
IASD M2 at Paris Dauphine

Become a Kaggle Master

4: Hyperparameters tuning

Eric Benhamou

1

Acknowledgement
The materials of this course is entirely based on the seminal book

Agenda

Part I: general concepts

1. Introduction to Kaggle (concept and API)

2. Competition, metrics

3. Validation

4. Hyper parameters tuning

5. Model ensemble with blending and stacking

Part II: Competitions

5. Predict Housing Prices

6. Predict Financial markets

7. Use NLP

3

Contents

• You will learn about:
1. Basic optimization techniques

a) Grid search
b) Random search
c) Halving search

2. Key parameters and how to use them
a) Optimizing for Deep networks
b) Linear models
c) Support-vector machines
d) Random forests and extremely randomized trees
e) Gradient tree boosting: LightGBM, XGBoost, CatBoost, HistGradientBoosting

3. Bayesian optimization
a) Using Scikit-optimize
b) Customizing a Bayesian optimization search
c) Extending Bayesian optimization to neural architecture search
d) KerasTuner for Deep learning
e) The TPE approach in Optuna

4

Why is hyperparameters tuning so important?

• How a Kaggle solution performs is not simply determined by the type of learning
algorithm you choose.

• Aside from the data and the features that you use, it is also strongly determined by the
algorithm’s hyperparameters, the parameters of the algorithm that have to be fixed prior
to training, and cannot be learned during the training process.

• Choosing the right variables/data/ features is most effective in tabular data
competitions; however, hyperparameter optimization is effective in all competitions, of
any kind.

• In fact, given fixed data and an algorithm, hyperpa- rameter optimization is the only sure
way to enhance the predictive performance of the algorithm and climb the leaderboard.

• It also helps in ensembling, because an ensemble of tuned models always performs
better than an ensemble of untuned ones.

• You may hear that tuning hyperparameters manually is possible if you know and
understand the effects of your choices on the algorithm.

5

What Kaggle Grandmasters says

• Many Kaggle Grandmasters and Masters have declared that they often rely on directly
tuning their models in competitions.

• They operate selectively on the most important hyperparameters in a bisection
operation style, exploring smaller and smaller intervals of a parameter’s values until they
find the value that produces the best result. Then, they move on to another parameter.

• This works perfectly well if there is a single minimum for each parameter and if the
parameters are independent from each other.

• In this case, the search is mostly driven by experience and knowledge of learning
algorithms.

• In our experience, however, that is not the case with most tasks you will encounter on
Kaggle.

• The sophistication of the problems and the algorithms used requires a systematic
approach that only a search algorithm can provide. Hence, we decided to write this
chapter.

6

Basic optimization

• The core algorithms for hyperparameter optimization, found in the
Scikit-learn package, are grid search and random search.

• Recently, the Scikit-learn contributors have also added the halving
algorithm to improve the performances of both grid search and
random search strategies.

• In this part, we will discuss all these basic techniques. By mastering
them, not only will you have effective optimization tools for some
specific problems (for instance, SVMs are usually optimized by grid
search) but you will also be familiar with the basics of how
hyperparameter optimization works.

7

What should we optimize?

• To start with, it is crucial to figure out what the necessary ingredients
are:
• A model whose hyperparameters have to be optimized

• A search space containing the boundaries of the values to search between for
each hyperparameter

• A cross-validation scheme

• An evaluation metric and its score function

• All these elements come together in the search method to determine
the solution you are looking for.

• Let’s see how it works.

8

Grid Search

• Grid search is a method that searches through the hyperparameters
exhaustively, and is not feasible in high-dimensional space.

• For every parameter, you pick a set of values you want to test.

• You then test all the possible combinations in this set.

• That is why it is exhaustive: you try everything.

• It is a very simple algorithm and it suffers from the curse of
dimensionality, but, on the positive side, it’s embarrassingly parallel.

• This means you can obtain an optimal tuning very quickly, if you have
enough processors to run the search on.

9

Grid search example

• As an example, let’s take a classification problem and support-vector
machine classification (SVC).

• Support-vector machines (SVMs) for both classification and
regression problems are probably the machine learning algorithm that
you will use grid search for the most.

• Using the make_classification function from Scikit-learn, we can
generate a classification dataset quickly:

10

Svm example

from sklearn.datasets import make_classification

from sklearn.model_selection import

train_test_split

X, y = make_classification(n_samples=300, n_features=50,

n_informative=10, n_redundant=25,

n_repeated=15, n_clusters_per_class=5,

flip_y=0.05, class_sep=0.5,

random_state=0)

11

Let us define the search space

• For our next step, we define a basic SVC algorithm and set the search
space.

• Since the kernel function of the SVC (the internal function that
transforms the input data in an SVM) determines the different
hyperparameters to set, we provide a list containing two dictionaries
of distinct search spaces for parameters to be used depending on the
type of kernel chosen.

• We also set the evaluation metric (we use accuracy in this case, since
the target is perfectly balanced):

12

from sklearn import svm

svc = svm.SVC(probability=True, random_state=1)

from sklearn import model_selection

search_grid = [{'C': [1, 10, 100, 1000], 'kernel’:

['linear']},{'C': [1, 10, 100, 1000], 'gamma’:
[0.001, 0.0001],'kernel': ['rbf']}]

scorer = 'accuracy'

13

Optimization dictionaries

• In our example, a linear kernel doesn’t require the tuning of the
gamma parameter, though it is very important for a radial basis
function kernel.

• Therefore, we provide two dictionaries: the first containing the
parameters for the linear kernel, the second containing parameters
for a radial basis function kernel.

• Each dictionary only contains a reference to the kernel it is relevant to
and only the range of parameters that are relevant for that kernel.

14

Let us combine

• It is important to note that the evaluation metric can be different
from the cost function optimized by the algorithm.

• All the ingredients (model, search space, evaluation metric, cross-
validation scheme) are combined into the GridSearchCV instance, and
then the model is fit to the data:

15

Getting results

search_func = model_selection.GridSearchCV(estimator=svc

param_grid=search_grid, scoring=scorer, n_jobs=-1,

cv=5)
search_func.fit(X, y)

print (search_func.best_params_)

print (search_func.best_score_)

After a while, depending on the machine you are running the

optimization on, you will obtain the best combination based on cross-

validated results

16

In summary, what is Grid Search

• In conclusion, grid search is a very simple optimization algorithm that can
leverage the availability of multi-core computers.

• It can work fine with machine learning algorithms that do not require many
tunings (such as SVM and the ridge and lasso regressions) but, in all other
cases, its appli- cability is quite narrow.

• First, it is limited to optimizing hyperparameters by discrete choice (you
need a limited set of values to cycle through).

• In addition, you cannot expect it to work effectively on algorithms requiring
multiple hyperparameters to be tuned.

• This is because of the exploding complexity of the search space, and because
most of the computational inefficiency is due to the fact that the search is
trying parameter values blindly, most of which do not work for the problem

17

Random search (RS)

• Random search, which simply samples the search space randomly, is
feasible in high-dimen- sional spaces and is widely used in practice.

• The downside of random search, however, is that it doesn’t use
information from prior experiments to select the next setting (a problem
shared by grid search, we should note).

• In addition, to find the best solution as fast as possible, you cannot do
anything except hope to be lucky you catch the right hyperparameters.

• Random search works incredibly well and it is simple to understand.

• Despite the fact it relies on randomness, it isn’t just based on blind luck,
though it may initially appear to be.

18

When to use RS?

