 39 351
4 MAE 3 8 21 39 39 46 62 22 240
5 MSE 0 2 10 10 14 57 38 18 149
6 F_{Beta} (deprecated) 0 2 2 8 20 33 28 8 101
7 LogLoss 3 4 11 8 16 24 18 7 91
8 MAP@{K} 1 5 6 17 15 15 11 10 80
9 FScoreMacro 0 0 0 3 1 26 35 12 77

10 RMSLE 3 1 9 8 18 19 14 3 75
11 Levenshtein Mean 5 1 0 2 18 19 20 6 71
12 NDCG@{K} 1 2 7 9 12 14 7 2 54
13 MulticlassLoss 5 9 7 11 5 7 5 2 51
14 MAPE 0 0 0 2 5 14 17 3 41
15 R2Score 0 0 1 3 3 12 13 5 37
16 Weighted Categorization Accuracy 0 0 1 1 6 6 11 2 27
17 Dice 0 1 1 1 6 6 5 1 21
18 Intersection Over Union Object SegmentationBeta 0 0 0 2 0 2 11 4 19
19 Mean Best Error AtK 0 0 2 5 5 2 3 1 18

20 MCAUC 1 0 1 1 3 6 6 0 18

24

For a specific metric

25

metric = 'AUC'
metric_select = df['EvaluationAlgorithmAbbreviation']==metric
print(df[time_select&competition_type_select&metric_select]
[['Title', 'year']])

Mean squared error (MSE) and R squared

• The root mean squared error is the root of the mean squared error
(MSE), which is nothing else but the mean of the good old sum of
squared errors (SSE) that you learned about when you studied how a
regression works.

• Here is the formula for the MSE:

26

Explanation 1/
• Let’s start by explaining how the formula works.

• In the above formula, n indicates the number of cases, 𝑦𝑦𝑖𝑖 is the ground truth, and
�𝑦𝑦𝑖𝑖 the prediction.

• You first get the difference between your predictions and your real values. You
square the differences (so they become positive or simply zero), then you sum
them all, resulting in your SSE have to divide this measure by the number of
predictions to obtain the average value, the MSE.

27

Explanation 2/

• Usually, all regression models minimize the SSE, so you won’t have
great problems trying to minimize MSE or its direct derivatives such
as R squared (also called the coefficient of determination), which is
given by:

28

Explanation 3/

• Here, SSE (the sum of squared errors) is compared to the sum of squares total
(SST), which is just the variance of the response. In statistics, in fact, SST is
defined as the squared difference between your target values and their mean:

• To put it another way, R squared compares the squared errors of the model
against the squared errors from the simplest model possible, the average of the
response. Since both SSE and SST have the same scale, R squared can help you to
determine whether transforming your target is helping to obtain better
predictions.

29

What about transformation?

• Linear transformations such as
• minmax

https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
• or standardization

https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

• do not change the performance of any regressor, since they are linear
transformations of the target.

30

What about transformation?

• Non-linear transformations, such as
• the square root,
• the cubic root,
• the logarithm,
• the exponentiation, and their combinations,

• should instead definitely modify the performance of your regression model on
the evaluation metric (hopefully for the better, if you decide on the right
transformation).

31

Root mean squared error (RMSE)

• RMSE is just the square root of MSE, but this implies some subtle change. Here is its
formula:

• In the above formula, n indicates the number of cases, 𝑦𝑦𝑖𝑖 is the ground truth, and �𝑦𝑦𝑖𝑖 the
prediction.

• In MSE, large prediction errors are greatly penalized because of the squaring activity.
• In RMSE, this dominance is lessened because of the root effect (however, you should

always pay attention to outliers; they can affect your model performance a lot, no
matter whether you are evaluating based on MSE or RMSE).

32

What it means in practice?

• Consequently, depending on the problem, you can get a better fit with an
algorithm using MSE as an objective function by first applying the square root to
your target (if possible, because it requires positive values), then squaring the
results. Functions such as the TransformedTargetRegressor in Scikit-learn help
you to appropriately transform your regression target in order to get be er-
fitting results with respect to your evaluation metric.

33

Mean absolute error (MAE) 1/

• The MAE (mean absolute error) evaluation metric is the absolute value of the difference
between the predictions and the targets. Here is the formulation of MAE:

• In the formula, n stands for the number of cases, 𝑦𝑦𝑖𝑖 is the ground truth, and �𝑦𝑦𝑖𝑖 the
prediction.

• MAE is not particularly sensitive to outliers (unlike MSE, where errors are squared),
hence you may find it is an evaluation metric in many competitions whose datasets
present outliers.

• Moreover, you can easily work with it since many algorithms can directly use it as an
objective function; otherwise, you can optimize for it indirectly by just training on the
square root of your target and then squaring the predictions.

34

Mean absolute error (MAE) 2/

• In terms of downside, using MAE as an objective function results in much slower
convergence, since you are actually optimizing for predicting the median of the
target (also called the L1 norm), instead of the mean (also called the L2 norm), as
occurs by MSE minimization.

