
IASD M2 at Paris Dauphine

Become a Kaggle Master

5: Model ensemble with blending and stacking

Eric Benhamou

1

Acknowledgement
The materials of this course is based on the seminal book

Agenda

Part I: general concepts

1. Introduction to Kaggle (concept and API)

2. Competition, metrics

3. Validation

4. Hyper parameters tuning

5. Model ensemble with blending and stacking

Part II: Competitions

5. Blind Competition

6. Predict Financial markets

7. To be determined

3

Overview

•When you start competing on Kaggle, it doesn’t take long to realize that you

cannot win with a single, well-devised model; you need to ensemble multiple

models.

•Next, you will immediately wonder how to set up a working ensemble.

•There are few guides around, and more is left to Kaggle’s lore than to scientific

papers.

4

Winning Kaggle competition

• The point here is that if ensembling is the key to winning in Kaggle
competitions, in the real world it is associated with complexity, poor
maintainability, difficult reproducibility, and hidden technical costs for little
advantage.

• Often, the small boost that can move you from the lower ranks to the top of
the leaderboard really doesn’t matter for real-world applications because the
costs overshadow the advantages.

• However, that doesn’t mean that ensembling is not being used at all in the
real world.

• In a limited form, such as averaging and mixing a few diverse models,
ensembling allows us to create models that can solve many data science
problems in a more effective and efficient way.

5

Ensembling as a team

• Ensembling in Kaggle is not only a way to gain extra predictive
performance, but it is also a teaming strategy.

• When you are working with other teammates, putting together
everyone’s contributions produces a result that often performs better
than individual efforts, and can also help to organize the work of the
team by structuring everyone’s efforts toward a clear goal.

• In fact, when work is performed in different time zones and under
different constraints for each participant, collaborative techniques like
pair coding are clearly not feasible.

• One team member may be subject to constraints due to office hours,
another due to studying and examinations, and so on.

6

Why ensembling?

•Teams in a competition often don’t have the chance to, and do not necessarily have to,

synchronize and align all participants on the same tasks.

•Moreover, the skills within a team may also differ.

•A good ensembling strategy shared among a team means that individuals can keep

working based on their own routines and styles, yet still contribute to the success of

the group.

•Therefore, even different skills may become an advantage when using ensembling

techniques based on diversity of predictions.

7

What this chapter is about?

• In this chapter, we will
• start from the ensembling techniques that you already know, because they are

embedded in algorithms such as random forests and gradient boosting,

• and then progress to ensembling techniques for multiple models such as
averaging, blending, and stacking.

• We will provide you with
• some theory,

• some practice,

• and also some code examples

• you can use as templates when building your own solutions on Kaggle.

8

Agenda

• We will cover these topics:

• A brief introduction to ensemble algorithms

• Averaging models into an ensemble

• Blending models using a meta-model

• Stacking models

• Creating complex stacking and blending solution

9

Example

• https://www.kaggle.com/code/amrmahmoud123/1-guide-to-
ensembling-methods/notebook

10

https://www.kaggle.com/code/amrmahmoud123/1-guide-to-ensembling-methods/notebook
https://www.kaggle.com/code/amrmahmoud123/1-guide-to-ensembling-methods/notebook

A brief introduction to ensemble algorithms

• The idea that ensembles of models can outperform single ones is not a
recent one.

• We can trace it back to Sir Francis Galton, who was alive in Victorian
Britain.

• He figured out that, in order to guess the weight of an ox at a county
fair, it was more useful to take an average from a host of more or less
educated estimates from a crowd than having a single carefully
devised estimate from an expert.

11

Breiman

•In 1996, Leo Breiman formalized the idea of using multiple models

combined into a more predictive one by illustrating the bagging

technique (also called the “bootstrap aggregating” procedure) that later

led to the development of the even more effective random forests

algorithms.

•In the period that followed, other ensembling techniques such as

gradient boosting and stacking were also presented, thus completing

the range of ensemble methods that we use today.

12

References

• For random forests, read Breiman, L. Bagging predictors. Machine
learning 24.2 – 1996: 123-140.

• If you want to know how boosting originally worked in more detail,
read Freund, Y. and Schapire, R.E. Experiments with a new boosting
algorithm. icml. Vol. 96 – 1996, and Friedman, J. H. Greedy function
approximation: a gradient boosting machine. Annals of Statistics
(2001): 1189-1232.

• As for stacking, refer to Ting, K. M. and Witten, I. H. Stacking bagged
and dagged models, 1997, for a first formal draft of the technique.