• In fact, it works like random sampling in statistics: the main point of
the technique is that if you do enough random tests, you have a good
possibility of finding the right parameters without wasting energy on
testing slightly different combinations of similarly performing
combinations.

• Many AutoML systems rely on random search when there are too
many parameters to set (see Golovin, D. et al. Google Vizier: A Service
for Black-Box Optimization, 2017).

• As a rule of thumb, consider looking at random search when the
dimensionality of your hyperparameter optimization problem is
sufficiently high (for example, over 16).

19

RS example

• Below, we run the previous example using random search:

import scipy.stats as stats

from sklearn.utils.fixes import loguniform

search_dict = {'kernel': ['linear', 'rbf'],

'C': loguniform(1, 1000),

'gamma': loguniform(0.0001, 0.1)

}

20

RS code

scorer = 'accuracy’

search_func = model_selection.RandomizedSearchCV(

estimator=svc,param_distributions=search_dict, n_iter=6,

scoring=scorer, n_jobs=-1, cv=5)

search_func.fit(X, y)

print (search_func.best_params_)

print (search_func.best_score_)

21

RS in summary

• Notice that, now, we don’t care about running the search on separate
spaces for the different kernels.

• Contrary to grid search, where each parameter, even the ineffective
ones, is systematically tested, which requires computational time, here
the efficiency of the search is not affected by the set of
hyperparameters tested.

• The search doesn’t depend on irrelevant parameters, but is guided by
chance; any trial is useful, even if you are testing only one valid
parameter among many for the chosen kernel.

22

Halving search

• As we mentioned, both grid search and random search work in an
uninformed way: if some tests find out that certain hyperparameters
do not impact the result or that certain value intervals are ineffective,
the information is not propagated to the following searches.

• For this reason, Scikit-learn has recently introduced the
HalvingGridSearchCV and HalvingRandomSearchCV estimators, which
can be used to search a parameter space using successive halving
applied to the grid search and random search tuning strategies.

23

Halving search

• In halving, a large number of hyperparameter combinations are evaluated
in an initial round of tests but using a small amount of computational
resources.

• This is achieved by running the tests on a subsample of a few cases from
your training data.

• A smaller training set needs fewer computations to be tested, so fewer
resources (namely time) are used at the cost of more imprecise
performance estimations.

• This initial round allows the selection of a subset of candidate
hyperparameter values, which have performed better on the problem, to
be used for the second round, when the training set size is increased.

24

HS example

• The following rounds proceed in a similar way, allocating larger and
larger subsets of the training set to be searched as the range of tested
values is restricted (testing now requires more time to execute, but
returns a more precise performance estimation), while the number of
candidates continues to be halved.

25

HS code

from sklearn.experimental import enable_halving_search_cv

from sklearn.model_selection import HalvingRandomSearchCV

search_func = HalvingRandomSearchCV(estimator=svc,

param_distributions=search_dict, resource='n_samples', max_resources=100,

aggressive_elimination=True, scoring=scorer,

n_jobs=-1, cv=5, random_state=0)

search_func.fit(X, y)

print (search_func.best_params_)

print (search_func.best_score_)

26

HS in summary

• In this way, halving provides information to the successive optimization
steps via the selection of the candidates.

• In the next sections, we will discuss even smarter ways to achieve a
more precise and efficient search through the space of
hyperparameters.

27

Key parameters and how to use them

• The next problem is using the right set of hyperparameters for each
kind of model you use.

• In particular, in order to be efficient in your optimization, you need to
know the values of each hyperparameter that it actually makes sense
to test for each distinct algorithm.

• In this section, we will examine the most common models used in
Kaggle competitions, especially the tabular ones, and discuss the
hyperparameters you need to tune in order to obtain the best results.

• We will distinguish between classical machine learning models and
gradient boosting models (which are much more demanding in terms
of their space of parameters) for generic tabular data problems.

28

Key parameters and how to use them

• As for neural networks, we can give you an idea about specific parameters
to tune when we present the standard models (for instance, the TabNet
neural model has some specific parameters to set so that it works
properly).

• However, most of the optimization on deep neural networks in Kaggle
competitions is not performed on standard models, but on custom ones.

• Consequently, apart from basic learning parameters such as the learning
rate and the batch size, optimization in neural networks is based on the
specific characteristics of the neural architecture of your model.

• You have to deal with the problem in an ad hoc way.
• Near the end of the chapter, we will discuss an example of neural

architecture search (NAS) using KerasTuner (https://keras.io/keras_tuner/).

29

Linear models

• The linear models that need to be tuned are usually linear regressions or
logistic regressions with regularization:

a) C: The range you should search is np.logspace(-4, 4, 10); smaller values specify
stron- ger regularization.

b) alpha: You should search the range np.logspace(-2, 2, 10); smaller values specify
stronger regularization, larger values specify stronger regularization. Also take
note that higher values take more time to process when using lasso.

c) l1_ratio: You should pick from the list [.1, .5, .7, .9, .95, .99, 1]; it applies only to
elastic net.

• In Scikit-learn, depending on the algorithm, you find either the
hyperparameter C (logistic regression) or alpha (lasso, ridge, elastic net).

30

Support vector machines

• SVMs are a family of powerful and advanced supervised learning
techniques for classification and regression that can automatically fit
linear and non-linear models.

• Scikit-learn offers an implementation based on LIBSVM, a complete
library of SVM classification and regression im- plementations, and
LIBLINEAR, a scalable library for linear classification ideal for large
datasets, especially sparse text-based ones.

• In their optimization, SVMs strive to separate target classes in
classification problems using a decision boundary characterized by
the largest possible margin between classes.

31

Support vector machines parameters 1/2

• Though SVMs work fine with default parameters, they are often not
optimal, and you need to test various value combinations using cross-
validation to find the best ones. Listed according to their importance, you
have to set the following parameters:

a) C: The penalty value. Decreasing it makes the margin between classes larger, thus
ignoring more noise but also making the model more generalizable. A best value
can normally be found in the range np.logspace(-3, 3, 7).

b) kernel: This parameter will determine how non-linearity will be implemented in an
SVM and it can be set to 'linear', 'poly', 'rbf', 'sigmoid', or a custom kernel. The
most commonly used value is certainly rbf.

c) degree: Works with kernel='poly', signaling the dimensionality of the polynomial
expansion. It is ignored by other kernels. Usually, setting its values to between 2
and 5 works the best.

32

Support vector machines parameters 2/2

d) gamma: A coefficient for 'rbf', 'poly', and 'sigmoid'. High values tend to fit data in a bet- ter way,
but can lead to some overfitting. Intuitively, we can imagine gamma as the influence that a
single example exercises over the model. Low values make the influence of each example reach
further. Since many points have to be considered, the SVM curve will tend to take a shape less
influenced by local points and the result will be a smoother decision contour curve. High values
of gamma, instead, mean the curve takes into account how points are arranged locally more
and, as a result, you get a more irregular and wiggly decision curve. The suggested grid search
range for this hyperparameter is np.logspace(-3, 3, 7).

e) nu: For regression and classification with nuSVR and nuSVC, this parameter sets a toler-ance for
the training points that are near to the margin and are not classified correctly. It helps in
ignoring misclassified points just near or on the margin, hence it can render the classification
decision curve smoother. It should be in the range [0,1] since it is a proportion relative to your
training set. Ultimately, it acts like C, with high proportions enlarging the margin.

f) epsilon: This parameter specifies how much error SVR will accept, by defining an epsilon large
range where no penalty is associated with an incorrect prediction of the example during the
training of the algorithm. The suggested search range is np.logspace(-4, 2, 7).

g) penalty, loss, and dual: For LinearSVC, these parameters accept the ('l1', 'squared_ hinge',
False), ('l2', 'hinge', True), ('l2', 'squared_hinge', True), and ('l2', 'squared_hinge', False)
combinations. The ('l2', 'hinge', True) combination is analogous to the SVC(kernel='linear')
learner.