• This results in more complex computations for the optimizer, so the training time
can even grow exponentially based on your number of training cases

• see, for instance, this Stack Overflow question:
https://stackoverflow.com/questions/57243267/why-is-training-a-randomforest-
regressor-with-mae-criterion-so-slow-compared-to).

35

Root mean squared log error (RMSLE)

• Another common transformation of MSE is root mean squared log error
(RMSLE). MCRMSLE is just a variant made popular by the COVID-19 forecasting
competitions, and it is the column-wise average of the RMSLE values of each
single target when there are multiple ones. Here is the formula for RMSLE:

• In the formula, n stands for the number of cases, 𝑦𝑦𝑖𝑖 is the ground truth, and �𝑦𝑦𝑖𝑖
the prediction.

36

Intuition and tips

• Since you are applying a logarithmic transformation to your predictions and your
ground truth before all the other squaring, averaging, and rooting operations, you
don’t penalize huge differences between the predicted and the actual values,
especially when both are large numbers.

• In other words, what you care the most about when using RMSLE is the scale of
your predictions with respect to the scale of the ground truth.

• As with RMSE, machine learning algorithms for regression can better optimize for
RMSLE if you apply a logarithmic transformation to the target before fitting it
(and then reverse the effect using the exponential function).

37

Metrics for classification (label prediction
and probability)
• Having discussed the metrics for regression problems, we are going

now to illustrate the metrics for classification problems, starting from
the binary classification problems (when you have to predict
between two classes), moving to the multi-class (when you have
more than two classes), and then to the multi-label (when the classes
overlap).

38

Accuracy

• When analyzing the performance of a binary classifier, the most
common and accessible metric that is used is accuracy. A
misclassification error is when your model predicts the wrong class
for an example. The accuracy is just the complement of the
misclassification error and it can be calculated as the ratio between
the number of correct numbers divided by the number of answers:

39

Intuition 1/

• As a metric, the accuracy is focused strongly on the effective performance of the
model in a real setting: it tells you if the model works as expected.

• However, if your purpose is to evaluate and compare and have a clear picture of
how effective your approach really is, you have to be cautious when using the
accuracy because it can lead to wrong conclusions when the classes are
imbalanced (when they have different frequencies).

• For instance, if a certain class makes up just 10% of the data, a predictor that
predicts nothing but the majority class will be 90% accurate, proving itself quite
useless in spite of the high accuracy.

40

Spotting imbalance data?

• How can you spot such a problem? You can do this easily by using a
confusion matrix.

• In a confusion matrix, you create a two-way table comparing the
actual classes on the rows against the predicted classes on the
columns.

41

Confusion matrix

• You can create a straightforward one using the Scikit-learn
confusion_matrix function:

42

Import sklearn
sklearn.metrics.confusion_matrix(y_true, y_pred, *, labels=None,

sample_weight=None, normalize=None)

Rules

• Providing the y_true and y_pred vectors will suffice to return you a
meaningful table, but you can also provide row/column labels and
sample weights for the examples in consideration, and normalize (set
the marginals to sum to 1) over the true examples (the rows), the
predicted examples (the columns), or all the examples.

• A perfect classifier will have all the cases on the principal diagonal of
the matrix. Serious problems with the validity of the predictor are
highlighted if there are few or no cases on one of the cells of the
diagonal.

43

sklearn

• In order to give you a better idea of how it works, you can try the
graphical example offered by Scikit-learn at https://scikit-
learn.org/stable/auto_examples/model_selection/plot_confusion_ma
trix.html

44

https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

Precision and recall

• To obtain the precision and recall metrics, we again start from the
confusion matrix. First, we have to name each of the cells:

45

Definition

• TP (true positives): These are located in the upper-left cell, containing
examples that have correctly been predicted as positive ones.

• FP (false positives): These are located in the upper-right cell,
containing examples that have been predicted as positive but are
actually negative.

• FN (false negatives): These are located in the lower-left cell,
containing examples that have been predicted as negative but are
actually positive.

• TN (true negatives): These are located in the lower-right cell,
containing examples that have been correctly predicted as negative
ones.

46

Accuracy, precision, recall

• Using these cells, you can actually get more precise information about how your
classifier works and how you can tune your model better. First, we can easily
revise the accuracy formula:

• Then, the first informative metric is called precision (or specificity) and it is
actually the accuracy of the positive cases:

47

Why choose precision?

• In the computation, only the number of true positives and the number of false
positives are involved. In essence, the metric tells you how often you are correct
when you predict a positive.

• Clearly, your model could get high scores by predicting positives for only the
examples it has high confidence in. That is actually the purpose of the measure:
to force models to predict a positive class only when they are sure and it is safe
to do so.

48

Recall

• However, if it is in your interest also to predict as many positives as possible, then
you’ll also need to watch over the recall (or coverage or sensitivity or even true
positive rate) metric:

• Here, you will also need to know about false negatives.
• The interesting thing about these two metrics is that, since they are based on

examples classification, and a classification is actually based on probability
(which is usually set between the positive and negative class at the 0.5
threshold), you can change the threshold and have one of the two metrics
improved at the expense of the other.