13

Stacking 1/

• The first basic strategies for ensembling predictors in Kaggle competitions
were taken directly from bagging and random forest strategies for
classification and regression. They involved making an average of various
predictions and were thus named averaging techniques.

• These approaches quickly emerged from the very first Kaggle competitions
held over 11 years ago also because of the pre-Kaggle Netflix competition,
where strategies based on the average of the results of dif- ferent models
dominated the scene.

• Given their success, basic ensembling techniques based on averaging set a
standard for many competitions to come, and they are still quite useful and
valid even today for scoring more highly on the leaderboard.

14

Stacking 2/

• Stacking, which is more complex and computationally demanding, emerged
a bit later, when problems in competitions become more complex and the
struggle between participants fiercer.

• Just as the random forest approach has inspired averaging different
predictions, boosting heavily inspired stacking approaches.

• In boosting, by sequentially re-processing information, your learning
algorithm can model problems in a better and more complete way.

• In fact, in gradient boosting, sequential decision trees are built in order to
model the part of data that previous iterations are unable to grasp.

• This idea is reprised in stacking ensembles, where you stack the results of
previous models and re-process them in order to gain an increase in
predictive performance

15

Averaging models into an ensemble

• In order to introduce the averaging ensembling technique better, let’s
quickly revise all the strategies devised by Leo Breiman for
ensembling.

• His work represented a milestone for ensembling strategies, and what
he found out at the time still works fairly well in a wide range of
problems

16

•Breiman explored all these possibilities in order to figure out if there

was a way to reduce the variance of error in powerful models that

tended to overfit the training data too much, such as decision trees.

•Conceptually, he discovered that ensembling effectiveness was based

on three elements: how we deal with the sampling of training cases,

how we build the models, and, finally, how we combine the different

models obtained.

17

• As for the sampling, the approaches tested and found were:

• Pasting, where a number of models are built using subsamples (sampling

without re- placements) of the examples (the data rows)

• Bagging, where a number of models are built using random selections of

bootstrapped examples (sampling with replacement)

• Random subspaces, where a number of models are built using

subsamples (sampling without replacements) of the features (the data

columns)

• Random patches, an approach similar to bagging, except features are also

sampled when each model is selected, as in random subspaces

18

• The reason we sample instead of using the same information is
because, by subsampling cases and features, we create models that are
all relevant to the same problem while each being different from the
others.

• This difference also applies to the way each model overfits the sample;
we expect all the models to grasp the useful, generalizable information
from the data in the same way, and deal with the noise that is not useful
for making predictions in a different way.

• Hence, variation in modeling reduces the variation in predictions,
because errors tend to cancel each other out.

19

Ensembling techniques

•If this variation is so useful, then the next step should not just be to

modify the data the model learns from, but also the model itself.

•We have two main approaches for the models:

• Ensembles of the same type of models

• Ensembles of different models

20

Rule of thumbs

• Interestingly, ensembling in one way or the other doesn’t help too
much if the models that we are putting together are too different in
predictive power.

• The point here is that you get an advantage if you put together models
that are able to correctly guess the same type of predictions, so they
can smooth out their errors when averaging the predictions that they
get wrong.

• If you are ensembling models with performances that are too
different, you will soon find out that there is no point because the net
effect will be negative: as you are not smoothing your incorrect
predictions, you are also degrading the correct ones.

21

• This is an important limit of averaging: it can use a set of different models
(for instance, because they are trained using different samples and features)
only if they are similar in predictive power.

• To take an example, a linear regression and a k-nearest neighbor algorithm
have different ways of modeling a problem and capturing signals from data;
thanks to the (distinct) characteristic functional forms at their cores, these
algorithms can grasp different predictive nuances from the data and
perform better on specific parts of their predictive tasks, but you cannot
really take advantage of that when using averaging.

• By contrast, the different ways algorithms have to capture signals is
something that stacking actually can leverage, because it can take the best
results from each algorithm.

22

Summary

•Based on this, we can summarize that, for an ensemble based on

averaging (averaging the results of multiple models) to be effective, it

should be:

• Built on models that are trained on different samples

• Built on models that use different subsamples from the available

features

• Composed of models similar in predictive power

23

•Technically, this implies that the models’ predictions should be as uncorrelated as

possible while performing at the same level of accuracy on prediction tasks.

•Now that we have discussed the opportunities and limitations of averaging

multiple machine learning models, we are finally going to delve into the technical

details. There are three ways to average multiple classification or regression models:

• Majority voting, using the most frequent classification among multiple models

(only for classification models)

• Averaging values or probabilities

• Using a weighted average of values or probabilities

24

In practice

• In the next few sections, we will discuss each approach in detail in the
context of Kaggle competitions.