33

SVM in summary

• It may appear that an SVM has many hyperparameters to set, but
many settings are specific only to implementations or to kernels, so
you only have to select the relevant parameters.

34

Random forests, extremely randomized trees

• Leo Breiman and Adele Cutler originally devised the idea at the core
of the random forest algorithm, and the name of the algorithm
remains a trademark of theirs today (though the algorithm is open
source).

• Random forests are implemented in Scikit-learn as
RandomForestClassifier or RandomForestRegressor.

35

Random forests, extremely randomized trees

• A random forest works in a similar way to bagging, also devised by
Leo Breiman, but operates only using binary split decision trees,
which are left to grow to their extremes.

• Moreover, it samples the cases to be used in each of its models using
bootstrapping.

• As the tree is grown, at each split of a branch, the set of variables
considered for the split is drawn randomly, too.

36

Why RF works?

• This is the secret at the heart of the algorithm: it ensembles trees that, due to
different samples and variables considered at the splits, are very different
from each other.

• As they are different, they are also uncorrelated.

• This is beneficial because when the results are ensembled, much variance is
ruled out, as the extreme values on both sides of a distribution tend to
balance out.

• In other words, bagging algorithms guarantee a certain level of diversity in
the predictions, allowing them to develop rules that a single learner (such as
a decision tree) might not come across.

• All this diversity is useful because it helps in building a distribution whose
average is a better predictor than any of the individual trees in the ensemble.

37

Extra trees

• Extra Trees (also known as extremely randomized trees), represented in Scikit-learn by the
ExtraTreesClassifier/ExtraTreesRegressor classes, are a more randomized kind of random forest
that produces a lower variance in the estimates at the cost of greater bias of the estimators.

• However, when it comes to CPU efficiency, Extra Trees can deliver a considerable speed-up com-
pared to random forests, so they can be ideal when you are working with large datasets in terms
of both examples and features.

• The reason for the resulting higher bias but better speed is the way splits are built in an Extra
Tree.

• Random forests, after drawing a random set of features to be considered for splitting a branch of
a tree, carefully search among them for the best values to assign to each branch.

• By contrast, in Extra Trees, both the set of candidate features for the split and the actual split
value are decided completely randomly.

• So, there’s no need for much computation, though the randomly chosen split may not be the
most effective one (hence the bias).

38

Parameters to optimize

• For both algorithms, the key hyperparameters that should be set are
as follows:

1) max_features: This is the number of sampled features that are present at
every split, which can determine the performance of the algorithm. The
lower the number, the speedier, but with higher bias.

2) min_samples_leaf: This allows you to determine the depth of the trees.
Large numbers diminish the variance and increase the bias.

3) bootstrap: This is a Boolean that allows bootstrapping.
4) n_estimators: This is the number of trees. Remember that the more trees

the better, though there is a threshold beyond which we get diminishing
returns depending on the data problem. Also, this comes at a
computational cost that you have to take into account based on the
resources you have available.

39

Extra trees vs Random forests?

• Extra Trees are a good alternative to random forests, especially when
the data you have is particularly noisy.

• Since they trade some variance reduction for more bias given their
random choice of splits, they tend to overfit less on important yet
noisy features that would otherwise dominate the splits in a random
forest.

40

Gradient boosting decision trees (GBDT)

• Gradient boosting decision trees (GBDT) is an improved version of
boosting (boosting works by fitting a sequence of weak learners on
reweighted versions of the data).

• Like AdaBoost, GBDT is based on a gradient descent function. The
algorithm has proven to be one of the most proficient ones from the
family of models that are based on ensembles, though it is
characterized by an increased variance of estimates, more sensitivity
to noise in data (both problems can be mitigated by using
subsampling), and significant computational costs due to non-parallel
operations.

41

GBDT is competitive!

• Apart from deep learning, gradient boosting is the most developed
machine learning algorithm.

• Since AdaBoost and the initial gradient boosting implementation, as
developed by Jerome Friedman, various other implementations of the
algorithms appeared, the most recent ones being
• LightGBM,

• XGBoost,

• and CatBoost.

• We will now review each of them

42

LightGBM

•The high-performance LightGBM algorithm (https://github.com/Microsoft/LightGBM) is

capable of being distributed on multiple computers and handling large amounts of data

quickly.

•It was developed by a team at Microsoft as an open-source project on GitHub (there is also

an academic paper: https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb

6b76fa-Abstract.html).

•LightGBM is based on decision trees, like XGBoost, but it follows a different strategy.

•While XGBoost uses decision trees to split on a variable and explore different tree splits at

that variable (the level-wise tree growth strategy), LightGBM concentrates on one split and

goes on splitting from there in order to achieve a better fit (the leaf-wise tree growth

strategy).

43

https://github.com/Microsoft/LightGBM
https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

LightGBM

•This allows LightGBM to quickly reach a good fit of the data, and to generate

alternative solutions compared to XGBoost (which is good, if you expect to

blend the two solutions together in order to reduce the variance of the

estimates).

•Algorithmically speaking, if we think of the structure of splits operated by a

decision tree as a graph, XGBoost pursues a breadth-first search (BFS) and

LightGBM a depth-first search (DFS).

•Tuning LightGBM may appear daunting; it has more than a hundred

parameters to tune that you can explore at this page:
https://github.com/Microsoft/LightGBM/blob/master/docs/ Parameters.rst

44

https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

Rule of thumb 1/

•As a rule of thumb, you should focus on the following hyperparameters, which usually have

the most impact on the results:

• n_estimators: An integer between 10 and 10,000 that sets the number of iterations.

• learning_rate: A real number between 0.01 and 1.0, usually sampled from a log-uniform

distribution. It represents the step size of the gradient descent procedure that computes

the weights for the summed ensemble of all the iterations of the algorithm up to this point.

• max_depth: An integer between 1 and 16, representing the maximum number of splits on

features. Setting it to a number below 0 allows the maximum possible number of splits,

usually risking overfitting to data.

• num_leaves: An integer between 2 and 2^max_depth, representing the number of final

leaves each tree will have at most.

45

Rule of thumb 2/

• min_data_in_leaf: An integer between 0 and 300 that determines the minimum

number of data points in one leaf.
• min_gain_to_split: A float between 0 and 15; it sets the minimum gain of the algorithm for tree partitioning. By

setting this parameter, you can avoid unnecessary tree splits and thus reduce overfitting (it corresponds to the gamma

parameter in XGBoost).

• max_bin: An integer between 32 and 512 that sets the maximum number of bins that feature values will be

bucketed into. Having this parameter larger than the default value of 255 implies more risk of producing overfitting

results.

• subsample: Areal number between 0.01, and 1.0, representing the portion of the sample to be used in training.

• subsample_freq: An integer between 0 and 10 specifying the frequency, in terms of iter- ations, at which the

algorithm will subsample the examples. Note that, if set to zero, the algorithm will ignore any value given to the

subsample parameter. In addition, it is set to zero by default, therefore just setting the subsample parameter won’t

work.

46

Rule of thumb 3/

• feature_fraction: A real number between 0.1 and 1.0 allowing you to

specify the portion of features to be subsampled. Subsampling the

features is another way to allow more randomization to play a role in

the training, fighting noise and multicollinearity present in the

features.

