
IASD M2 at Paris Dauphine

Become a Kaggle Master

3: Validation

Eric Benhamou

1

Acknowledgement
The materials of this course is entirely based on the seminal book

Agenda

Part I: general concepts

1. Introduction to Kaggle (concept and API)

2. Competition, metrics

3. Validation

4. Hyper parameters tuning

5. Model ensemble with blending and stacking

Part II: Competitions

5. Blind competition

6. Predict Financial markets

7. To be determined

3

Competition Tasks and Metrics

• In a Kaggle competition, in the heat of modeling and submitting
results, it may seem enough to take at face value the results you get
back from the leaderboard. In the end, you may think that what
counts in a competition is your ranking. This is a common error that is
made repeatedly in competitions. In actual fact, you won’t know what
the actual leaderboard (the private one) looks like until after the
competition has closed, and trusting the public part of it is not
advisable because it is quite often misleading.

• In this chapter, we will introduce you to the importance of validation
in data competitions

4

Contents

• You will learn about:
1. What overfitting is and how a public leaderboard can be misleading

2. The dreadful shake-ups

3. The different kinds of validation strategies

4. Adversarial validation

5. How to spot and leverage leakages

6. What your strategies should be when choosing your final submission

5

Why avoiding overfitting?

• Monitoring your performances when modeling and distinguishing
when overfitting happens is a key competency not only in data
science competitions but in all data science projects. Validating your
models properly is one of the most important skills that you can learn
from a Kaggle competition and that you can resell in the professional
world

6

Snooping on the leaderboard

• As we previously described, in each competition, Kaggle divides the
test set into a public part, which is visualized on the ongoing
leaderboard, and a private part, which will be used to calculate the
final scores. These test parts are usually randomly determined
(although in time series competitions, they are determined based on
time) and the entire test set is released without any distinction made
between public and private.

7

How is a submission done?

• Therefore, a submission derived from a model will cover the entire
test set, but only the public part will immediately be scored, leaving
the scoring of the private part until after the competition has closed.

8

Consequences:

• Given this, three considerations arise:
• In order for a competition to work properly, training data and test data should

be from the same distribution. Moreover, the private and public parts of the
test data should resemble each other in terms of distribution.

• Even if the training and test data are apparently from the same distribution,
the lack of sufficient examples in either set could make it difficult to obtain
aligned results between the training data and the public and private test data.

• The public test data should be regarded as a holdout test in a data science
project: to be used only for final validation. Hence, it should not be queried
much in order to avoid what is called adaptive overfitting, which implies a
model that works well on a specific test set but underperforms on others.

9

Leaderboard fallacy

• Keeping in mind these three considerations is paramount to
understanding the dynamics of a competition.

• In most competitions, there are always quite a few questions in the
discussion forums about how the training, public, and private test
data relate to each other

• It is quite common to see submissions of hundreds of solutions that
have only been evaluated based on their efficacy on the public
leaderboard

10

Shake-ups 1/

• It is also common to hear discussions about shake-ups that
revolutionize the rankings.

• They are, in fact, a rearranging of the final rankings that can
disappoint many who previously held better positions on the public
leaderboard.

• Anecdotally, shake-ups are commonly attributed to differences
between the training and test set or between the private and public
parts of the test data.

• They are measured ex ante based on how competitors have seen
their expected local scores correlate with the leaderboard feedback
and ex post by a series of analyses based on two figures:

11

Shake-ups 2/

• A general shake-up figure based on
mean(abs(private_rankpublic_rank)/number_of_teams)

• A top leaderboard shake-up figure, taking into account only the top 10% of
public ranks

• https://www.kaggle.com/jtrotman/metakaggle-competition-shake-up

12

https://www.kaggle.com/jtrotman/metakaggle-competition-shake-up

Shakeup

13

Findings

• There is adaptive overfitting; in other words, public standings usually
do not fully hold in the unveiled private leaderboard.

• Most of the shake-ups are due overcrowded rankings where
competitors are too near to each other, and any slight change in the
performance in the private test sets causes major changes in the
rankings as well as to random fluctuations.

• Shake-ups happen when the training set is very small or the training
data is not independent and identically distributed (i.i.d.).

14

What to do?

• Since this is quite a common and persistent problem, we suggest a strategy
more sophisticated than simply following the public leaderboard:
• Always build reliable cross-validation systems for local scoring.
• Always try to control non-i.i.d distributions using the best validation scheme

dictated by the situation. Unless clearly stated in the description of the competition,
it is not an easy task to spot non-i.i.d. distributions, but you can get hints from
discussion or by experimenting using stratified validation schemes (when stratifying
according to a certain feature, the results improve decisively, for instance).

• Correlate local scoring with the public leaderboard in order to figure out whether or
not they go in the same direction.

• Test using adversarial validation, revealing whether or not the test distribution is
similar to the training data.

• Make your solutions more robust using ensembling, especially if you are working
with small datasets.

15

What to learn?

• If you think about a competition carefully, you can imagine it as a huge system of
experiments. Whoever can create the most systematic and efficient way to run
these experiments wins.

• In fact, in spite of all your theoretical knowledge, you will be in competition with
the hundreds or thousands of data professionals who have more or less the
same competencies as you.

• In addition, they will be using exactly the same data as you and roughly the same
tools for learning from the data (TensorFlow, PyTorch, Scikit-learn, and so on).
Some will surely have better access to computational resources, although the
availability of Kaggle Notebooks and generally decreasing cloud computing prices
mean the gap is no longer so wide.

16

Why some wins?

• Consequently, if you look at differences in knowledge, data, models,
and available computers, you won’t find many discriminating factors
between you and the other competitors that could explain huge
performance differences in a competition.

• Yet, some participants consistently outperform others, implying there
is some underlying success factor.

17

What makes the difference?

• In interviews and meet-ups, some Kagglers describe this success
factor as “grit,” some others as “trying everything,” some others again
as a “willingness to put everything you have into a competition.”
These may sound a bit obscure and magic.