49

Precision/recall trade-off 1/

• For instance, if you increase the threshold, you will get more precision
(the classifier is more confident of the prediction) but less recall. If
you decrease the threshold, you get less precision but more recall.

• This is also called the precision/recall trade-off. The Scikit-learn
website offers a simple and practical overview of this trade-off

• https://scikitlearn.org/stable/auto_examples/model_selection/plot_p
recision_recall.html), helping you to trace a precision/recall curve
and thus understand how these two measures can be exchanged to
obtain a result that be er fits your needs:

50

https://scikitlearn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikitlearn.org/stable/auto_examples/model_selection/plot_precision_recall.html

Precision/recall trade-off 2/

51

Average precison

• One metric associated with the precision/recall trade-off is the
average precision.

• Average precision computes the mean precision for recall values from
0 to 1 (basically, as you vary the threshold from 1 to 0).

• Average precision is very popular for tasks related to object
detection, which we will discuss a bit later on, but it is also very
useful for classification in tabular data.

• In practice, it proves valuable when you want to monitor model
performance on a very rare class (when the data is extremely
imbalanced) in a more precise and exact way, which is often the case
with fraud detection problems.

52

In picture

53

The F1 score

• At this point, you have probably already figured out that using
precision or recall as an evaluation metric is not an ideal choice
because you can only optimize one at the expense of the other. For
this reason, there are no Kaggle competitions that use only one

• of the two metrics. You should combine them (as in the average
precision). A single metric, the F1 score, which is the harmonic mean
of precision and recall, is commonly considered to be the best
solution:

54

Formula

𝐹𝐹1 =
2

1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 1

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 2 ×
𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

55

The F1 score 1/

• If you get a high F1 score, it is because your model has improved in
precision or recall or in both. You can find a fine example of the usage
of this metric in the Quora Insincere Questions Classification
competition https://www.kaggle.com/c/quora-insincerequestions-
classification

56

https://www.kaggle.com/c/quora-insincerequestions-classification
https://www.kaggle.com/c/quora-insincerequestions-classification

F-beta

• In some competitions, you also get the F-beta score. This is simply the
weighted harmonic mean between precision and recall, and beta
decides the weight of the recall in the combined score:

• Since we have already introduced the concept of threshold and
classification probability, we can now discuss the log loss and ROC-
AUC, both quite common classification metrics.

57

Log loss and ROC-AUC

• Let’s start with the log loss, which is also known as cross-entropy in
deep learning models. The log loss is the difference between the
predicted probability and the ground truth probability

• In the formula, n stands for the number of cases, 𝑦𝑦𝑖𝑖 is the ground
truth, and �𝑦𝑦𝑖𝑖 the prediction.

58

Tips

• If a competition uses the log loss, it is implied that the objective is to
estimate as correctly as possible the probability of an example being
of a positive class. You can actually find the log loss in quite a lot of
competitions.

• We suggest you have a look, for instance, at the recent Deepfake
Detection Challenge (https://www.kaggle.com/c/deepfake-detection-
challenge) or at the older Quora Question Pairs
(https://www.kaggle.com/c/quora-question-pairs).

59

https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/deepfake-detection-challenge
https://www.kaggle.com/c/quora-question-pairs

ROC Curve AUC

• The ROC curve, or receiver operating characteristic curve, is a graphical
chart used to evaluate the performance of a binary classifier and to
compare multiple classifiers. It is the building block of the ROC-AUC metric,
because the metric is simply the area delimited under the ROC curve.

• The ROC curve consists of the true positive rate (the recall) plotted against
the false positive rate (the ratio of negative instances that are incorrectly
classified as positive ones). It is equivalent to one minus the true negative
rate (the ratio of negative examples that are correctly classified).

• Here are a few examples:

60

61

Tips

• Ideally, a ROC curve of a well-performing classifier should quickly climb up
the true positive rate (recall) at low values of the false positive rate.

• A ROC-AUC between 0.9 to 1.0 is considered very good.
• A bad classifier can be spotted by the ROC curve appearing very similar, if

not identical, to the diagonal of the chart, which represents the
performance of a purely random classifier, as in the top left of the figure
above; ROC-AUC scores near 0.5 are considered to be almost random
results.

• If you are comparing different classifiers, and you are using the area under
the curve (AUC), the classifier with the higher area is the more
performant one.

62

Tips 1/

• If classes are balanced, or not too imbalanced, increases in the AUC
are proportional to the effectiveness of the trained model and they
can be intuitively thought of as the ability of the model to output
higher probabilities for true positives.

• We also think of it as the ability to order the examples more
properly from positive to negative.

63

Tips 2/

• However, when the positive class is rare, the AUC starts high and its
increments may mean very little in terms of predicting the rare class
better. As we mentioned before, in such a case, average precision is a
more helpful metric.

• More details can be found in the paper: Su, W., Yuan, Y., and Zhu, M.
A relationship between the average precision and the area under the
ROC curve. Proceedings of the 2015 International Conference on The
Theory of Information Retrieval. 2015.