• subsample_for_bin: An integer between 30 and the number of

examples. This sets the number of examples that are sampled for the

construction of histogram bins.

47

Rule of thumb 4/

• reg_lambda: A real number between 0 and 100.0 that sets the L2

regularization. Since it is more sensitive to the scale than to the exact

number of the parameter, it is usually sampled from a log-uniform

distribution.

• reg_alpha: A real number between 0 and 100.0, usually sampled from a

log-uniform distribution, which sets the L1 regularization.

• scale_pos_weight: Areal number between 1e-6 and 500, better sampled from

the log-uni- form distribution. The parameter weights the positive cases

(thus effectively upsampling or downsampling) against the negative cases,

which are kept to the value of 1.

48

• Although the number of hyperparameters to tune when using
LightGBM may appear daunt- ing, in reality only a few of them
matter a lot. Given a fixed number of iterations and learn- ing rate,
just a few are the most impactful (feature_fraction, num_leaves,
subsample, reg_ lambda, reg_alpha, min_data_in_leaf), as explained in this
blog article by Kohei Ozaki, a Kaggle Grandmaster:
https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-

hyperparameter-optimization-8b7095e99258. Kohei Ozaki leverages this fact
in order to create a fast-tuning procedure for Optuna (you’ll find more
on the Optuna optimizer at the end of this chapter).

49

https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258
https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258

XGBoost

•XGBoost (https://github.com/dmlc/XGBoost) stands for eXtreme Gradient

Boosting. It is an open-source project that is not part of Scikit-learn, though it

has recently been expanded by a Scikit-learn wrapper interface that makes it

easier to incorporate XGBoost into a Scikit-learn- style data pipeline.

•The XGBoost algorithm gained momentum and popularity in 2015 data science

competitions, such as those on Kaggle and the KDD Cup 2015. As the creators

(Tianqui Chen, Tong He, and Carlos Guestrin) report in papers they wrote on the

algorithm, out of 29 challenges held on Kaggle during 2015, 17 winning solutions

used XGBoost as a standalone solution or as part of an ensemble of multiple

different models.

50

https://github.com/dmlc/XGBoost

XGBoost

•Since then, the algorithm has always retained a strong appeal among

the community of data scientists, though it struggled to keep pace with

the innovation brought about by other GBM implementations such as

LightGBM and CatBoost.

•Aside from good performance both in terms of accuracy and

computational efficiency, XGBoost is also a scalable solution, using at

best multi-core processors as well as distributed machines.

51

•XGBoost represents a new generation of GBM algorithms thanks to important tweaks to

the initial tree boost GBM algorithm:

• Sparsity-awareness; it can leverage sparse matrices, saving both memory (no need for

dense matrices) and computation time (zero values are handled in a special way).

• Approximate tree learning (weighted quantile sketch), which produces similar results but

in much less time compared to the classical complete explorations of possible branch cuts.

• Parallel computing on a single machine (using multi-threading during the search for the

best split) and, similarly, distributed computations on multiple machines.

• Out-of-core computations on a single machine, leveraging a data storage solution called

column block. This arranges data on a disk by columns, thus saving time by pulling data

from the disk in the way the optimization algorithm (which works on column vectors)

expects it.

52

Mussing values

• XGBoost can also deal with missing data in an effective way. Other
tree ensembles based on standard decision trees require missing data
first to be imputed using an off-scale value, such as a negative number,
in order to develop an appropriate branching of the tree to deal with
missing values.

53

Parameters to tune 1/

•As for XGBoost’s parameters (https://xgboost.readthedocs.io/en/latest/parameter.html), we have

decided to highlight a few key ones you will find across competitions and projects:

• n_estimators: Usually an integer ranging from 10 to 5,000.

• learning_rate:Areal number ranging from 0.01 to 1.0, better sampled from the log-uni- form

distribution.

• min_child_weight: Usually an integer between 1 and 10.

• max_depth: Usually an integer between 1and 50.

• max_delta_step: Usually an integer sampled between 0 and 20, representing the maxi- mum delta

step we allow for each leaf output.

• subsample: Areal number from 0.1 to 1.0 indicating the proportion of examples to be subsampled.

• colsample_bytree: Areal number from 0.1 to 1.0 indicating the subsample ratio of col- umns by

tree.

• colsample_bylevel:Areal number from 0.1to 1.0 indicating the subsample ratio by level in trees.

54

https://xgboost.readthedocs.io/en/latest/parameter.html

Parameters to tune 2/

• reg_lambda:Areal number between 1e-9 and 100.0, preferably sampled from the log-uni-

form distribution. This parameter controls the L2 regularization.

• reg_alpha:Areal number between 1e-9 and 100.0, preferably sampled from the log-uni-

form distribution. This parameter controls the L1 regularization.

• gamma: Specifying the minimum loss reduction for tree partitioning, this parameter requires

a real number between 1e-9 and 0.5, preferably sampled from the log-uniform

distribution.

• scale_pos_weight:Areal number between 1e-6 and 500.0, preferably sampled from the

log-uniform distribution, which represents a weight for the positive class.

• Like LightGBM, XGBoost also has many similar hyperparameters to tune, hence all of the
con- siderations previously made for LightGBM are also valid for XGBoost.

55

CatBoost

• In July 2017, Yandex, the Russian search engine, made another
interesting GBM algorithm public, CatBoost (https://catboost.ai/),
whose name comes from putting together the two words “Category”
and “Boosting.”

• In fact, its strong point is its ability to handle categorical variables,
which make up most of the information in most relational databases, by
adopting a mixed strategy of one-hot encoding and target encoding.
Target encoding is a way to express categorical levels by assigning
them an appropriate numeric value for the problem at hand

56

https://catboost.ai/

What CatBoost is good at

• The idea used by CatBoost to encode categorical variables is not new, but it
is a kind of feature engineering that has been used before, mostly in data
science competitions. T

• arget encoding, also known as likelihood encoding, impact coding, or mean
encoding, is simply a way to trans- form your labels into a number based on
their association with the target variable. I

• f you have a regression, you could transform labels based on the mean target
value typical of that level; if it is a classification, it is simply the probability
of classification of your target given that label (the probability of your target
conditional on each category value).

• It may appear a simple and smart feature engineering trick but it has side
effects, mostly in terms of overfitting, because you are taking information
from the target into your predictors.

57

Parameters

•CatBoost has quite a few parameters (see https://catboost.ai/en/docs/references/training- parameters/). We have

limited our discussion to the eight most important ones:

• iterations: Usually an integer between 10 and 1,000, but it can increase based on the problem.

• depth:An integer between 1and 8; usually higher values require longer fitting times and do not produce

better results.

• learning_rate: Areal value between 0.01 and 1.0, better sampled from the log-uniform distribution.

• random_strength:Areal number log-linearly sampled from the range 1e-9 to 10.0, which specifies the

randomness level for scoring splits.

• bagging_temperature:Areal value between 0.0 and 1.0 that sets the Bayesian bootstrap.

• border_count:An integer between 1and 255 indicating the splits for numerical features.

• l2_leaf_reg: An integer between 2 and 30; the value for L2 regularization.

• scale_pos_weight:Areal number between 0.01 and 10.0 representing the weight for the positive class.