• Instead, we call it systematic experimentation.

• In our opinion, the key to successful participation resides in the
number of experiments you conduct and the way you run all of
them.

18

What does it mean?

• The more experiments you undertake, the more chances you will
have to crack the problem better than other participants.

• This number certainly depends on a few factors, such as the time you
have available, your computing resources (the faster the better, but as
we previously mentioned, this is not such a strong differentiator per
se), your team size, and their involvement in the task.

• This aligns with the commonly reported grit and engagement as keys
for success.

19

But do experiments carefully!

• However, these are not the only factors affecting the result. You have
to take into account that the way you run your experiments also has
an impact. Fail fast and learn from it is an important factor in a
competition.

• Of course, you need to reflect carefully both when you fail and when
you succeed in order to learn something from your experiences, or
your competition will just turn into a random sequence of attempts
in the hope of picking the right solution.

20

Get a proper validation strategy!

• Therefore, ceteris paribus, having a proper validation strategy is the
great discriminator between successful Kaggle competitors and those
who just overfit the leaderboard and end up in lower-than expected
rankings after a competition.

21

Validation

• Therefore, ceteris paribus, having a proper validation strategy is the
great discriminator between successful Kaggle competitors and those
who just overfit the leaderboard and end up in lower-than expected
rankings after a competition.

• Validation is the method you use to correctly evaluate the errors
that your model produces and to measure how its performance
improves or decreases based on your experiments.

22

Validation is often overlooked!

• Generally, the impact of choosing proper validation is too often
overlooked in favor of more quantitative factors, such as having the
latest, most powerful GPU or a larger team producing submissions.

• Nevertheless, if you count only on the firepower of experiments and
their results on the leaderboard, it will be like “throwing mud at the
wall and hoping something will stick”

23

Rules of thumb

• Though the temptation to submit your top public leaderboard models
may be high, always consider your own validation scores. For your
final submissions, depending on the situation and whether or not you
trust the leaderboard, choose your best model based on the
leaderboard and your best based on your local validation results.

• If you don’t trust the leaderboard (especially when the training
sample is small or the examples are non-i.i.d.), submit models that
have two of the best validation scores, picking two very different
models or ensembles. In this way, you will reduce the risk of choosing
solutions that won’t perform on the private test set.

24

Why is so important to validate a model?

• Having pointed out the importance of having a method of experimenting,
what is left is all a matter of the practicalities of validation. In fact, when
you model a solution, you take a series of interrelated decisions:
• 1. How to process your data
• 2. What model to apply
• 3. How to change the model’s architecture (especially true for deep learning models)
• 4. How to set the model’s hyperparameters
• 5. How to post-process the predictions

• Even if the public leaderboard is perfectly correlated with the private one,
the limited number of daily submissions (a limitation present in all
competitions) prevents you from even scratching the surface of possible
tests.

• Having a proper validation system tells you beforehand

25

Bias variance trade-off

• You also hear about the capacity or expressiveness of a model as a
matter of bias and variance. In this case, the bias and variance of a
model refer to the predictions, but the underlying principle is strictly
related to the expressiveness of a model. Models can be reduced to
mathematical functions that map an input (the observed data) to a
result (the predictions).

• Some mathematical functions are more complex than others, in the
number of internal parameters they have and in the ways they use
them:

26

What it means?

• If the mathematical function of a model is not complex or expressive
enough to capture the complexity of the problem you are trying to
solve, we talk of bias, because your predictions will be limited
(“biased”) by the limits of the model itself.

• If the mathematical function at the core of a model is too complex for
the problem at hand, we have a variance problem, because the model
will record more details and noise in the training data than needed
and its predictions will be deeply influenced by them and become
erratic.

27

Variance is at stake now!

• Nowadays, given the advances in machine learning and the available
computation resources, the problem is always due to variance, since
deep neural networks and gradient boosting, the most commonly
used solutions, often have a mathematical expressiveness that
exceeds what most of the problems you will face need in order to be
solved.

28

Difference between train and test

29

Try different splitting strategies

• As previously discussed, the validation loss is based on a data sample
that is not part of the training set. It is an empirical measure that tells
you how good your model is at predicting, and a more correct one
than the score you get from your training, which will tell you mostly
how much your model has memorized the training data patterns.

• Correctly choosing the data sample you use for validation constitutes
your validation strategy.

30

Validation is about splitting

• To summarize the strategies for validating your model and measuring its
performance correctly, you have a couple of choices:

• The first choice is to work with a holdout system, incurring the risk of not
properly choosing a representative sample of the data or overfitting to your
validation holdout.

• The second option is to use a probabilistic approach and rely on a series of
samples to draw your conclusions on your models.

• Among the probabilistic approaches, you have cross validation, leave-one-out
(LOO), and bootstrap. Among the cross-validation strategies, there are different
nuances depending on the sampling strategies you take based on the
characteristic of your data (simple random sampling, stratified sampling,
sampling by groups, time sampling).

31

What all these strategies have in common?

• What all these strategies have in common is that they are sampling
strategies. It means that they help you to infer a general measure (the
performance of your model) based on a small part of your data,
randomly selected.

• Sampling is at the root of statistics and it is not an exact procedure
because, based on your sampling method, your available data, and
the randomness of picking up certain cases as part of your sample,
you will experience a certain degree of error.

32

Basic train test sampling

• The first strategy that we will analyze is the train-test split. In this
strategy, you sample a portion of your training set (also known as the
holdout) and you use it as a test set for all the models that you train
using the remaining part of the data.

• The great advantage of this strategy is that it is very simple: you pick
up a part of your data and you check your work on that part. You
usually split the data 80/20 in favor of the training partition.

• Scikit-learn, it is implemented in the train_test_split function

33

Limitation

• When you have large amounts of data, you can expect that the test data you
extract is similar to (representative of) the original distribution on the entire
dataset. However, since the extraction process is based on randomness, you
always have the chance of extracting a non-representative sample.