25

Majority voting

• Producing different models by

• varying the examples,

• features,

• and models we use in the ensemble (if they are comparable in predictive power,
as we discussed before) requires a certain computational effort,

• but it doesn’t require you to build a data processing pipeline that is all
that different from what you would set up when using a single model.

26

•In this pipeline, you just need to collect different test predictions, keeping track of the

models used, how you sampled examples or features when training, the hyperparameters

that you used, and the resulting cross-validation performance.

•If the competition requires you to predict a class, you can use majority voting; that is, for

each prediction, you take the class most frequently predicted by your models. This works

for both binary predictions and multi-class predictions, because it presumes that there are

sometimes errors in your models, but that they can guess correctly most of the time.

Majority voting is used as an “error correction procedure,” discarding noise and keeping

meaningful signals.

•In our first simple example, we demonstrate how majority voting works. We start by

creating our example dataset. Using the make_classification function from Scikit-learn, we

generate a Madelon-like dataset.

27

Madelon dataset

• The original Madelon was an artificial dataset containing data points
grouped in clusters placed on the vertices of some dimensional hypercube
and randomly labeled.

• It comprised a few informative features, mixed with irrelevant and repeated
ones (to create multicollinearity between features) and it has a certain
amount of injected random noise.

• Ideated by Isabelle Guyon (one of the creators of the SVM algorithm) for the
NIPS 2003 Feature Selection Challenge, the Madelon dataset is the model
example of a challenging artificial dataset for a competition.

• Even some Kaggle competitions were inspired by it:
https://www.kaggle.com/c/overfitting and the more recent
https://www.kaggle.com/c/dont-overfit-ii.

28

https://www.kaggle.com/c/overfitting
https://www.kaggle.com/c/dont-overfit-ii

Code

• We will use this recreation of the Madelon dataset throughout this chapter as a
basis for testing ensembling techniques:

from sklearn.datasets import make_classification

from sklearn.model_selection import

train_test_split

X, y = make_classification(n_samples=5000, n_features=50,

n_informative=10, n_redundant=25,

n_repeated=15, n_clusters_per_class=5,

flip_y=0.05, class_sep=0.5, random_state=0)

29

train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size=0.33, random_state=0)

After splitting it into a training and a test set, we proceed by instantiating our learning

algorithms. We will just use three base algorithms: SVMs, random forests, and k-

nearest neighbors classi- fiers, with default hyperparameters for demonstration

purposes. You can try changing them or increasing their number:

30

Code 2/

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import log_loss, roc_auc_score,
accuracy_score

model_1 = SVC(probability=True, random_state=0)

model_2 = RandomForestClassifier(random_state=0)

model_3 = KNeighborsClassifier()

31

Training the different models

• The following step is just to train each model on the training set:

model_1.fit(X_train, y_train)

model_2.fit(X_train, y_train)

model_3.fit(X_train, y_train)

32

Testing

• At this point, we need to predict on the test set for each model and ensemble all these
predictions using majority voting. To do this, we will be using the mode function from
SciPy:

import numpy as np
from scipy.stats import mode

preds = np.stack([model_1.predict(X_test),

model_2.predict(X_test),

model_3.predict(X_test)]).T

max_voting = np.apply_along_axis(mode, 1, preds)[:,0]

33

Code

• First, we check the accuracy for each single model:

for i, model in enumerate(['SVC', 'RF ', 'KNN']):

acc = accuracy_score(y_true=y_test, y_pred=preds[:, i])

print(f"Accuracy for model {model} is: {acc:0.3f}")

34

• We see that the three models have similar performance, around 0.8.
Now it is time to check the majority voting ensemble

max_voting_accuray = accuracy_score(y_true=y_test, y_pred=max_voting)

print(f"Accuracy for majority voting is: {max_voting_accuray:0.3f}")

35

•The voting ensemble is actually more accurate: 0.817, because it managed to

put together the correct signals from the majority.

•For multilabel problems (when you can predict multiple classes), you can just

pick the classes that are predicted above a certain number of times, assuming a

relevance threshold that indicates that a prediction for a class is signal, not

noise.

•For instance, if you have five models, you could set this threshold to 3, which

means if a class is predicted by at least three models, then the prediction

should be considered correct.

36

What about regression

• In regression problems, as well as when you are predicting
probabilities, you cannot actually use majority voting.

• Majority voting works exclusively with class ownership.

• Instead, when you have to predict numbers, you need to combine the
results numerically.

• In this case, resorting to an average or a weighted average will
provide you the right way to combine predictions.