64

Matthews correlation coefficient (MCC)

• We complete our overview of binary classification metrics with the
Mathews correlation coefficient (MCC), which made its appearance in
VSB Power Line Fault Detection (https://www.kaggle.com/c/vsb-
power-line-fault-detection) and Bosch Production Line Performance
(https://www.kaggle.com/c/bosch-productionline-performance)

• The formula for the MCC is:

65

https://www.kaggle.com/c/vsb-power-line-fault-detection
https://www.kaggle.com/c/vsb-power-line-fault-detection
https://www.kaggle.com/c/bosch-productionline-performance

Explanation

• In the above formula, TP stands for true positives, TN for true
negatives, FP for false positives, and FN for false negatives. It is the
same nomenclature as we met when discussing precision and recall.

• Behaving as a correlation coefficient, in other words, ranging from +1
(perfect prediction) to -1 (inverse prediction), this metric can be
considered a measure of the quality of the classification even when
the classes are quite imbalanced.

66

Neuron engineer

• In spite of its complexity, the formula can be reformulated and
simplified, as demonstrated by Neuron Engineer
(https://www.kaggle.com/ratthachat) in his Notebook:
www.kaggle.com/ratthachat/demythifying-matthew-
correlationcoefficients-mcc .

• The work done by Neuron Engineer in understanding the ratio of the
evaluation metric is indeed exemplary. In fact, his reformulated MCC
becomes:

67

https://www.kaggle.com/ratthachat
http://www.kaggle.com/ratthachat/demythifying-matthew-correlationcoefficients-mcc
http://www.kaggle.com/ratthachat/demythifying-matthew-correlationcoefficients-mcc

Formula explained 1/

• where

68

Formula explained 2/

• The reformulation helps to clarify, in a more intelligible form than the
original, that you can get higher performance from improving both
positive and negative class precision, but that’s not enough: you also
have to have positive and negative predictions in proportion to the
ground truth, or your submission will be greatly penalized.

69

Metrics for multi-class classification

• When moving to multi-class classification, you simply use the binary
classification metrics that we have just seen, applied to each class,
and then you summarize them using some of the averaging strategies
that are commonly used for multi-class situations.

70

Averaging methods

• For instance, if you want to evaluate your solution based on the F1
score, you have three possible averaging choices:

71

Macro averaging

• Simply calculate the F1 score for each class and then average all the
results. In this way, each class will count as much the others, no
matter how frequent its positive cases are or how important they are
for your problem, resulting therefore in equal penalizations when the
model doesn’t perform well with any class:

72

Micro averaging

• This approach will sum all the contributions from each class to
compute an aggregated F1 score. It results in no particular favor to or
penalization of any class, since all the computations are made
regardless of each class, so it can more accurately account for class
imbalances:

73

Weighted macro

• As with macro averaging, you first calculate the F1 score for each
class, but then you make a weighted average mean of all of them
using a weight that depends on the number of true labels of each
class. By using such a set of weights, you can take into account the
frequency of positive cases from each class or the relevance of that
class for your problem. This approach clearly favors the majority
classes, which will be weighted more in the computations:

74

Common multi-class metrics

• Common multi-class metrics that you may encounter in Kaggle
competitions are:

• Multiclass accuracy (weighted): Bengali.AI Handwritten Grapheme Classification
(https://www.kaggle.com/c/bengaliai-cv19)

• Multiclass log loss (MeanColumnwiseLogLoss): Mechanisms of Action (MoA)
Prediction (https://www.kaggle.com/c/lish-moa/)

• Macro-F1 and Micro-F1 (NQMicroF1): University of Liverpool - Ion Switching
(https://www.kaggle.com/c/liverpool-ion-switching), Human Protein Atlas Image
Classification (https://www.kaggle.com/c/human-protein-atlas-imageclassification/),
TensorFlow 2.0 Question Answering (https://www.kaggle.com/c/tensorflow2-question-
answering)

• Mean-F1: Shopee - Price Match Guarantee (https://www.kaggle.com/c/shopeeproduct-
matching/). Here, the F1 score is calculated for every predicted row, then averaged, whereas
the Macro-F1 score is defined as the mean of classwise/ label-wise F1 scores.

75

https://www.kaggle.com/c/human-protein-atlas-imageclassification/
https://www.kaggle.com/c/tensorflow2-question-answering
https://www.kaggle.com/c/tensorflow2-question-answering
https://www.kaggle.com/c/shopeeproduct-matching/
https://www.kaggle.com/c/shopeeproduct-matching/

Quadratic Weighted kappa

• Then there is also Quadratic Weighted Kappa, which we will explore
later on as a smart evaluation metric for ordinal prediction problems.
In its simplest form, the Cohen Kappa score, it just measures the
agreement between your predictions and the ground truth. The
metric was actually created for measuring inter-annotation
agreement, but it is really versatile and has found even better uses.