• In particular, the chance increases if the training sample you start from is small.
Comparing the extracted holdout partition using adversarial validation (more
about this in a few sections) can help you to make sure you are evaluating your
efforts in a correct way.

• In addition, to ensure that your test sampling is representative, especially with
regard to how the training data relates to the target variable, you can use
stratification, which ensures that the proportions of certain features are
respected in the sampled data. You can use the stratify parameter in the
train_test_split function and provide an array containing the class distribution to
preserve.

34

Probabilistic evaluation

• We have to remark that, even if you have a representative holdout
available, sometimes a simple train-test split is not enough for
ensuring a correct tracking of your efforts in a competition.

• In fact, as you keep checking on this test set, you may drive your
choices to some kind of adaptation overfitting (in other words,
erroneously picking up the noise of the training set as signals), as
happens when you frequently evaluate on the public leaderboard.

• For this reason, a probabilistic evaluation, though more
computationally expensive, is more suited for a competition.

35

Probabilistic evaluation methods

• Probabilistic evaluation of the performance of a machine learning model is
based on the statistical properties of a sample from a distribution. By
sampling, you create a smaller set of your original data that is expected to
have the same characteristics.

• In addition, what is left untouched from the sampling constitutes a sample
in itself, and it is also expected to have the same characteristics as the
original data. By training and testing your model on this sampled data and
repeating this procedure a large number of times, you are basically
creating a statistical estimator measuring the performance of your model.

• Probabilistic estimators naturally require more computations than a
simple train-test split, but they offer more confidence that you are
correctly estimating the right measure: the general performance of your
model.

36

k-fold cross-validation

• The most used probabilistic validation method is k-fold cross validation,
which is recognized as having the ability to correctly estimate the
performance of your model on unseen test data drawn from the same
distribution.

• There are quite a few different variations of k-fold cross-validation, but the
simplest one, which is implemented in the KFold function in Scikit-learn, is
based on the splitting of your available training data into k partitions. After
that, for k iterations, one of the k partitions is taken as a test set while the
others are used for the training of the model.

• The k validation scores are then averaged and that averaged score value is
the k-fold validation score, which will tell you the estimated average model
performance on any unseen data. The standard deviation of the scores will
inform you about the uncertainty of the estimate.

37

5-fold validation scheme

38

What k? 1/

• One important aspect of the k-fold cross-validation score you have to keep in mind is that it
estimates the average score of a model trained on the same quantity of data as k - 1 folds. If,
afterward, you train your model on all your data, the previous validation estimate no longer
holds. As k approaches the number n of examples, you have an increasingly correct estimate of
the model derived on the full training set, yet, due to the growing correlation between the
estimates you obtain from each fold, you will lose all the probabilistic estimates of the validation.
In this case, you’ll end up having a number showing you the performance of your model on your
training data (which is still a useful estimate for comparison reasons, but it won’t help you in
correctly estimating the generalization power of your model).

• When you reach k = n, you have the LOO validation method, which is useful when you have a few
cases available. The method is mostly an unbiased fitting measure since it uses almost all the
available data for training and just one example for testing. Yet it is not a good estimate of the
expected performance on unseen data. Its repeated tests over the whole dataset are highly
correlated with each other and the resulting LOO metric represents more the performance of the
model on the dataset itself than the performance the model would have on unknown data.

39

What k? 2/

• The correct k number of partitions to choose is decided based on a few aspects
relative to the data you have available:

• The smaller the k (the minimum is 2), the smaller each fold will be, and
consequently, the more bias in learning there will be for a model trained on k - 1
folds: your model validated on a smaller k will be less well-performing with
respect to a model trained on a larger k.

• The higher the k, the more the data, yet the more correlated your validation
estimates: you will lose the interesting properties of k-fold cross-validation in
estimating the performance on unseen data.

• Commonly, k is set to 5, 7, or 10, more seldom to 20 folds. We usually regard k = 5
or k = 10 as a good choice for a competition, with the latter using more data for
each training (90% of the available data), and hence being more suitable for
figuring out the performance of your model when you retrain on the full dataset.

40

What k? 3/

• When deciding upon what k to choose for a specific dataset in a
competition, we find it useful to reflect your goals:
• If your purpose is performance estimation, you need models with low bias

estimates (which means no systematic distortion of estimates). You can
achieve this by using a higher number of folds, usually between 10 and 20.

• If your aim is parameter tuning, you need a mix of bias and variance, so it is
advisable to use a medium number of folds, usually between 5 and 7.

• Finally, if your purpose is just to apply variable selection and simplify your
dataset, you need models with low variance estimates (or you will have
disagreement). Hence, a lower number of folds will suffice, usually between 3
and 5.

41

What k? 4/

• When the size of the available data is quite large, you can safely stay
on the lower side of the suggested bands.

• Secondly, if you are just aiming for performance estimation, consider
that the more folds you use, the fewer cases you will have in your
validation set, so the more the estimates of each fold will be
correlated. Beyond a certain point, increasing k renders your
crossvalidation estimates less predictive of unseen test sets and more
representative of an estimate of how well-performing your model is
on your training set. This also means that, with more folds, you can
get the perfect out-of-fold prediction for stacking purposes, as we will
explain in detail in our lecture about, Ensembling with Blending and
Stacking Solutions.

42

k-fold variations

• Since it is based on random sampling, k-fold can provide unsuitable splits when:

• You have to preserve the proportion of small classes, both at a target level and at
the level of features. This is typical when your target is highly imbalanced. Typical
examples are spam datasets (because spam is a small fraction of the normal
email volume) or any credit risk dataset where you have to predict the not-so-
frequent event of a defaulted loan.

• You have to preserve the distribution of a numeric variable, both at a target level
and at the level of features. This is typical of regression problems where the
distribution is quite skewed or you have heavy, long tails. A common example is
house price prediction, where you have a consistent small portion of houses on
sale that will cost much more than the average house.

• Your cases are non-i.i.d, in particular when dealing with time series forecasting.