37

Averaging of model predictions

• When averaging your predictions from different models in a
competition, you can consider all your predictions as having
potentially the same predictive power and use the arithmetic mean to
derive an average value.

38

For regression

• Aside from the arithmetic mean, we have also found it quite effective to use:

• The geometric mean: This is where you multiply the n submissions, then you
take the 1/nth power of the resulting product.

• The logarithmic mean: Analogous to the geometric mean, you take the logarithm

of your submission, average them together, and take the exponentiation of the

resulting mean.

• The harmonic mean: Where you take the arithmetic mean of the reciprocals of

your submissions, then you take the reciprocal of the resulting mean.

• The mean of powers: Where you take the average of the nth power of the
submissions,

• then you take the 1/nth power of the resulting average.

39

Averaging type?

• The simple arithmetic average is always quite effective and basically a
no-brainer that works more often than expected.

• Sometimes, variants such as the geometric mean or the harmonic
mean may work better.

40

• Continuing with the previous example, we will now try to figure out
what kind of mean works best when we switch to ROC-AUC as our
evaluation metric.

• To begin with, we evaluate the performances of each single model:

41

Code

proba = np.stack([model_1.predict_proba(X_test)[:, 1],

model_2.predict_proba(X_test)[:, 1],

model_3.predict_proba(X_test)[:, 1]]).T

for i, model in enumerate(['SVC', 'RF ', 'KNN']):

ras = roc_auc_score(y_true=y_test, y_score=proba[:, i])

print(f"ROC-AUC for model {model} is: {ras:0.5f}")

42

• The results give us a range from 0.875 to 0.881.

• Our first test is performed using the arithmetic mean:

arithmetic = proba.mean(axis=1)

ras = roc_auc_score(y_true=y_test,

y_score=arithmetic)

print(f"Mean averaging ROC-AUC is: {ras:0.5f}")

43

Result

• The resulting ROC-AUC score is decisively better than the single
performances: 0.90192. We also test if the geometric, harmonic, or
logarithmic mean, or the mean of powers, can outperform the plain
mean:

44

Different types of mean

geometric = proba.prod(axis=1)**(1/3)

ras = roc_auc_score(y_true=y_test, y_score=geometric)

print(f"Geometric averaging ROC-AUC is: {ras:0.5f}")

harmonic = 1 / np.mean(1. / (proba + 0.00001), axis=1)

ras = roc_auc_score(y_true=y_test, y_score=harmonic)

print(f"Geometric averaging ROC-AUC is: {ras:0.5f}")

45

Different types of mean

n = 3
mean_of_powers = np.mean(proba**n, axis=1)**(1/n)

ras = roc_auc_score(y_true=y_test, y_score=mean_of_powers)

print(f"Mean of powers averaging ROC-AUC is: {ras:0.5f}")

logarithmic = np.expm1(np.mean(np.log1p(proba), axis=1))

ras = roc_auc_score(y_true=y_test, y_score=logarithmic)

print(f"Logarithmic averaging ROC-AUC is: {ras:0.5f}")

46

What works best?

• Running the code will tell us that none of them can. In this case, the
arithmetic mean is the best choice for ensembling.

• What actually works better than the simple mean, in almost all cases, is
putting some prior knowledge into the way you combine the numbers.

• This happens when you weight your models in the mean calculation.

47

Weighted averages

• When weighting your models, you need to find an empirical way to
figure out the right weights. A common method, though very prone to
adaptive overfitting, is to test different combinations on the public
leaderboard until you find the combination that scores the best.

• Of course, that won’t ensure that you score the same on the private
leaderboard. Here, the principle is to weight what works better.

48

Weighted averages

• However, as we have discussed at length, very often the feedback from
the public leaderboard cannot be trusted because of important
differences with the private test data.

• Yet, you can use your cross-validation scores or out-of-fold ones (the
latter will be discussed along with stacking in a later section). In fact,
another viable strategy is to use weights that are proportional to the
models’ cross-validation performances.

49

• Although it is a bit counterintuitive, another very effective method is
weighting the submissions inversely proportionally to their
covariances.

• In fact, since we are striving to cancel errors by averaging, averaging
based on the unique variance of each submission allows us to weight
more heavily the predictions that are less correlated and more diverse,
more effectively reducing the variance of the estimates.