58

https://catboost.ai/en/docs/references/training-parameters/
https://catboost.ai/en/docs/references/training-parameters/

In conclusion

• Even if CatBoost may appear to be just another GBM implementation,
it has quite a few differ- ences (highlighted also by the different
parameters being used) that may provide great help in a competition,
both as a single-model solution and as a model integrated into a larger
ensemble

59

HistGradientBoosting

• Recently, Scikit-learn has introduced a new version of gradient
boosting inspired by LightGBM’s binned data and histograms (see this
presentation at EuroPython by Olivier Grisel: https://www.
youtube.com/watch?v=urVUlKbQfQ4). Either as a classifier
(HistGradientBoostingClassifi er) or a regressor
(HistGradientBoostingRegressor), it can be used for enriching ensembles
with different models and it presents a much shorter and essential
range of hyperparameters to be tuned:

60

https://www.youtube.com/watch?v=urVUlKbQfQ4
https://www.youtube.com/watch?v=urVUlKbQfQ4

HistGradientBoosting parameters

• learning_rate: Areal number between 0.01 and 1.0, usually sampled

from a log-uniform distribution.

• max_iter: An integer that can range from 10 to 10,000.

• max_leaf_nodes: An integer from 2 to 500. It interacts with max_depth; it

is advisable to set only one of the two and leave the other set to None.

• max_depth: An integer between 2 and 12.

• min_samples_leaf: An integer between 2 and 300.

• l2_regularization: Afloat between 0.0 and 100.0.

• max_bins: An integer between 32 and 512.

61

•Even if Scikit-learn’s HistGradientBoosting is nothing too different from

LightGBM or XG- Boost, it does provide a different way to implement

GBMs in a competition, and models built by HistGradientBoosting may

provide a contribution when ensembling multiple predictions, such as in

blending and stacking.

62

Bayesian optimization

• Having reached the end of this section, you should be more familiar
with the most common machine learning algorithms (only deep
learning solutions have not been discussed) and their most important
hyperparameters to tune, which will help you in building an
outstanding solution in a Kaggle competition. K

• nowing the basic optimization strategies, usable algorithms, and their
key hyperparameters is just a starting point. In the next section, we will
begin an in-depth discussion about how to tune them more optimally
using Bayesian optimization

63

Bayesian optimization

•Leaving behind grid search (feasible only when the space of experiments is limited), the

usual choice for the practitioner is to apply random search optimization or try a Bayesian

optimization (BO) technique, which requires a more complex setup.

•Originally introduced in the paper Practical Bayesian optimization of machine learning

algorithms by Snoek, J., Larochelle, H., and Adams, R. P.

(http://export.arxiv.org/pdf/1206.2944), the key idea behind Bayesian optimization is that we

optimize a proxy function (also called a sur- rogate function) rather than the true objective

function (which grid search and random search both do).

•We do this if there are no gradients, if testing the true objective function is costly (if it is not,

then we simply go for random search), and if the search space is noisy and complex enough.

64

http://export.arxiv.org/pdf/1206.2944

Intuition

• Bayesian search balances exploration with exploitation.

• At the start, it explores randomly, thus training the surrogate function
as it goes.

• Based on that surrogate function, the search exploits its initial
approximate knowledge of how the predictor works in order to sample
more useful examples and minimize the cost function.

• As the Bayesian part of the name suggests, we are using priors in order
to make smarter decisions about sampling during optimization.

• This way, we reach a minimization more quickly by limiting the
number of evaluations we need to make.

65

•Bayesian optimization uses an acquisition function to tell us how promising an observation

will be.

•In fact, to manage the tradeoff between exploration and exploitation, the algorithm defines

an acquisition function that provides a single measure of how useful it would be to try any

given point.

•Usually, Bayesian optimization is powered by Gaussian processes. Gaussian processes

perform better when the search space has a smooth and predictable response.

•An alternative when the search space is more complex is using tree algorithms (for

instance, random forests), or a completely different approach called Tree Parzen Estimators

or Tree-structured Parzen Estimators (TPEs).

66

•Instead of directly building a model that estimates the success of a set of parameters, thus

acting like an oracle, TPEs estimate the parameters of a multivariate distribution that define

the best-performing values of the parameters, based on successive approximations provided

by the experimentations.

•In this way, TPEs derive the best set of parameters by sampling them from a probabilistic

distribution, and not directly from a machine learning model like Gaussian processes does.

•We will discuss each of these approaches, first by examining Scikit-optimize and KerasTuner,

both based on Gaussian processes (Scikit-optimize can also use random forests and

KerasTuner can use multi-armed bandits), and then Optuna, which is principally based on

TPE (though it also offers different strategies:

https://optuna.readthedocs.io/en/stable/reference/samplers.html)

67

https://optuna.readthedocs.io/en/stable/reference/samplers.html

To remember

• Though Bayesian optimization is considered the state of the art for
hyperparameter tuning, always keep in mind that for more complex
parameter spaces, using Bayesian optimization provides no advantage
in terms of time and computation spent over a solution simply found
by random search.

• For instance, in Google Cloud Machine Learning Engine services, the
usage of Bayesian optimization is limited to problems involving at most
sixteen parameters.

• For larger numbers of parameters, it resorts to random sampling.

68

Using Scikit-optimize

• Scikit-optimize (skopt) has been developed using the same API as Scikit-learn, as

well as making extensive use of NumPy and SciPy functions. In addition, it was

created by some of the contributors to the Scikit-learn project, such as Gilles Louppe.

•Based on Gaussian process algorithms, the package is well maintained, though

sometimes it has to catch up because of improvements on the Scikit-learn, NumPy,

or SciPy sides.

•For instance, at the time of writing, in order to run it properly on Kaggle Notebooks

you have to roll back to older versions of these packages, as explained in a GitHub

issue (https://github.com/scikit-optimize/scikit-optimize/issues/981).

69

https://github.com/scikit-optimize/scikit-optimize/issues/981

• The package has an intuitive API and it is quite easy to hack it and use
its functions in custom op- timization strategies. Scikit-optimize is also
renowned for its useful graphical representations. In fact, by visualizing
the results of an optimization process (using Scikit-optimize’s
plot_objective function), you can figure out whether you can re-define
the search space for the problem and formulate an explanation of how
optimization works for a problem.

70

Tutorial

• In our worked example, we will refer to the work that can be found in the following

Kaggle Notebooks:

• https://www.kaggle.com/lucamassaron/tutorial-bayesian-optimization-with- lightgbm

• https://www.kaggle.com/lucamassaron/scikit-optimize-for-lightgbm

•Our purpose here is to show you how to quickly handle an optimization problem for a

competition such as 30 Days of ML, a recent competition that involved many Kagglers in

learning new skills and applying them in a competition lasting 30 days.

•The goal of this competition is to predict the value of an insurance claim, so it is a

regression problem.

• You can find out more about this initiative and download the data necessary for the

example we are going to present (materials are always available to the public), by visiting
https://www.kaggle.com/thirty-days-of-ml

71

https://www.kaggle.com/lucamassaron/tutorial-bayesian-optimization-with-lightgbm
https://www.kaggle.com/lucamassaron/tutorial-bayesian-optimization-with-lightgbm
https://www.kaggle.com/lucamassaron/scikit-optimize-for-lightgbm
https://www.kaggle.com/thirty-days-of-ml

Code 1/

• The following code will present how to load the data for this problem and then set up a Bayesian optimization process that will
improve the performance of a LightGBM model.