43

Solutions

• In the first two scenarios, the solution is the stratified k-fold, where
the sampling is done in a controlled way that preserves the
distribution you want to preserve.

• If you need to preserve the distribution of a single class, you can use
StratifiedKFold from Scikitlearn, using a stratification variable, usually
your target variable but also any other feature whose distribution you
need to preserve. The function will produce a set of indexes that will
help you to partition your data accordingly. You can also obtain the
same result with a numeric variable, after having discretized it, using
pandas.cut or Scikit-learn’s KBinsDiscretizer .

44

Scikit-multilearn

• You can find a solution in the Scikit-multilearn package (http://scikit.ml/),
in particular, the Iterative Stratification command that helps you to control
the order (the number of combined proportions of multiple variables) that
you want to Preserve

• http://scikit.ml/api/skmultilearn.model_selection.iterative_stratification.ht
ml

• It implements the algorithm explained by the following papers:
• Sechidis, K., Tsoumakas, G., and Vlahavas, I. (2011). On the stratification of multi-

label data. Machine Learning and Knowledge Discovery in Databases, 145-158.
http://lpis.csd.auth.gr/publications/sechidisecmlpkdd-2011.pdf

• Szymański, P. and Kajdanowicz, T.; Proceedings of the First International Workshop on
Learning with Imbalanced Domains: Theory and Applications, PMLR 74:22-35, 2017.
http://proceedings.mlr.press/v74/szyma%C5%84ski17a.html

45

http://scikit.ml/api/skmultilearn.model_selection.iterative_stratification.html
http://scikit.ml/api/skmultilearn.model_selection.iterative_stratification.html
http://lpis.csd.auth.gr/publications/sechidisecmlpkdd-2011.pdf
http://proceedings.mlr.press/v74/szyma%C5%84ski17a.html

Other imbalance strategy

• You can use imlearn https://imbalanced-learn.org/stable/

• It contains many algorithms in the following categories, including
SMOTE
• Under-sampling the majority class(es).

• Over-sampling the minority class.

• Combining over- and under-sampling.

• Create ensemble balanced sets.

46

https://imbalanced-learn.org/stable/

What about regressions?

• You can actually make good use of stratification even when your
problem is not a classification, but a regression. Using stratification in
regression problems helps your regressor to fit during cross validation
on a similar distribution of the target (or of the predictors) to the one
found in the entire sample. In these cases, in order to have
StratifiedKFold working correctly, you have to use a discrete proxy for
your target instead of your continuous target.

• The first, simplest way of achieving this is to use the pandas cut
function and divide your target into a large enough number of bins,
such as 10 or 20:

47

Regression stratification

48

import pandas as pd
y_proxy = pd.cut(y_train, bins=10, labels=False)

In order to determine the number of bins to be used, one can use use
Sturges’ rule based on the number of examples
available, and provide that number to the pandas cut function
(https://www.kaggle.com/abhishek/step-1-create-folds)

import numpy as np
bins = int(np.floor(1 + np.log2(len(X_train))))

https://www.kaggle.com/abhishek/step-1-create-folds

Alternative

• An alternative approach is to focus on the distributions of the
features in the training set and aim to reproduce them. This requires
the use of cluster analysis (an unsupervised approach) on the features
of the training set, thus excluding the target variable and any
identifiers, and then using the predicted clusters as strata. You can
see an example in this Notebook

• (https://www.kaggle.com/lucamassaron/are-you-doingcross-
validation-the-best-way), where first a PCA (principal component
analysis) is performed to remove correlations, and then a k-means
cluster analysis is performed. You can decide on the number of
clusters to use by running empirical tests.

49

https://www.kaggle.com/lucamassaron/are-you-doingcross-validation-the-best-way
https://www.kaggle.com/lucamassaron/are-you-doingcross-validation-the-best-way

What about non i.i.d.?

• Proceeding with our discussion of the cases where k-fold can provide
unsuitable splits, things get tricky in the third scenario, when you have
non-i.i.d. data, such as in the case of some grouping happening among
examples.

• The problem with non-i.i.d. examples is that the features and target are
correlated between the examples (hence it is easier to predict all the
examples if you know just one example among them). In fact, if you
happen to have the same group divided between training and testing, your
model may learn to distinguish the groups and not the target itself,
producing a good validation score but very bad results on the leaderboard.

• The solution here is to use GroupKFold : by providing a grouping variable,
you will have the assurance that each group will be placed either in the
training folds or in the validation ones, but never split between the two.

50

Discovering non i.i.d.

• Discovering groupings in the data that render your data non-i.i.d. is
actually not an easy task to accomplish. Unless stated by the
competition problem,

• you will have to rely on your ability to investigate the data (using
unsupervised learning techniques, such as cluster analysis) and the
domain of the problem. For instance, if your data is about mobile
telephone usage, you may realize that some examples are from the
same user by noticing sequences of similar values in the features.

51

What about time series?

• Time series analysis presents the same problem, and since data is
non-i.i.d., you cannot validate by random sampling because you will
mix different time frames and later time frames could bear traces of
the previous ones (a characteristic called auto-correlation in
statistics). In the most basic approach to validation in time series, you
can use a training and validation split based on time, as illustrated
below:

• Your validation capabilities will be limited, however, since your
validation will be anchored to a specific time. For a more complex
approach, you can use time split validation, TimeSeriesSplit , a
provided by the Scikit-learn package

52

TimeSeriesSplit

• In the case of the training timeframe, the TimeSeriesSplit function can
help you to set your training data so it involves all the past data
before the test timeframe, or limit it to a fixed period lookback (for
instance, always using the data from three months before the test
timeframe for training).

53

Variation

• You can instead see how the strategy changes if you stipulate that the
training set has a fixed lookback

54

What to conclude?

• In our experience, going by a fixed lookback helps to provide a fairer
evaluation of time series models since you are always counting on the
same training set size.

• By instead using a growing training set size over time, you confuse the
effects of your model performance across time slices with the decreasing
bias in your model (since more examples mean less bias).