50

Using correlatin

•In the next example, we will first create a correlation matrix of our

predicted probabilities, and then we proceed by:

1.Removing the one values on the diagonal and replacing them with
zeroes

2.Averaging the correlation matrix by row to obtain a vector

3.Taking the reciprocal of each row sum

4.Normalizing their sum to 1.0

5.Using the resulting weighting vector in a matrix multiplication of our

predicted proba- bilities

51

Code

cormat = np.corrcoef(proba.T)

np.fill_diagonal(cormat, 0.0)

W = 1 / np.mean(cormat, axis=1)
W = W / sum(W) # normalizing to sum==1.0

weighted = proba.dot(W)

ras = roc_auc_score(y_true=y_test,

y_score=weighted) print(f"Weighted averaging

ROC-AUC is: {ras:0.5f}")

52

Result

• The resulting ROC-AUC of 0.90206 is slightly better than the plain
average.

• Giving more importance to more uncorrelated predictions is an
ensembling strategy that is often successful.

• Even if it only provides slight improvements, this could suffice to turn
the competition to your advantage.

53

Averaging in your cross-validation strategy

• As we have covered, averaging doesn’t require you to build any special
complex pipelines, only a certain number of typical data pipelines that
create the models you are going to average, either using the same
weights for all predictions or some empirically found weights.

• The only way to test it is to run a submission on the public leaderboard,
thus risking adaptive fitting because your evaluation of the averaging
will solely be based on the response from Kaggle.

54

Test, test,test!

• Before testing directly on the leaderboard, though, you may also test at
training time by running the averaging operations on the validation
fold (the fold that you are not using for training your model).

• This will provide you with less biased feedback than that from the
leaderboard.

• In the following code, you can find an example of how a cross-
validation prediction is arranged:

55

Code 1/

from sklearn.model_selection import KFold

kf = KFold(n_splits=5, shuffle=True, random_state=0)

scores = list()

for k, (train_index, test_index) in

enumerate(kf.split(X_train)):

model_1.fit(X_train[train_index, :], y_train[train_index])

model_2.fit(X_train[train_index, :], y_train[train_index])

model_3.fit(X_train[train_index, :], y_train[train_index])

56

Code 2/

proba = np.stack(

[model_1.predict_proba(X_train[test_index, :])[:, 1],

model_2.predict_proba(X_train[test_index, :])[:, 1],

model_3.predict_proba(X_train[test_index, :])[:,

1]]).T

arithmetic = proba.mean(axis=1)

ras = roc_auc_score(y_true=y_train[test_index],

y_score=arithmetic)

57

Code 3/

scores.append(ras)

print(f"FOLD {k} Mean averaging ROC-AUC is: {ras:0.5f}")

print(f"CV Mean averaging ROC-AUC is:

 np.mean(scores):0.5f}")

Relying on the results of a cross-validation as in the code above can help you
evaluate which averaging strategy is more promising, without testing directly on the
public leaderboard.

58

Correcting averaging for ROC-AUC evaluations

• If your task will be evaluated on the ROC-AUC score, simply averaging
your results may not suffice. This is because different models may have
adopted different optimization strategies and their outputs may be
deeply different.

• A solution could be to calibrate the models, a type of post-pro- cessing
we previously discussed in Competition Tasks and Metrics, but this
obviously takes further time and computational effort.

59

Scaling?

• In these cases, the straightforward solution would be to convert output
probabilities into ranks and just average the ranks (or make a weighted
average of them).

• Using a min-max scaler approach, you simply convert each model’s
estimates into the range 0-1 and then proceed with averaging the
predictions.

• That will effectively convert your model’s probabilistic output into
ranks that can be compared:

60

Code

from sklearn.preprocessing import MinMaxScaler

proba = np.stack(

[model_1.predict_proba(X_train)[:, 1],

model_2.predict_proba(X_train)[:, 1],

model_3.predict_proba(X_train)[:, 1]]).T

arithmetic = MinMaxScaler().fit_transform(proba).mean(axis=1) ras =

roc_auc_score(y_true=y_test, y_score=arithmetic) print(f"Mean averaging

ROC-AUC is: {ras:0.5f}")

61

• This approach works perfectly when you are directly handling the test
predictions.

• If, instead, you are working and trying to average results during cross-
validation, you may encounter problems because the prediction range
of your training data may differ from the range of your test predic-
tions.

• In this case, you can solve the problem by training a calibration model
(see probability calibration on Scikit-learn (https://scikit-
learn.org/stable/modules/calibration.html)), converting predictions into
true, comparable probabilities for each of your models.

62

https://scikit-learn.org/stable/modules/calibration.html
https://scikit-learn.org/stable/modules/calibration.html

Blending models using a meta-model

• The Netflix competition (which we discussed at length in Chapter 1)
didn’t just demonstrate that averaging would be advantageous for
difficult problems in a data science competition; it also brought about
the idea that you can use a model to average your models’ results more
effectively. T

• he winning team, BigChaos, in their paper (Töscher, A., Jahrer, M., and
Bell, R.M. The BigChaos Solution to the Netflix Grand Prize. Netflix
prize documentation – 2009) made many mentions of blending, and
provided many hints about its effectiveness and the way it works.