• We start by loading the packages:

Importing core libraries

import numpy as np import pandas as pd from time import time import pprint
import joblib
from functools import partial

Suppressing warnings because of skopt verbosity

import warnings warnings.filterwarnings("ignore")

Classifiers
import lightgbm as lgb

72

Code 2/

from sklearn.model_selection import KFold

Metrics

from sklearn.metrics import mean_squared_error from

sklearn.metrics import make_scorer

Skopt functions
from skopt import BayesSearchCV

from skopt.callbacks import DeadlineStopper, DeltaYStopper

from skopt.space import Real, Categorical, Integer

73

Code 3/

•Asa next step,we load the data.Thedata doesn’tneed much processing,aside from turning some categorical features with alphabetical letters as levels into ordered numeric ones:

Loading data

X = pd.read_csv("../input/30-days-of-ml/train.csv") X_test = pd.read_csv("../input/30-days-

of-ml/test.csv")

Preparing data as a tabular matrix
y = X.target

X = X.set_index('id').drop('target', axis='columns') X_test = X_test.set_index('id')

Dealing with categorical data

categoricals = [item for item in X.columns if 'cat' in item] cat_values =

np.unique(X[categoricals].values)

cat_dict = dict(zip(cat_values, range(len(cat_values)))) X[categoricals] =

X[categoricals].replace(cat_dict).astype('category') X_test[categoricals] =

X_test[categoricals].replace(cat_dict). astype('category')

74

Code 4/

• After making the data available, we define a reporting function that can
be used by Scikit-optimize for various optimization tasks. The function
takes the data and the optimizer as inputs. It can also handle callback
functions, which are functions that perform actions such as reporting,
early stopping based on having reached a certain threshold of time
spent searching or performance not improving (for instance, not seeing
improvements for a certain number of iterations), or saving the state of
the processing after each optimization iteration:

75

Code 5/

Reporting util for different optimizers

def report_perf(optimizer, X, y, title="model", callbacks=None): """

A wrapper for measuring time and performance of optimizers optimizer = a

sklearn or a skopt optimizer

X = the training set y = our target

title = a string label for the experiment """

start = time()

if callbacks is not None:

optimizer.fit(X, y, callback=callbacks) else:

optimizer.fit(X, y)

76

Code 6/

d=pd.DataFrame(optimizer.cv_results_)

best_score = optimizer.best_score_

best_score_std = d.iloc[optimizer.best_index_].std_test_score

best_params = optimizer.best_params_

print((title + " took %.2f seconds, candidates checked: %d, best CV score:

%.3f" + u" \u00B1"+" %.3f") % (time() - start,

len(optimizer.cv_results_['params']), best_score, best_score_std))

print('Best parameters:’)

pprint.pprint(best_params)

print()
return best_params

77

Code logic

• We now have to prepare the scoring function (upon which the
evaluation is based), the validation strategy (based on cross-validation),
the model, and the search space. For the scoring function, which
should be a root mean squared error metric, we refer to the practices in
Scikit-learn where you always minimize a function (if you have to
maximize, you minimize its negative).

• The make_scorer wrapper can easily replicate such practices:

78

Code 7/

Setting the scoring function
scoring = make_scorer(partial(mean_squared_error, squared=False),

greater_is_better=False)

Setting the validation strategy
kf = KFold(n_splits=5, shuffle=True, random_state=0)

Setting the basic regressor
reg = lgb.LGBMRegressor(boosting_type='gbdt',

metric='rmse', objective='regression', n_jobs=1,

verbose=-1, random_state=0)

79

Code logic

• Setting the search space requires the use of different functions from
Scikit-optimize, such as Real, Integer, or Choice, each one sampling from
a different kind of distribution that you define as a parameter (usually
the uniform distribution, but the log-uniform is also used when you are
more interested in the scale effect of a parameter than its exact value):

80

Code 8/ Search space

Setting the search space

search_spaces = {

Boosting learning rate

'learning_rate': Real(0.01, 1.0, 'log-uniform'),

Number of boosted trees to fit

'n_estimators': Integer(30, 5000),

Maximum tree leaves for base learners

'num_leaves': Integer(2, 512),

Maximum tree depth for base learners

'max_depth': Integer(-1, 256),

Minimal number of data in one leaf

'min_child_samples': Integer(1, 256),

81

Code 9/

'subsample': Real(0.01, 1.0, 'uniform'),

Frequency of subsample

'subsample_freq': Integer(0, 10),

Subsample ratio of columns

'colsample_bytree': Real(0.01, 1.0, 'uniform'),

Minimum sum of instance weight

'min_child_weight': Real(0.01, 10.0, 'uniform'),

L2 regularization

'reg_lambda': Real(1e-9, 100.0, 'log-uniform'),

L1 regularization

'reg_alpha': Real(1e-9, 100.0, 'log-uniform'),

}

82

Code logic

• Once you have defined:

• Your cross-validation strategy

• Your evaluation metric

• Your base model

• Your hyperparameter search space

• All that is left is just to feed them into your optimization function,
BayesSearchCV. Based on the CV scheme provided, this function will look
for the minimum of your scoring function based on values within the
search space. You can set a maximum number of iterations performed, the
kind of surrogate function (Gaussian processes (GP) works on most
occasions), and the random seed for reproducibility:

83

Code 10/

Wrapping everything up into the Bayesian optimizer
opt = BayesSearchCV(estimator=reg,

search_spaces=search_spaces,
scoring=scoring, cv=kf, n_iter=60,
n_jobs=-1, iid=False,

if not iid it optimizes on the cv score

return_train_score=False, refit=False,
Gaussian Processes (GP)
optimizer_kwargs={'base_estimator': 'GP'},
random state for replicability
random_state=0)

84

Code logic

• At this point, you can start the search using the reporting function we defined
previously. After a while, the function will return the best parameters for the
problem.

Running the optimizer
overdone_control = DeltaYStopper(delta=0.0001)
We stop if the gain of the optimization becomes too small
time_limit_control = DeadlineStopper(total_time=60 * 60 * 6)
We impose a time limit (6 hours)

best_params = report_perf(opt, X, y,'LightGBM_regression',
callbacks=[overdone_control, time_limit_

control])

85

Code conclusion

• In the example, we set a limit on operations by specifying a maximum
time allowed (6 hours) before stopping and reporting the best results.

• Since the Bayesian optimization approach blends together exploration
and exploitation of different combinations of hyperparameters,
stopping at any time will always return the best solution found so far
(but not necessarily the best one possible).

• This is because the acquisition function will always give priority of
exploration to the most promising parts of the search space, based on
the estimated performances returned by the surrogate function and
their uncertainty intervals.

86

Customizing a Bayesian optimization search

• The BayesSearchCV function offered by Scikit-optimize is certainly
convenient, because it wraps and arranges all the elements of a
hyperparameter search by itself, but it also has limitations. For
instance, you may find it useful in a competition to:

87

• Have more control over each search iteration, for instance mixing random

search and Bayesian search

• Be able to apply early stopping on algorithms

• Customize your validation strategy more

• Stop experiments that do not work early (for instance, immediately

evaluating the per- formance of the single cross-validation folds when it is

available, instead of waiting to have all folds averaged at the end)

• Create clusters of hyperparameter sets that perform in a similar way (for

instance, in order to create multiple models differing only in the

hyperparameters used, to be used for a blending ensemble)

88

•Each of these tasks would not be too complex if you could modify the BayesSearchCV

internal procedure. Luckily, Scikit-optimize lets you do just this. In fact, behind

BayesSearchCV, as well as behind other wrappers from the package, there are specific

minimizing functions that you can use as standalone parts of your own search function:

• gp_minimize: Bayesian optimization using Gaussian processes

• forest_minimize: Bayesian optimization using random forests or extremely randomized
• trees

• gbrt_minimize: Bayesian optimization using gradient boosting

• dummy_minimize: Just random search

•In the following example, we are going to modify the previous search using our own custom

search function. The new custom function will accept early stopping during training and it

will prune experiments if one of the fold validation results is not a top-performing one.