• Finally, remember that TimeSeriesSplit can be set to keep a predefined gap
between your training and test time. This is extremely useful when you
are told that the test set is a certain amount of time in the future (for
instance, a month after the training data) and you want to test if your
model is robust enough to predict that far into the future.

55

Nested cross-validation

• At this point, it is important to introduce nested cross-validation. Up to
now, we have only discussed testing models with respect to their final
performance, but often you also need to test their intermediate
performance when tuning their hyperparameters.

• In fact, you cannot test how certain model parameters work on your test
set and then use the same data in order to evaluate the final performance.
Since you have specifically found the best parameters that work on the test
set, your evaluation measure on the same test set will be too optimistic; on
a different test set, you will probably not obtain the exact same result. In
this case, you have to distinguish between a validation set, which is used to
evaluate the performance of various models and hyperparameters, and a
test set, which will help you to estimate the final performance of the
model.

56

Nested cross validation

• If you are using a test-train split, this is achieved by splitting the
testpart into two new parts. The usual split is 70/20/10 for training,
validation, and testing, respectively (but you can decide differently). If
you are using cross-validation, you need nested cross-validation; that
is, you do cross-validation based on the split of another
rossvalidation.

• Essentially, you run your usual cross-validation, but when you have to
evaluate different models or different parameters, you run cross-
validation based on the fold split.

57

What it means? 1/

• Let us see on an
example the
internal and
external cross-
validation
structure.

58

What it means? 2/

• In external part, you determine
the portion of the data used to
test your evaluation metric.

• In internal part, which is fed by
the training data from the
external part, you arrange
training/validation splits in
order to evaluate and optimize
specific model choices, such as
deciding which model or
hyperparameter values to pick:

59

What to prefer?

• This approach has the advantage of making your test and parameter
search fully reliable, but in doing so you incur a couple of problems: A
reduced training set, since you first split by cross-validation, and then
you split again

• More importantly, it requires a huge amount of model building: if you
run two nested 10-fold cross-validations, you’ll need to run 100
models

• Especially for this last reason, some Kagglers tend to ignore nested
cross-validation and risk some adaptive fitting by using the same
cross-validation for both model/parameter search and performance
evaluation, or using a fixed test sample for the final evaluation.

60

What do we recommend?

• In our experience, this approach can work as well, though it may
result in overestimating model performance and overfitting if you are
generating out-of-fold predictions to be used for successive modeling
(something we are going to discuss in the next section).

• We always suggest you try the most suitable methodology for testing
your models.

• If your aim is to correctly estimate your model’s performance and
reuse its predictions in other models, remember that using nested
cross-validation, whenever possible, can provide you with a less
overfitting solution and could make the difference in certain
competitions.

61

Producing out-of-fold predictions (OOF)

• An interesting application of cross-validation, besides estimating your
evaluation metric performance, is producing test predictions and out-of-
fold predictions. In fact, as you train on portions of your training data and
predict on the remaining ones, you can:

• Predict on the test set: The average of all the predictions is often more
effective than re-training the same model on all the data: this is an
ensembling technique related to blending, which will be dealt when talking
about Ensembling with Blending and Stacking Solutions.

• Predict on the validation set: In the end, you will have predictions for the
entire training set and can re-order them in the same order as the original
training data. These predictions are commonly referred to as out-of-fold
(OOF) predictions and they can be extremely useful.

62

OOF predictions

• The first use of OOF predictions is to estimate your performance since you
can compute your evaluation metric directly on the OOF predictions. The
performance obtained is different from the cross validated estimates
(based on sampling); it doesn’t have the same probabilistic characteristics,
so it is not a valid way to measure generalization performance, but it can
inform you about the performance of your model on the specific set you
are training on.

• A second use is to produce a plot and visualize the predictions against the
ground truth values or against other predictions obtained from different
models. This will help you in understanding how each model works and if
their predictions are correlated.

63

What about meta-features?

• The last use is to create meta-features or meta-predictors. This will
also be fully explored in Ensembling with Blending and Stacking, but it
is important to remark on now, as OOF predictions are a byproduct of
cross-validation and they work because, during cross-validation, your
model is always predicting on examples that it has not seen during
training time.

• Since every prediction in your OOF predictions has been generated by
a model trained on different data, these predictions are unbiased and
you can use them without any fear of overfitting (though there are
some caveats that will be discussed in the chapter about tabular
competitions).

64

OOF predictions

• Generating OOF predictions can be done in two ways:
• By coding a procedure that stores the validation predictions into a prediction

vector, taking care to arrange them in the same index position as the
examples in the training data

• By using the Scikit-learn function cross_val_predict , which will automatically
generate the OOF predictions for you

• We will be seeing this second technique in action when we look at

adversarial validation later in this lecture.

65

Subsampling

• There are other validation strategies aside from k-fold cross
validation, but they do not have the same generalization properties.

• We have already discussed LOO, which is the case when k = n (where
n is the number of examples). Another choice is subsampling.
Subsampling is similar to k-fold, but you do not have fixed folds; you
use as many as you think are necessary (in other words, take an
educated guess). You repetitively subsample your data, each time
using the data that you sampled as training data and the data that has
been left unsampled for your validation.

• By averaging the evaluation metrics of all the subsamples, you will get
a validation estimate of the performances of your model.

66

ShuffleSplit

• Since you are systematically testing all your examples, as in k-fold, you
actually need quite a lot of trials to have a good chance of testing all
of them. For the same reason, some cases may be tested more than
others if you do not apply enough subsamples. You can run this sort
of validation using ShuffleSplit from Scikit-learn.

67

The bootstrap

• Finally, another option is to try the bootstrap, which has been devised
in statistics to conclude the error distribution of an estimate; for the
same reasons, it can be used for performance estimation.

• The bootstrap requires you to draw a sample, with replacement, that
is the same size as the available data. At this point, you can use the
bootstrap in two different ways:
• As in statistics, you can bootstrap multiple times, train your model on the

samples, and compute your evaluation metric on the training data itself. The
average of the bootstraps will provide your final evaluation.