76

Inter-Annotation agreement

• What is inter-annotation agreement? Let’s imagine that you have a
labelling task: classifying some photos based on whether they contain
an image of a cat, a dog, or neither. If you ask a set of people to do
the task for you, you may incur some erroneous labels because
someone (called the judge in this kind of task) may misinterpret a dog
as a cat or vice versa. The smart way to do this job correctly is to
divide the work among multiple judges labeling the same photos, and
then measure their level of agreement based on the Cohen Kappa
score.

77

Cohen kappa

• Therefore, the Cohen Kappa is devised as a score expressing the level
of agreement between two annotators on a labeling (classification)
problem:

• In the formula, p0 is the relative observed agreement among raters,
and pe is the hypothetical probability of chance agreement. Using the
confusion matrix nomenclature, this can be rewritten, as:

78

Some comment on the formula

• The interesting aspect of this formula is that the score takes into
account the empirical probability that the agreement has happened
just by chance, so the measure has a correction for all the most
probable classifications. The metric ranges from 1, meaning complete
agreement, to -1, meaning the judges completely oppose each other
(total disagreement).

• Values around 0 signify that agreement and disagreement among the
judges is happening by mere chance. This helps you figure out if the
model is really performing better than chance in most situations.

79

Specific case of object detection

• In case your Kaggle competition is about object detection and
localization, there are slight twists compared to standard machine
learning problems

80

Object detection

• In object detection, you don’t have to classify an image, but instead
find relevant portions of a picture and label them accordingly.

81

How to handle this?

• In order to describe the spatial location of an object, in object detection we
use bounding boxes, which define a rectangular area in which the object
lies. A bounding box is usually specified using two (x, y) coordinates: the
upper-left and lower-right corners. In terms of a machine learning
algorithm, finding the coordinates of bounding boxes corresponds to
applying a regression problem to multiple targets. However, you probably
won’t frame the problem from scratch but rely on pre-built and often pre-
trained models such as Mask R-CNN

• (https://arxiv.org/abs/1703.06870), RetinaNet
• (https://arxiv.org/abs/2106.05624v1), FPN
• (https://arxiv.org/abs/1612.03144v2), YOLO
• (https://arxiv.org/abs/1506.02640v1), Faster R-CNN
• (https://arxiv.org/abs/1506.01497v1), or SDD
• (https://arxiv.org/abs/1512.02325).

82

https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/2106.05624v1
https://arxiv.org/abs/1612.03144v2
https://arxiv.org/abs/1506.02640v1
https://arxiv.org/abs/1506.01497v1
https://arxiv.org/abs/1512.02325

What about image segmentation?

• In segmentation, you instead have a classification at the pixel level

83

Metrics recommended

• There are two metrics that are used much more, especially in
competitions: the intersection over union and the dice coefficient.

84

Intersection over union (IoU)

• The intersection over union (IoU) is also known as the Jaccard index. When used
in segmentation problems, using IoU implies that you have two images to
compare: one is your prediction and the other is the mask revealing the ground
truth, which is usually a binary matrix where the value 1 stands for the ground
truth and 0 otherwise.

• In the case of multiple objects, you have multiple masks, each one labeled with
the class of the object. When used in object detection problems, you have the
boundaries of two rectangular areas (those of the prediction and the ground
truth), expressed by the coordinates of their vertices. For each classified class,
you compute the area of overlap between your prediction and the ground truth
mask, and then you divide this by the area of the union between your prediction
and the ground truth, a sum that takes into account any overlap.

• In this way, you are proportionally penalized both if you predict a larger area than
what it should be (the denominator will be larger) or a smaller one (the
numerator will be smaller):

85

Visually

86

Examples

• Here are some examples of competitions where IoU has been used:
• TGS Salt Identification Challenge (https://www.kaggle.com/c/tgssalt-

identification-challenge/) with Intersection Over Union Object Segmentation
• iMaterialist (Fashion) 2019 at FGVC6 (https://www.kaggle.com/c/imaterialist-

fashion-2019-FGVC6) with Intersection Over Union Object Segmentation With
Classification

• Airbus Ship Detection Challenge (https://www.kaggle.com/c/airbus-ship-
detection) with Intersection Over Union Object Segmentation Beta

87

https://www.kaggle.com/c/tgssalt-identification-challenge/
https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6
https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6
https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection

Dice

• The other useful metric is the Dice coefficient, which is the area of
overlap between the prediction and ground truth doubled and then
divided by the sum of the prediction and ground truth areas:

88

Difference with Jaccardi

• In this case, with respect to the Jaccardi index, you do not take into
account the overlap of the prediction with the ground truth in the
denominator. Here, the expectation is that, as you maximize the area of
overlap, you predict the correct area size. Again, you are penalized if you
predict areas larger than you should be predicting. In fact, the two metrics
are positively correlated and they produce almost the same results for a
single classification problem.

• The differences actually arise when you are working with multiple classes.
In fact, both with IoU and the Dice coefficient, when you have multiple
classes you average the result of all of them. However, in doing so, the IoU
metric tends to penalize the overall average more if a single class
prediction is wrong, whereas the Dice coefficient is more lenient and tends
to represent the average performance.