89

Example

• You can find the next example working in a Kaggle Notebook at
https://www. kaggle.com/lucamassaron/hacking-bayesian-
optimization.

90

https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization
https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization
https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization

Bayesian optimization for neural networks

• Moving on to deep learning, neural networks also seem to have quite a few hyperparameters
to fix:

• Batch size

• Learning rate

• The kind of optimizer and its internal parameters

•All these parameters influence how the network learns and they can make a big impact;

just a slight difference in batch size or learning rate can determine whether a network can

reduce its error beyond a certain threshold or not.

•That being said, these learning parameters are not the only ones that you can optimize

when working with deep neural networks (DNNs). How the network is organized in layers

and the details of its architecture can make even more of a difference.

91

• In fact, technically speaking, an architecture implies the
representational capacity of the deep neural network, which means
that, depending on the layers you use, the network will either be able to
read and process all the information available in the data, or it will not.

• While you had a large but limited set of choices with other machine
learning algorithms, with DNNs your choices seem unlimited, because
the only apparent limit is your knowledge and experience in handling
parts of neural networks and putting them together.

92

•Common best practices for great deep learning practitioners when

assembling well-performing DNNs depend mainly on:

• Relying on pre-trained models (so you have to be very knowledgeable about

the solutions available, such as those found on Hugging Face

(https://huggingface.co/models) or on GitHub)

• Reading cutting-edge papers

• Copying top Kaggle Notebooks from the same competition or previous
ones

• Trial and error

• Ingenuity and luck

93

https://huggingface.co/models

• In a famous lesson given by Professor Geoffrey Hinton, he states that
you can achieve similar and often better results using automated
methods such as Bayesian optimization. Bayesian optimi- zation will
also avoid you getting stuck because you cannot figure out the best
combinations of hyperparameters among the many possible ones.

• For the slides, see
https://www.cs.toronto.edu/~hinton/coursera/lecture1
6/ lec16.pdf.

94

https://www.cs.toronto.edu/%7Ehinton/coursera/lecture16/lec16.pdf
https://www.cs.toronto.edu/%7Ehinton/coursera/lecture16/lec16.pdf
https://www.cs.toronto.edu/%7Ehinton/coursera/lecture16/lec16.pdf

AutoML

• As we mentioned before, even in most sophisticated AutoML systems,
when you have too many hyperparameters, relying on random
optimization may produce better results or the same results in the same
amount of time as Bayesian optimization. In addition, in this case, you
also have to fight against an optimization landscape with sharp turns
and surfaces; in DNN optimization, many of your parameters won’t be
continuous but Boolean instead, and just one change could
unexpectedly transform the performance of your network for the better
or for the worse

95

•Our experience tells us that random optimization may not be suitable

for a Kaggle competition because:

• You have limited time and resources

• You can leverage your previous optimization results in order to find

better solutions

96

• Bayesian optimization in this scenario is ideal: you can set it to work based on the time and com-

putational resources that you have and do it by stages, refining your settings through multiple

sessions.

• Moreover, it is unlikely that you will easily be able to leverage parallelism for tuning DNNs, since

they use GPUs, unless you have multiple very powerful machines at hand.

• By working sequentially, Bayesian optimization just needs one good machine to perform the task.

• Finally, even if it is hard to find optimal architectures by a search, due to the optimization landscape

you leverage information from previous experiments, especially at the beginning, totally avoiding

combinations of parameters that won’twork.

• With random optimization, unless you change the search space along the way, all combinations are

always liable to be tested.

97

•There are also drawbacks, however. Bayesian optimization models the hyperparameter space using

a surrogate function built from previous trials, which is not an error-free process.

•It is not a remote possibility that the process ends up concentrating only on a part of the search

space while ignoring other parts (which may instead contain the minimum you are looking for).

• The solution to this is to run a large number of experiments to be safe, or to alternate between random

search and Bayesian optimization, challenging the Bayesian model with random trials that can force it

to reshape its search model in a more optimal way.

•For our example, we use again the data from the 30 Days of ML initiative by Kaggle, a regression

task. Our example is based on TensorFlow, but with small modifications it can run on other deep

learning frameworks such as PyTorch or MXNet.

98

Example

•As before, you can find the example on Kaggle here:

https://www.kaggle.com/ lucamassaron/hacking-bayesian-

optimization-for-dnns.

99

https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization-for-dnns
https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization-for-dnns
https://www.kaggle.com/lucamassaron/hacking-bayesian-optimization-for-dnns

Creating lighter and faster models with
KerasTuner
• If the previous section has puzzled you because of its complexity,

KerasTuner can offer you a fast solution for setting up an optimization
without much hassle. Though it uses Bayesian optimization and
Gaussian processes by default, the new idea behind KerasTuner is
hyperband optimization. Hyperband optimization uses the bandit
approach to figure out the best parameters (see http://

web.eecs.umich.edu/~mosharaf/Readings/HyperBand.pdf). This works quite
well with neu- ral networks, whose optimization landscape is quite
irregular and discontinuous, and thus not always suitable for Gaussian
processes.

100

http://web.eecs.umich.edu/%7Emosharaf/Readings/HyperBand.pdf
http://web.eecs.umich.edu/%7Emosharaf/Readings/HyperBand.pdf

• Let’s start from the beginning. KerasTuner
(https://keras.io/keras_tuner/) was announced as a “flexible and
efficient hyperparameter tuning for Keras models” by François Chollet,
the creator of Keras.

101

https://keras.io/keras_tuner/

Recipe

•The recipe proposed by Chollet for running KerasTuner is made up of

simple steps, starting from your existing Keras model:

1.Wrap your model in a function with hp as the first parameter.

2.Define hyperparameters at the beginning of the function.

3.Replace DNN static values with hyperparameters.

4.Write the code that models a complex neural network from the given
hyperparameters.

5.If necessary, dynamically define hyperparameters as you build the
network.

102

How does this work?

• We’ll now explore how all these steps can work for you in a Kaggle
competition by using an ex- ample. At the moment, KerasTuner is part
of the stack offered by any Kaggle Notebook, hence you don’t need to
install it. In addition, the TensorFlow add-ons are part of the
Notebook’s pre-in- stalled packages.

103

Example

• You can find this example already set up on a Kaggle Notebook here:
https://www. kaggle.com/lucamassaron/kerastuner-for-imdb/.

104

https://www.kaggle.com/lucamassaron/kerastuner-for-imdb/
https://www.kaggle.com/lucamassaron/kerastuner-for-imdb/

Examples

•If you would like to examine more examples of using KerasTuner, François

Chollet also created a series of Notebooks for Kaggle competitions in order to

showcase the workings and functionalities of his optimizer:

• https://www.kaggle.com/fchollet/keras-kerastuner-best-

practices for the Digit Recognizer datasets

• https://www.kaggle.com/fchollet/titanic-keras-kerastuner- best-

practices for the Titanic dataset

• https://www.kaggle.com/fchollet/moa-keras-kerastuner-best-

practices for the Mechanisms of Action (MoA) Prediction competition

105

https://www.kaggle.com/fchollet/keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/titanic-keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/titanic-keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/titanic-keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/moa-keras-kerastuner-best-practices
https://www.kaggle.com/fchollet/moa-keras-kerastuner-best-practices

The TPE approach in Optuna

• We complete our overview of Bayesian optimization with another
interesting tool and approach to it. As we have discussed, Scikit-
optimize uses Gaussian processes (as well as tree algorithms) and it
directly models the surrogate function and the acquisition function.