• Otherwise, as in subsampling, you can use the bootstrapped sample for your
training and what is left not sampled from the data as your test set.

68

Rule of thumb

• In our experience, the first method of calculating the evaluation
metric on the bootstrapped training data, often used in statistics for
linear models in order to estimate the value of the model’s
coefficients and their error distributions, is much less useful in
machine learning.

• This is because many machine learning algorithms tend to overfit the
training data, hence you can never have a valid metric evaluation on
your training data, even if you bootstrap it.

69

Efro Efron and Tibshirani feedback

• For this reason, Efron and Tibshirani (see Efron, B. and Tibshirani, R.
Improvements on cross-validation: the 632+ bootstrap method.
Journal of the American Statistical Association 92.438 (1997): 548-
560.) proposed the 632+ estimator as a final validation metric.

• At first, they proposed a simple version, called the 632 bootstrap:

70

Interpretation

• In this formula, given your evaluation metric err, errfit is your metric
computed on the training data and errbootstrap is the metric computed
on the bootstrapped data.

• However, in the case of an overfitted training model, , errfit would
tend to zero, rendering the estimator not very useful. Therefore, they
developed a second version of the 632+ bootstrap:

71

parameters

• Where w is such that:

• Here you have a new parameter, γ, which is the no-information error rate,
estimated by evaluating the prediction model on all possible combinations
of targets and predictors. Calculating is indeed intractable, as discussed by
the developers of Scikit-learn (https://github.com/scikit-
learn/scikitlearn/issues/9153).

• Given the limits and intractability of using the bootstrap as in classical
statistics for machine learning applications, you can instead use the second
method, getting your evaluation from the examples left not sampled by the
bootstrap.

72

In practice

• In this form, the bootstrap is an alternative to cross-validation, but as
with subsampling, it requires building many more models and testing
them than for cross-validation.

• However, it makes sense to know about such alternatives in case your
cross-validation is showing too high a variance in the evaluation
metric and you need more intensive checking through testing and re-
testing.

73

implementation

• import random
def Bootstrap(n, n_iter=3, random_state=None):
 """
 Random sampling with replacement cross-validation generator.
 For each iter a sample bootstrap of the indexes [0, n) is
 generated and the function returns the obtained sample
 and a list of all the excluded indexes.
 """
 if random_state:
 random.seed(random_state)
 for j in range(n_iter):
 bs = [random.randint(0, n-1) for i in range(n)]
 out_bs = list({i for i in range(n)} - set(bs))
 yield bs, out_bs

74

Conclusion for bootstrap

• In conclusion, the bootstrap is indeed an alternative to cross
validation. It is certainly more widely used in statistics and finance.

• In machine learning, the golden rule is to use the k-fold cross
validation approach. However, we suggest not forgetting about the
bootstrap in all those situations where, due to outliers or a few
examples that are too heterogeneous, you have a large standard error
of the evaluation metric in cross-validation. In these cases, the
bootstrap will prove much more useful in validating your models.

75

Tuning your model validation system

• At this point, you should have a complete overview of all possible
validation strategies. When you approach a competition, you devise
your validation strategy and you implement it. Then, you test if the
strategy you have chosen is correct.

76

Golden rule

• As a golden rule, be guided in devising your validation strategy by the
idea that you have to replicate the same approach used by the
organizers of the competition to split the data into training, private,
and public test sets. Ask yourself
• How the organizers have arranged those splits.

• Did they draw a random sample?

• Did they try to preserve some specific distribution in the data?

• Are the test sets actually drawn from the same distribution as the training
data?

77

Why does this matter?

• These are not the questions you would ask yourself in a real-world
project. Contrary to a real-world project where you have to generalize
at all costs, a competition has a much narrower focus on having a
model that performs on the given test set (especially the private one).

• If you focus on this idea from the beginning, you will have more of a
chance of finding out the best validation strategy, which will help you
rank more highly in the competition.

78

Trial and error process

• Since this is a trial-and-error process, as you try to find the best
validation strategy for the competition, you can systematically apply
the following two consistency checks in order to figure out if you are
on the right path:

1. First, you have to check if your local tests are consistent, that is,
that the single cross-validation fold errors are not so different from
each other or, when you opt for a simple train-test split, that the
same results are reproducible using different train-test splits.

2. Then, you have to check if your local validation error is consistent
with the results on the public leader board.

79

• If you’re failing the first check, you have a few options depending on
the following possible origins of the problem:
• You don’t have much training data

• The data is too diverse and every training partition is very different from
every other (for instance, if you have too many high cardinality features, that
is, features with too many levels – like zip codes – or if you have multivariate
outliers)

80

• In both cases, the point is that you lack data with respect to the
model you want to implement. Even when the problem just appears
to be that the data is too diverse, plotting learning curves will make it
evident to you that your model needs more data.

81

Strategy

• In this case, unless you find out that moving to a simpler algorithm
works on the evaluation metric (in which case trading variance for
bias may worsen your model’s performance, but not always), your
best choice is to use an extensive validation approach. This can be
implemented by:
• Using larger k values (thus approaching LOO where k = n). Your validation

results will be less about the capability of your model to perform on unseen
data, but by using larger training portions, you will have the advantage of
more stable evaluations.

• Averaging the results of multiple k-fold validations (based on different data
partitions picked by different random seed initializations).

• Using repetitive bootstrapping.

82

Check what others find

• Keep in mind that when you find unstable local validation results, you
won’t be the only one to suffer from the problem. Usually, this is a
common problem due to the data’s origin and characteristics. By
keeping tuned in to the discussion forums, you may get hints at
possible solutions. For instance, a good solution for high cardinality
features is target encoding; stratification can help with outliers; and
so on.