63

Meta model

• In a few words, blending is kind of a weighted averaging procedure
where the weights used to combine the predictions are estimated by
way of a holdout set and a meta-model trained on it.

• A meta-model is simply a machine learning algorithm that learns from
the output of other machine learning models.

• Usually, a meta-learner is a linear model (but sometimes it can also be
a non-linear one; more on that in the next section), but you can
actually use whatever you want, with some risks that we will discuss.

64

Blending

• The procedure for obtaining a blending is straightforward:

1.Before starting to build all your models, you randomly extract a holdout

sample from the training data (in a team, you should all use the same

holdout).

1. Usually, the holdout is about 10% of the available data; however, depending on

circumstances (for instance, the number of examples in your training data,

stratifications), it could be less as well as more.

2.As always in sampling, you may enforce stratification in order to ensure sampling

representativeness, and you can test using adversarial validation that the sample

really matches the distribution in the rest of the training set.

65

Train all your models on the remaining training data.

2.Predict on the holdout and on the test data.

3.Use the holdout predictions as training data in a meta-learner and reuse the

meta-learner model to compute the final test predictions using the test

predictions from your models. Alternatively, you can use the meta-learner to

figure out the selection of predictors and their weights that should be used in

a weighted average.

66

• There a quite a few advantages and disadvantages to such a procedure.
Let’s start with the advantages.

• First, it is easy to implement; you just have to figure out what the
holdout sample is.

• In addition, using a meta-learning algorithm ensures you will find the
best weights without testing on the public leaderboard.

67

• In terms of weaknesses, sometimes, depending on sample size and the type
of models you use, reducing the number of training examples may increase
the variance of the predictions of your estimators.

• Moreover, even if you take great care over how you sample your holdout, you
may still fall into adaptive overfitting, that is, finding weights that suit the
holdout but are not generalizable, especially if you use a meta-learner that is
too complex.

• Finally, using a holdout for testing purposes has the same limitations as the
training and test split we discussed in the chapter on model validation: you
won’t have a reliable estimate if the sample size of the holdout is too small or
if, for some reason, your sampling is not representative.

68

Best practices for blending

• In blending, the kind of meta-learner you use can make a great
difference.

• The most common choices are to use a linear model or a non-linear
one.

• Among linear models, linear or logistic regressions are the preferred
ones.

• Using a regularized model also helps to discard models that are not
useful (L1 regularization) or reduce the influence of less useful ones
(L2 regularization).

69

Best practices for blending

• One limit to using these kinds of meta-learners is that they may assign
some models a negative contribution, as you will be able to see from
the value of the coefficient in the model.

• When you encounter this situation, the model is usually overfitting,
since all models should be contributing positively to the building of the
ensemble (or, at worst, not contributing at all).

• The most recent versions of Scikit-learn allow you to impose only
positive weights and to remove the intercept.

• These constraints act as a regularizer and prevent overfitting.

70

• Non-linear models as meta-learners are less common because they tend
to overfit in regression and binary classification problems, but they
often shine in multiclass and multilabel classification problems since
they can model the complex relationships between the classes present.

• They also generally perform better if, aside from the models’
predictions, you also provide them with the original features, since
they can spot any useful interactions that help them correctly select
which models to trust more.

71

• In our next example, we first try blending using a linear model (a
logistic regression), then a non-linear approach (a random forest).

• We start by splitting the training set into a training part for the blend
elements and a holdout for the meta-learner.

• Afterward, we fit the models on the trainable part and predict on the
holdout.

72

Code

from sklearn.preprocessing import StandardScaler

X_blend, X_holdout, y_blend, y_holdout =

train_test_split(X_train, y_ train,

test_size=0.25, random_state=0)

73

Code

model_1.fit(X_blend,y_blend)

model_2.fit(X_blend,y_blend)

model_3.fit(X_blend,y_blend)

proba = np.stack([model_1.predict_proba(X_holdout)[:, 1],

model_2.predict_proba(X_holdout)[:, 1],

model_3.predict_proba(X_holdout)[:, 1]]).T
scaler = StandardScaler()
proba = scaler.fit_transform(proba)

74

Train our linear meta-learner

• We can now train our linear meta-learner using the probabilities predicted on
the holdout:

from sklearn.linear_model import LogisticRegression

blender = LogisticRegression(solver='liblinear’)

blender.fit(proba, y_holdout)

print(blender.coef_)

75

Result

• The resulting coefficients are:

• [[0.78911314 0.47202077 0.75115854]]

76

• By looking at the coefficients, we can figure out which model
contributes more to the meta-ensemble.