89

Going further

• IoU and Dice constitute the basis for all the more complex metrics in
segmentation and object detection. By choosing an appropriate
threshold level for IoU or Dice (usually 0.5), you can decide whether
or not to confirm a detection, therefore a classification. At this point,
you can use previously discussed metrics for classification, such as
precision, recall, and F1, such as is done in popular object detection
and segmentation challenges such as Pascal VOC
(http://host.robots.ox.ac.uk/pascal/VOC/voc2012) or COCO
(https://cocodataset.org).

90

Metrics for multi-label classification and
recommendation problems
• Recommender systems are one of the most popular applications of

data analysis and machine learning, and there are quite a few
competitions on Kaggle that have used the recommendation
approach. For instance, the Quick, Draw! Doodle Recognition
Challenge was a prediction evaluated as a recommender system.
Some other competitions on Kaggle, however, truly strived to build
effective recommender systems (such as Expedia Hotel
Recommendations:
https://www.kaggle.com/c/expediahotelrecommendations)

• and RecSYS, the conference on recommender systems
(https://recsys.acm.org/), even hosted one of its yearly contests on
Kaggle (RecSYS2013: https://www.kaggle.com/c/yelp-recsys-2013).

91

MAP@{K})

• Mean Average Precision at K (MAP@{K}) is typically the metric of choice
for evaluating the performance of recommender systems, and it is the
most common metric you will encounter on Kaggle in all the competitions
that try to build or approach a problem as a recommender system.

• There are also some other metrics, such as the precision at k, or P@K, and
the average precision at k, or AP@K, which are loss functions, in other
words, computed at the level of each single prediction.

• Understanding how they work can help you better understand the MAP@K
and how it can perform both in recommendations and in multi-label
classification.

92

What about multi-label classifications

• In fact, analogous to recommender systems, multi-label classifications
imply that your model outputs a series of class predictions.

• Such results could be evaluated using some average of some binary
classification metrics (such as in Greek Media Monitoring Multilabel
Classification (WISE 2014), which used the mean F1 score:
https://www.kaggle.com/c/wise-2014) as well as metrics that are more
typical of recommender systems, such as MAP@K.

• In the end, you can deal with both recommendations and multi-label
predictions as ranking tasks, which translates into a set of ranked
suggestions in a recommender system and into a set of labels (without a
precise order) in multi-label classification. MAP@{K}

93

MAP@{K}

• MAP@K is a complex metric and it derives from many computations. In order to
understand the MAP@K metric fully, let’s start with its simplest component, the
precision at k (P@K). In this case, since the prediction for an example is a ranked
sequence of predictions (from the most probable to the least), the function takes into
account only the top k predictions, then it computes how many matches it got with
respect to the ground truth and divides that number by k. In a few words, it is quite
similar to an accuracy measure averaged over k predictions.

• A bit more complex in terms of computation, but conceptually simple, the average
precision at k (AP@K) is the average of P@K computed over all the values ranging from 1
to k. In this way, the metric evaluates how well the prediction works overall, using the
top prediction, then the top two predictions, and so on until the top k predictions.

• Finally, MAP@K is the mean of the AP@K for the entire predicted sample, and it is a
metric because it comprises all the predictions in its evaluation.

94

MAP@5

• Here is the MAP@5 for instance you can find in the Expedia Hotel
Recommendations competition (https://www.kaggle.com/c/expedia-hotel-
recommendations):

• In the formula, is the number of user recommendations, P(k) is the
precision at cutoff k, and n is the number of predicted hotel clusters (you
could predict up to 5 hotels for each recommendation).

95

https://www.kaggle.com/c/expedia-hotel-recommendations
https://www.kaggle.com/c/expedia-hotel-recommendations

Optimizing evaluation metrics

• Summing up what we have discussed so far, an objective function is a
function inside your learning algorithm that measures how well the
algorithm’s internal model is fitting the provided data. The objective
function also provides feedback to the algorithm in order for it to
improve its fit across successive iterations. Clearly, since the entire
algorithm’s efforts are recruited to perform well based on the
objective function, if the Kaggle evaluation metric perfectly matches
the objective function of your algorithm, you will get the best results.

96

In practice!

• Unfortunately, this is not frequently the case. Often, the evaluation
metric provided can only be approximated by existing objective
functions. Getting a good approximation, or striving to get your
predictions performing better with respect to the evaluation criteria,
is the secret to performing well in Kaggle competitions. When your
objective function does not match your evaluation metric, you have a
few alternatives:

97

Strategies

• Modify your learning algorithm and have it incorporate an objective
function that matches your evaluation metric, though this is not possible
for all algorithms (for instance, algorithms such as LightGBM and XGBoost
allow you to set custom objective functions, but most Scikit-learn models
don’t allow this).

• Tune your model’s hyperparameters, choosing the ones that make the
result shine the most when using the evaluation metric.

• Post-process your results so they match the evaluation criteria more
closely. For instance, you could code an optimizer that performs
transformations on your predictions (probability calibration algorithms are
an example, and we will discuss them at the end of the chapter).