83

Tips

• The situation is different when you’ve passed the first check but failed
the second; your local cross-validation is consistent but you find that
it doesn’t hold on the leaderboard. In order to realize this problem
exists, you have to keep diligent note of all your experiments,
validation test types, random seeds used, and leaderboard results if
you submitted the resulting predictions. In this way, you can draw a
simple scatter plot and try fitting a linear regression or, even simpler,
compute a correlation between yourlocal results and the associated
public leaderboard scores.

• It costs some time and patience to annotate and analyze all of these,
but it is the most important meta-analysis of your competition
performances that you can keep track of.

84

What is your validation score is lower?

• When the mismatch is because your validation score is systematically
lower or higher than the leaderboard score, you actually have a
strong signal that something is missing from your validation strategy,
but this problem does not prevent you from improving your model. In
fact, you can keep on working on your model and expect
improvements to be reflected on the leaderboard, though not in a
proportional way.

• However, systematic differences are always a red flag, implying
something is different between what you are doing and what the
organizers have arranged for testing the

• model.

85

What can go wrong?

• An even worse scenario occurs when your local cross-validation
scores do not correlate at all with the leaderboard feedback. This is
really a red flag. When you realize this is the case, you should
immediately run a series of tests and investigations in order to figure
out why, because, regardless of whether it is a common problem or
not, the situation poses a serious threat to your final rankings. There
are a few possibilities in such a scenario:

86

Potential reasons 1/

• You figure out that the test set is drawn from a different distribution
to the training set. The adversarial validation test (that we will discuss
in the next section) is the method that can enlighten you in such a
situation.

• The data is non-i.i.d. but this is not explicit. For instance, in The
Nature Conservancy Fisheries Monitoring competition
(https://www.kaggle.com/c/the-nature-conservancyfisheries-
monitoring), images in the training set were taken from similar
situations (fishing boats). You had to figure out by yourself how to
arrange them in order to avoid the model learning to identify the
target rather than the context of the images (see, for instance, this
work by Anokas: https://www.kaggle.com/anokas/finding-boatids).

87

https://www.kaggle.com/c/the-nature-conservancyfisheries-
https://www.kaggle.com/anokas/finding-boatids

Potential reasons 2/

• The multivariate distribution of the features is the same, but some
groups are distributed differently in the test set. If you can figure out
the differences, you can set your training set and your validation
accordingly and gain an edge. You need to probe the public
leaderboard to work this out.

• The test data is drifted or trended, which is usually the case in time
series predictions. Again, you need to probe the public leaderboard to
get some insight about some possible postprocessing that could help
your score, for instance, applying a multiplier to your predictions,
thus mimicking a decreasing or increasing trend in the test data.

88

Probing 1/

• As we’ve discussed before, probing the leaderboard is the act of
making specifically devised submissions in order to get insights about
the composition of the public test set. It works particularly well if the
private test set is similar to the public one. There are no general
methods for probing, so you have to devise a probing methodology
according to the type of competition and problem.

• For instance, in the paper Climbing the Kaggle Leaderboard by
Exploiting the Log-Loss Oracle
(https://export.arxiv.org/pdf/1707.01825), Jacob explains how to get
fourth position in a competition without even downloading the
training data.

89

Probing 2/

• With regard to regression problems, in the recent 30 Days of ML
organized by Kaggle, Hung Khoi explained how probing the
leaderboard helped him to understand the differences in the mean
and standard deviation of the target column between the training
dataset and the public test data (see: https://www.kaggle.com/c/30-
days-ofml/discussion/269541).

90

https://www.kaggle.com/c/30-days-ofml/discussion/269541
https://www.kaggle.com/c/30-days-ofml/discussion/269541

RMSE demystified!

• He used the following equation:

• Essentially, you need just two submissions to solve for the mean and
variance of the test target, since there are two unknown terms
variance and mean.

91

• You can also get some other ideas about leaderboard probing from
Chris Deo Deo (https://www.kaggle.com/cdeotte) from this post,

• https://www.kaggle.com/cdeotte/lb-probing-strategies-0-890-
2ndplace , relevant to the Don’t Overfit II competition
(https://www.kaggle.com/c/dont-overfit-ii).

92

https://www.kaggle.com/cdeotte/lb-probing-strategies-0-890-2ndplace
https://www.kaggle.com/cdeotte/lb-probing-strategies-0-890-2ndplace
https://www.kaggle.com/c/dont-overfit-ii

Probing issue

• If you want to get a feeling about how probing information from the
leaderboard is a double-edged sword, you can read about how Zahar
Chikishev managed to probe information from the LANL Earthquake
Prediction competition, ending up in 87th place in the private
leaderboard after leading in the public one:

• https://towardsdatascience.com/how-to-lbprobe-on-kaggle-
c0aa21458bfe

93

https://towardsdatascience.com/how-to-lbprobe-on-kaggle-c0aa21458bfe
https://towardsdatascience.com/how-to-lbprobe-on-kaggle-c0aa21458bfe

Using adversarial validation

• As we have discussed, cross-validation allows you to test your model’s
ability to generalize to unseen datasets coming from the same distribution
as your training data. Hopefully, since in a Kaggle competition you are
asked to create a model that can predict on the public and private datasets,
you should expect that such test data is from the same distribution as the
training data. In reality, this is not always the case.

• Even if you do not overfit to the test data because you have based your
decision not only on the leaderboard results but also considered your
cross-validation, you may still be surprised by the results. This could
happen in the event that the test set is even slightly different from the
training set on which you have based your model. In fact, the target
probability and its distribution, as well as how the predictive variables
relate to it, inform your model during training about certain expectations
that cannot be satisfied if the test data is different from the training data.

94

Advise

• Hence, it is not enough to avoid overfitting to the leaderboard as we
have discussed up to now, but, in the first place, it is also advisable to
find out if your test data is comparable to the training data.

• Then, if they differ, you have to figure out if there is any chance that
you can mitigate the different distributions between training and test
data and build a model that performs on that test set.

95

• Adversarial validation has been developed just for this purpose. It is a
technique allowing you to easily estimate the degree of difference
between your training and test data.