106

TPE optimization

•Instead, optimizers based on TPE tackle the problem by estimating the

likelihood of success of the values of parameters. In other words, they model

the success distribution of the parameters themselves using successive

refinements, assigning a higher probability to more successful value

combinations.

•In this approach, the set of hyperparameters is divided into good and bad

ones by these distri- butions, which take the role of the surrogate and

acquisition functions in Bayesian optimization, since the distributions tell you

where to sample to get better performances or explore where there is

uncertainty.

107

• To explore the technical details of TPE, we suggest reading Bergstra, J.
et al. Algorithms for hyper-parameter optimization. Advances in neural
information processing systems 24, 2011
(https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cf
d12577bc2619bc635690-Paper.pdf).

108

https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

Hyperopt

•Therefore, TPE can model the search space and simultaneously suggest what

the algorithm can try next, by sampling from the adjusted probability

distribution of parameters.

•For a long time, Hyperopt was the option for those preferring to use TPE

instead of Bayesian op- timization based on Gaussian processes. In October

2018, however, Optuna appeared in the open source and it has become the

preferred choice for Kagglers due to its versatility (it also works out of the box

for neural networks and even for ensembling), speed, and efficiency in finding

better solutions compared to previous optimizers.

109

• In this section, we will demonstrate just how easy is to set up a search,
which is called a study under Optuna terminology. All you need to do is to
write an objective function that takes as input the parameters to be tested by
Optuna and then returns an evaluation. Validation and other al- gorithmic
aspects can be handled in a straightforward manner inside the objective
function, also using references to variables external to the function itself
(both global variables or local ones). Optuna also allows pruning, that is,
signaling that a particular experiment is not going well and that Optuna can
stop and forget about it. Optuna provides a list of functions that activate this
callback (see
https://optuna.readthedocs.io/en/stable/reference/integration.html); the
algorithm will run everything efficiently for you after that, which will
significantly reduce the time needed for optimization.

110

https://optuna.readthedocs.io/en/stable/reference/integration.html

Example

• You can find the Notebook for this example at
https://www.kaggle.com/ lucamassaron/optuna-bayesian-
optimization.

111

https://www.kaggle.com/lucamassaron/optuna-bayesian-optimization
https://www.kaggle.com/lucamassaron/optuna-bayesian-optimization
https://www.kaggle.com/lucamassaron/optuna-bayesian-optimization

Summary 1/

•In this chapter, we discussed hyperparameter optimization at length as a way to

increase your model’s performance and score higher on the leaderboard. We started

by explaining the code functionalities of Scikit-learn, such as grid search and

random search, as well as the newer halv- ing algorithms.

•Then, we progressed to Bayesian optimization and explored Scikit-optimize,

KerasTuner, and finally Optuna. We spent more time discussing the direct modeling

of the surrogate function by Gaussian processes and how to hack it, because it can

allow you greater intuition and a more ad hoc solution. We recognize that, at the

moment, Optuna has become a gold standard among Kagglers, for tabular

competitions as well as for deep neural network ones, because of its speedier

convergence to optimal parameters in the time allowed in a Kaggle Notebook.

112

Summary 2/

•However, if you want to stand out among the competition, you should

strive to test solutions from other optimizers as well.

• In the next chapter, we will move on to discuss another way to

improve your performance in Kaggle competitions: ensembling

models. By discovering the workings of averaging, blending, and

stacking, we will illustrate how you can boost your results beyond what

you can obtain by tuning hyperparameters alone.

113

114

	Slide 1
	Slide 2: Acknowledgement
	Slide 3: Agenda
	Slide 4: Contents
	Slide 5: Why is hyperparameters tuning so important?
	Slide 6: What Kaggle Grandmasters says
	Slide 7: Basic optimization
	Slide 8: What should we optimize?
	Slide 9: Grid Search
	Slide 10: Grid search example
	Slide 11: Svm example
	Slide 12: Let us define the search space
	Slide 13
	Slide 14: Optimization dictionaries
	Slide 15: Let us combine
	Slide 16: Getting results
	Slide 17: In summary, what is Grid Search
	Slide 18: Random search (RS)
	Slide 19: When to use RS?
	Slide 20: RS example
	Slide 21: RS code
	Slide 22: RS in summary
	Slide 23: Halving search
	Slide 24: Halving search
	Slide 25: HS example
	Slide 26: HS code
	Slide 27: HS in summary
	Slide 28: Key parameters and how to use them
	Slide 29: Key parameters and how to use them
	Slide 30: Linear models
	Slide 31: Support vector machines
	Slide 32: Support vector machines parameters 1/2
	Slide 33: Support vector machines parameters 2/2
	Slide 34: SVM in summary
	Slide 35: Random forests, extremely randomized trees
	Slide 36: Random forests, extremely randomized trees
	Slide 37: Why RF works?
	Slide 38: Extra trees
	Slide 39: Parameters to optimize
	Slide 40: Extra trees vs Random forests?
	Slide 41: Gradient boosting decision trees (GBDT)
	Slide 42: GBDT is competitive!
	Slide 43: LightGBM
	Slide 44: LightGBM
	Slide 45: Rule of thumb 1/
	Slide 46: Rule of thumb 2/
	Slide 47: Rule of thumb 3/
	Slide 48: Rule of thumb 4/
	Slide 49
	Slide 50: XGBoost
	Slide 51: XGBoost
	Slide 52
	Slide 53: Mussing values
	Slide 54: Parameters to tune 1/
	Slide 55: Parameters to tune 2/
	Slide 56: CatBoost
	Slide 57: What CatBoost is good at
	Slide 58: Parameters
	Slide 59: In conclusion
	Slide 60: HistGradientBoosting
	Slide 61: HistGradientBoosting parameters
	Slide 62
	Slide 63: Bayesian optimization
	Slide 64: Bayesian optimization
	Slide 65: Intuition
	Slide 66
	Slide 67
	Slide 68: To remember
	Slide 69: Using Scikit-optimize
	Slide 70
	Slide 71: Tutorial
	Slide 72: Code 1/
	Slide 73: Code 2/
	Slide 74: Code 3/
	Slide 75: Code 4/
	Slide 76: Code 5/
	Slide 77: Code 6/
	Slide 78: Code logic
	Slide 79: Code 7/
	Slide 80: Code logic
	Slide 81: Code 8/ Search space
	Slide 82: Code 9/
	Slide 83: Code logic
	Slide 84: Code 10/
	Slide 85: Code logic
	Slide 86: Code conclusion
	Slide 87: Customizing a Bayesian optimization search
	Slide 88
	Slide 89
	Slide 90: Example
	Slide 91: Bayesian optimization for neural networks
	Slide 92
	Slide 93
	Slide 94
	Slide 95: AutoML
	Slide 96
	Slide 97
	Slide 98
	Slide 99: Example
	Slide 100: Creating lighter and faster models with KerasTuner
	Slide 101
	Slide 102: Recipe
	Slide 103: How does this work?
	Slide 104: Example
	Slide 105: Examples
	Slide 106: The TPE approach in Optuna
	Slide 107: TPE optimization
	Slide 108
	Slide 109: Hyperopt
	Slide 110
	Slide 111: Example
	Slide 112: Summary 1/
	Slide 113: Summary 2/
	Slide 114