98

In reality

• Having the competition metric incorporated into your machine
learning algorithm is really the most effective method to achieve
better predictions, though only a few algorithms can be hacked into
using the competition metric as your objective function.

• The second approach is therefore the more common one, and many
competitions end up in a struggle to get the best hyperparameters for
your models to perform on the evaluation metric.

99

Leverage Kaggle

• If you already have your evaluation function coded, then doing the
right crossvalidation or choosing the appropriate test set plays the
lion share. If you don’t have the coded function at hand, you have to
first code it in a suitable way, following the formulas provided by
Kaggle.

100

Tips 1/

• Invariably, doing the following will make the difference:
• Looking for all the relevant information about the evaluation metric and its coded

function on a search engine Browsing through the most common packages (such as
Scikit-learn: https://scikitlearn.org/stable/modules/model_evaluation.html#model-
evaluation or TensorFlow:
https://www.tensorflow.org/api_docs/python/tf/keras/losses)

• Browsing GitHub projects (for instance, Ben Hammer’s Metrics project:
https://github.com/benhamner/Metrics)

• Asking or looking around in the forums and available Kaggle Notebooks (both for the
current competition and for similar competitions)

• In addition, as we mentioned before, querying the Meta Kaggle dataset
(https://www.kaggle.com/kaggle/meta-kaggle) and looking in the Competitions table
will help you find out which other Kaggle competitions used that same evaluation
metric, and immediately provides you with useful code and ideas to try out

101

https://scikitlearn/

Example: Custom metrics and custom
objective functions
• As a first option when your objective function does not match your

evaluation metric, we learned above that you can solve this by creating
your own custom objective function, but that only a few algorithms can
easily be modified to incorporate a specific objective function.

• The good news is that the few algorithms that allow this are among the
most effective ones in Kaggle competitions and data science projects. Of
course, creating your own custom objective function may sound a little bit
tricky, but it is an incredibly rewarding approach to increasing your score in
a competition.

• For instance, there are options to do this when using gradient boosting
algorithms such as XGBoost, CatBoost, and LightGBM, as well as with all
deep learning models based on TensorFlow or PyTorch.

102

Change the metric

• You can find great tutorials for custom metrics and objective
functions in TensorFlow and PyTorch here:

• https://towardsdatascience.com/custom-metrics-in-keras-and-howsimple-
they-are-to-use-in-tensorflow2-2-6d079c2ca279

• https://petamind.com/advanced-keras-custom-loss-functions/
• https://kevinmusgrave.github.io/pytorch-metriclearning/extend/losses/

• These will provide you with the basic function templates and some
useful suggestions about how to code a custom objective or
evaluation function.

103

https://towardsdatascience.com/custom-metrics-in-keras-and-howsimple-they-are-to-use-in-tensorflow2-2-6d079c2ca279
https://towardsdatascience.com/custom-metrics-in-keras-and-howsimple-they-are-to-use-in-tensorflow2-2-6d079c2ca279
https://petamind.com/advanced-keras-custom-loss-functions/
https://kevinmusgrave.github.io/pytorch-metriclearning/extend/losses/

Example

• If you want just to get straight to the custom objective function you
need, you can try this Notebook by RNA

• (https://www.kaggle.com/bigironsphere):
• https://www.kaggle.com/bigironsphere/loss-function-librarykeras-

pytorch/notebook

• It contains a large range of custom loss functions for both TensorFlow
and PyTorch that have appeared in different competitions.

104

https://www.kaggle.com/bigironsphere
https://www.kaggle.com/bigironsphere/loss-function-librarykeras-pytorch/notebook
https://www.kaggle.com/bigironsphere/loss-function-librarykeras-pytorch/notebook

GBDT case

• If you need to create a custom loss in LightGBM, XGBoost, or
CatBoost, as indicated in their respective documentation, you have to
code a function that takes as inputs the prediction and the ground
truth, and that returns as outputs the gradient and the hessian.

• You can consult this post on Stack Overflow for a better
understanding of what a gradient and a hessian are:

• https://stats.stackexchange.com/questions/231220/how-tocompute-
the-gradient-and-hessian-of-logarithmic-lossquestion-is-based

105

https://stats.stackexchange.com/questions/231220/how-tocompute-the-gradient-and-hessian-of-logarithmic-lossquestion-is-based
https://stats.stackexchange.com/questions/231220/how-tocompute-the-gradient-and-hessian-of-logarithmic-lossquestion-is-based

Code implementation perspective

• From a code implementation perspective, all you have to do is to
create a function, using closures if you need to pass more parameters
beyond just the vector of predicted labels and true labels.