• This technique was long rumored among Kaggle participants and
transmitted from team to team until it emerged publicly thanks to a
post by Zygmunt Zając (https://www.kaggle.com/zygmunt) on his
FastML blog.

96

• The idea is simple: take your training data, remove the target, assemble
your training data together with your test data, and create a new binary
classification target where the positive label is assigned to the test data. At
this point, run a machine learning classifier and evaluate for the ROC-AUC
evaluation metric (we discussed this metric in the previous chapter on
Detailing Competition Tasks and Metrics).

• If your ROC-AUC is around 0.5, it means that the training and test data are
not easily distinguishable and are apparently from the same distribution.
ROC-AUC values higher than 0.5 and nearing 1.0 signal that it is easy for the
algorithm to figure out what is from the training set and what is from the
test set: in such a case, don’t expect to be able to easily generalize to the
test set because it clearly comes from a different distribution.

97

Example

• You can find an example Notebook written for the Sberbank Russian
Housing Market competition (https://www.kaggle.com/c/sberbank-
russianhousing-market) that demonstrates a practical example of
adversarial validation and its usage in a competition here:

• https://www.kaggle.com/konradb/adversarialvalidation-and-other-
scary-terms

98

https://www.kaggle.com/c/sberbank-russianhousing-market
https://www.kaggle.com/c/sberbank-russianhousing-market
https://www.kaggle.com/konradb/adversarialvalidation-and-other-scary-terms
https://www.kaggle.com/konradb/adversarialvalidation-and-other-scary-terms

Suggestion

• Since your data may be of different types (numeric or string labels)
and you may have missing cases, you’ll need some data processing
before being able to successfully run the classifier. Our suggestion is
to use the random forest classifier because:

99

Advise

• The random forest is a flexible algorithm based on decision trees that can
do feature selection by itself and operate on different types of features
without any pre-processing, while rendering all the data numeric. It is also
quite robust to overfitting and you don’t have to think too much about
fixing its hyperparameters.

• You don’t need much data processing because of its tree-based nature.

• For missing data, you can simply replace the values with an improbable
negative value such as -999, and you can deal with string variables by
converting their strings into numbers (for instance, using the Scikit-learn
label encoder, sklearn.preprocessing.LabelEncoder).

• As a solution, it performs less well than one-hot encoding, but it is very
speedy and it will work properly for the problem.

100

	Slide 1
	Slide 2: Acknowledgement
	Slide 3: Agenda
	Slide 4: Competition Tasks and Metrics
	Slide 5: Contents
	Slide 6: Why avoiding overfitting?
	Slide 7: Snooping on the leaderboard
	Slide 8: How is a submission done?
	Slide 9: Consequences:
	Slide 10: Leaderboard fallacy
	Slide 11: Shake-ups 1/
	Slide 12: Shake-ups 2/
	Slide 13: Shakeup
	Slide 14: Findings
	Slide 15: What to do?
	Slide 16: What to learn?
	Slide 17: Why some wins?
	Slide 18: What makes the difference?
	Slide 19: What does it mean?
	Slide 20: But do experiments carefully!
	Slide 21: Get a proper validation strategy!
	Slide 22: Validation
	Slide 23: Validation is often overlooked!
	Slide 24: Rules of thumb
	Slide 25: Why is so important to validate a model?
	Slide 26: Bias variance trade-off
	Slide 27: What it means?
	Slide 28: Variance is at stake now!
	Slide 29: Difference between train and test
	Slide 30: Try different splitting strategies
	Slide 31: Validation is about splitting
	Slide 32: What all these strategies have in common?
	Slide 33: Basic train test sampling
	Slide 34: Limitation
	Slide 35: Probabilistic evaluation
	Slide 36: Probabilistic evaluation methods
	Slide 37: k-fold cross-validation
	Slide 38: 5-fold validation scheme
	Slide 39: What k? 1/
	Slide 40: What k? 2/
	Slide 41: What k? 3/
	Slide 42: What k? 4/
	Slide 43: k-fold variations
	Slide 44: Solutions
	Slide 45: Scikit-multilearn
	Slide 46: Other imbalance strategy
	Slide 47: What about regressions?
	Slide 48: Regression stratification
	Slide 49: Alternative
	Slide 50: What about non i.i.d.?
	Slide 51: Discovering non i.i.d.
	Slide 52: What about time series?
	Slide 53: TimeSeriesSplit
	Slide 54: Variation
	Slide 55: What to conclude?
	Slide 56: Nested cross-validation
	Slide 57: Nested cross validation
	Slide 58: What it means? 1/
	Slide 59: What it means? 2/
	Slide 60: What to prefer?
	Slide 61: What do we recommend?
	Slide 62: Producing out-of-fold predictions (OOF)
	Slide 63: OOF predictions
	Slide 64: What about meta-features?
	Slide 65: OOF predictions
	Slide 66: Subsampling
	Slide 67: ShuffleSplit
	Slide 68: The bootstrap
	Slide 69: Rule of thumb
	Slide 70: Efro Efron and Tibshirani feedback
	Slide 71: Interpretation
	Slide 72: parameters
	Slide 73: In practice
	Slide 74: implementation
	Slide 75: Conclusion for bootstrap
	Slide 76: Tuning your model validation system
	Slide 77: Golden rule
	Slide 78: Why does this matter?
	Slide 79: Trial and error process
	Slide 80:
	Slide 81:
	Slide 82: Strategy
	Slide 83: Check what others find
	Slide 84: Tips
	Slide 85: What is your validation score is lower?
	Slide 86: What can go wrong?
	Slide 87: Potential reasons 1/
	Slide 88: Potential reasons 2/
	Slide 89: Probing 1/
	Slide 90: Probing 2/
	Slide 91: RMSE demystified!
	Slide 92:
	Slide 93: Probing issue
	Slide 94: Using adversarial validation
	Slide 95: Advise
	Slide 96:
	Slide 97
	Slide 98: Example
	Slide 99: Suggestion
	Slide 100: Advise