• However, remember that coefficients also rescale probabilities when
they are not well calibrated, so a larger coefficient for a model may not
imply that it is the most important one.

• If you want to figure out the role of each model in the blend by looking
at coefficients, you first have to rescale them by standardization (in our
code example, this has been done using Scikit-learn’s StandardScaler).

77

•Our output shows us that the SVC and k-nearest neighbors models are

weighted more in the blend than the random forest one; their

coefficients are almost equivalent and both are larger than the random

forest coefficient.

• Once the meta-model is trained, we just predict on our test data and

check its performance:

78

Stack model

test_proba =

 np.stack([model_1.predict_proba(X_test)[:, 1],

• model_2.predict_proba(X_test)[:, 1],

model_3.predict_proba(X_test)[:, 1]]).T

79

Code

blending = blender.predict_proba(test_proba)[:, 1]

ras = roc_auc_score(y_true=y_test, y_score=blending)

print(f"ROC-AUC for linear blending {model} is: {ras:0.5f}")

We can try the same thing using a non-linear meta-learner, such as a random forest, for instance:

blender = RandomForestClassifier() blender.fit(proba, y_holdout)

test_proba = np.stack([model_1.predict_proba(X_test)[:, 1],

model_2.predict_proba(X_test)[:, 1], model_3.predict_proba(X_test)[:, 1]]).T

blending = blender.predict_proba(test_proba)[:, 1] ras = roc_auc_score(y_true=y_test,

y_score=blending)

print(f"ROC-AUC for non-linear blending {model} is: {ras:0.5f}")

80

References

• An alternative to using a linear or non-linear model as a meta-learner is
provided by the ensemble selection technique formalized by Caruana,
Niculescu-Mizil, Crew, and Ksikes.

• If you are interested in more details, read their famous paper: Caruana,
R., Nicules- cu-Mizil, A., Crew, G., and Ksikes, A. Ensemble selection
from libraries of models (Proceedings of the Twenty-First International
Conference on Machine Learning, 2004).

81

How to combine?

• The ensemble selection is actually a weighted average, so it could
simply be considered analogous to a linear combination.

• However, it is a constrained linear combination (because it is part of a
hill-climbing optimization) that will also make a selection of models
and apply only positive weights to the predictions.

82

How to combine?

• All this minimizes the risk of overfitting and ensures a more compact
solution, because the solution will involve a model selection.

• From this perspective, ensemble selection is recommended in all
problems where the risk of overfitting is high (for instance, because the
training cases are few in number or the models are too complex) and
in real-world applications because of its simpler yet effective solution.

83

Why ensembling

• When using a meta-learner, you are depending on the optimization of
its own cost function, which may differ from the metric adopted for
the competition.

• Another great advantage of ensemble selection is that it can be
optimized to any evaluation function, so it is mostly suggested when
the metric for the competition is different from the canon of those
typically optimized in machine learning models.

84

Implementation

• Implementing ensemble selection requires the following steps, as
described in the paper mentioned previously:

85

Steps

1.Start with your trained models and a holdout sample.

2. Test all your models on the holdout sample and, based on the evaluation metric, retain

the most effective in a selection (the ensemble selection).

3.Then, keep on testing other models that could be added to the one(s) in the ensemble

selection so that the average of the proposed selection improves over the previous one.

a) You can either do this with replacement or without.

b) Without replacement, you only put a model into the selection ensemble once; in this case, the

procedure is just like a simple average after a forward selection. (In a forward selection, you

iteratively add to a solution the model that improves the performance the most, until adding

further models no longer improves the performance.)

c) With replacement, you can put a model into the selection multiple times, thus resembling a

weighted average.

4.When you cannot get any further improvement, stop and use the ensemble selection.

86

Code

• Here is a simple code example of an ensemble selection.

• We start by deriving a holdout sample and a training selection from our
original training data.

• We fit the models and obtain the predictions on our holdout, as
previously seen when blending with a meta-learner:

87

Code

• X_blend, X_holdout, y_blend, y_holdout = train_test_split

(X_train, y_train, test_size=0.5, random_state=0)

• model_1.fit(X_blend, y_blend) model_2.fit(X_blend,

y_blend) model_3.fit(X_blend, y_blend)

• proba = np.stack([model_1.predict_proba(X_holdout)[:, 1],

• model_2.predict_proba(X_holdout)[:, 1],

model_3.predict_proba(X_holdout)[:, 1]]).T

88

Ensembling with iterations

• In the next code snippet, the ensembling is created through a series of
iterations.