• Here is a simple example of a focal loss (a loss that aims to heavily
weight the minority class in the loss computations as described in Lin,
T-Y. et al. Focal loss for dense object detection:
https://arxiv.org/abs/1708.02002) function that you can use as a
model for your own custom functions:

106

https://arxiv.org/abs/1708.02002

Code your own loss

107

from scipy.misc import derivative
import xgboost as xgb

def focal_loss(alpha, gamma):
def loss_func(y_pred, y_true):

a, g = alpha, gamma

def get_loss(y_pred, y_true):
p = 1 / (1 + np.exp(-y_pred))

loss = (-(a * y_true + (1 - a) * (1 - y_true)) * ((1 - (y_true * p + (1 - y_true) * (1 - p))) ** g) * (
y_true * np.log(p) + (1 - y_true) * np.log(1 - p)))

return loss
partial_focal = lambda y_pred: get_loss(y_pred, y_true)
grad = derivative(partial_focal, y_pred, n=1, dx=1e-6)
hess = derivative(partial_focal, y_pred, n=2, dx=1e-6)
return grad, hess

return loss_func

xgb = xgb.XGBClassifier(objective=focal_loss(alpha=0.25, gamma=1))

Comment

• In the above code snippet, we have defined a new cost function, focal_loss,
which is then fed into an XGBoost instance’s object parameters.

• The example is worth showing because the focal loss requires the
specification of some parameters in order to work properly on your
problem (alpha and gamma).

• The more simplistic solution of having their values directly coded into the
function is not ideal, since you may have to change them systematically as
you are tuning your model

• Instead, in the proposed function, when you input the parameters into the
focal_loss function, they reside in memory and they are referenced by the
loss_func function that is returned to XGBoost. The returned cost function,
therefore, will work, referring to the alpha and gamma values that you
have initially instantiated.

108

Summary
• In this chapter, we have discussed evaluation metrics in Kaggle competitions. First, we explained

how an evaluation metric can differ from an objective function. We also remarked on the
differences between regression and classification problems.

• For each type of problem, we analyzed the most common metrics that you can find in a Kaggle
competition. After that, we discussed the metrics that have never previously been seen in a
competition and that you won’t likely see again. Finally, we explored and studied different
common metrics, giving examples of where they have been used in previous Kaggle competitions.

• We then proposed a few strategies for optimizing an evaluation metric. In particular, we
recommended trying to code your own custom cost function and provided suggestions on
possible useful post-processing steps.

• You should now have grasped the role of an evaluation metric in a Kaggle competition. You should
also have a strategy to deal with every common or uncommon metric, by retracing past
competitions and by gaining a full understanding of the way a metric works. In the next chapter,
we are going to discuss how to use evaluation metrics and properly estimate the performance of
your Kaggle solution by means of a validation strategy.

109

Example of a regression challenge

• House Prices - Advanced Regression Techniques

110

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

https://www.kaggle.com/competitions/house-prices-advanced-regression-
techniques/overview/tutorials

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/overview/tutorials
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/overview/tutorials

	Slide Number 1
	Acknowledgement
	Agenda
	Competition Tasks and Metrics
	Example of metrics
	Agenda
	Where to find the metric?
	Terminology
	Objective function
	Terminology last part
	Basic types of tasks
	Regression
	Classification
	Binary and imbalance
	Multi class
	Multi label
	Ordinal
	Multi class approach
	Regression approach
	The Meta Kaggle dataset
	Why looking at the Meta Kaggle dataset?
	Looking at the most common metrics
	Looking at the most common metrics
	Results
	For a specific metric
	Mean squared error (MSE) and R squared
	Explanation 1/
	Explanation 2/
	Explanation 3/
	What about transformation?
	What about transformation?
	Root mean squared error (RMSE)
	What it means in practice?
	Mean absolute error (MAE) 1/
	Mean absolute error (MAE) 2/
	Root mean squared log error (RMSLE)
	Intuition and tips
	Metrics for classification (label prediction�and probability)
	Accuracy
	Intuition 1/
	Spotting imbalance data?
	Confusion matrix
	Rules
	sklearn
	Precision and recall
	Definition
	Accuracy, precision, recall
	Why choose precision?
	Recall
	Precision/recall trade-off 1/
	Precision/recall trade-off 2/
	Average precison
	In picture
	The F1 score
	Formula
	The F1 score 1/
	F-beta
	Log loss and ROC-AUC
	Tips
	ROC Curve AUC
	Slide Number 61
	Tips
	Tips 1/
	Tips 2/
	Matthews correlation coefficient (MCC)
	Explanation
	Neuron engineer
	Formula explained 1/
	Formula explained 2/
	Metrics for multi-class classification
	Averaging methods
	Macro averaging
	Micro averaging
	Weighted macro
	Common multi-class metrics
	Quadratic Weighted kappa
	Inter-Annotation agreement
	Cohen kappa
	Some comment on the formula
	Specific case of object detection
	Object detection
	How to handle this?
	What about image segmentation?
	Metrics recommended
	Intersection over union (IoU)
	Visually
	Examples
	Dice
	Difference with Jaccardi
	Going further
	Metrics for multi-label classification and�recommendation problems
	MAP@{K})
	What about multi-label classifications
	MAP@{K}
	MAP@5
	Optimizing evaluation metrics
	In practice!
	Strategies
	In reality
	Leverage Kaggle
	Tips 1/
	Example: Custom metrics and custom objective functions
	Change the metric
	Example
	GBDT case
	Code implementation perspective
	Code your own loss
	Comment
	Summary
	Example of a regression challenge