• At each iteration, we try adding all the models in turn to the present
ensemble and check if they improve the model.

• If any of these additions outperforms the previous ensemble on the
holdout sample, the ensemble is updated and the bar is raised to the
present level of performance.

89

Code

• If no addition can improve the ensemble, the loop is stopped and the
composition of the ensemble is reported back:

iterations = 100
proba = np.stack([

model_1.predict_proba(X_holdout)[:, 1],
model_2.predict_proba(X_holdout)[:, 1],
model_3.predict_proba(X_holdout)[:, 1]]).T

baseline = 0.5
print(f"starting baseline is {baseline:0.5f}")
models = []

90

For loop

for i in range(iterations):

challengers = list()

for j in range(proba.shape[1]):

new_proba = np.stack(proba[:, models + [j]])

score = roc_auc_score(y_true=y_holdout,y_score=np.mean(new_proba, axis=1))

challengers.append([score, j])

 challengers = sorted(challengers, key=lambda x: x[0],reverse=True)

 best_score, best_model = challengers[0]

 ...

91

For loop

for i in range(iterations):

 ...

 if best_score > baseline:

 print(f"Adding model_{best_model+1} to the ensemble",end=': ')

print(f"ROC-AUC increases score to {best_score:0.5f}")

models.append(best_model)

baseline = best_score

else:

print("Cannot improve further - Stopping")

92

Finally count

•Finally, we count how many times each model has been inserted into the average and we

calculate the weights for our averaging on the test set:

from collections import Counter

freqs = Counter(models)

weights = {key: freq/len(models) for key,

 freq in freqs.items()}

print(weights)

93

• You can make the procedure more sophisticated in various ways.

• Since this approach may overfit, especially at the initial stages, you
could start from a randomly initialized ensemble set or, as the authors
suggest, you may already be starting with the n best performing
models in the set (you decide the value of n, as a hyperparameter).

• Another variation involves applying sampling to the set of models that
can enter the selection at each iteration; in other words, you randomly
exclude some models from being picked.

• Not only will this inject randomness into the process but it will also
prevent specific models from dominating the selection.

94

Stacking models together

•Stacking was first mentioned in David Wolpert’s paper (Wolpert, D. H. Stacked generalization.

Neural networks 5.2 – 1992), but it took years before the idea become widely accepted and

common (only with release 0.22 in December 2019, for instance, has Scikit-learn implemented

a stacking wrapper). This was due principally to the Netflix competition first, and to Kaggle

competitions afterward.

•In stacking, you always have a meta-learner. This time, however, it is not trained on a

holdout, but on the entire training set, thanks to the out-of-fold (OOF) prediction strategy.

We already discussed this strategy in Chapter 6, Designing Good Validation. In OOF

prediction, you start from a replicable k-fold cross-validation split. Replicable means that, by

recording the cases in each training and testing sets at each round or by reproducibility

assured by a random seed, you can replicate the same validation scheme for each model you

need to be part of the stacking ensemble.

95

What about Netflix competition?

• In the Netflix competition, stacking and blending were often used
interchangeably, though the actual method devised by Wolpert
originally implied leveraging a scheme based on k-fold cross-
validation, not a holdout set.

• In fact, the core idea in stacking is not to reduce the variance, as in
averaging; it is mostly to reduce the bias, because it is expected that
each model involved in the stacking will grasp a part of the information
present in the data, to be recomposed in the final meta-learner.

96

• Let’s remind ourselves of how OOF predictions on the training data
work. When testing a model, at each round of the validation you train a
model on part of the training data and you validate on another part that
is held out from the training.

97

• By recording the validation predictions and then reordering them to
reconstruct the ordering of the original training cases, you will obtain a
prediction of your model on the very same training set that you have
used.

• However, as you have used multiple models and each model has
predicted on cases it didn’t use for training, you should not have any
overfitting effects on your training set predictions.

98

• Having obtained OOF predictions for all your models, you can
proceed
• to build a meta-learner that predicts your target based on the OOF predictions

(first-level predictions),

• or you can keep on producing further OOF predictions on top of your previous
OOF predictions (second- or higher-level predictions), thus creating multiple
stacking layers.

• This is compatible with an idea presented by Wolpert himself: by using
multiple meta-learners, you are actually imitating the structure of a
fully connected feedforward neural network without backpropagation,
where the weights are optimally calculated in order to maximize the
predictive performance at the level of each layer separately.

99

In practice

• From a practical point of view, stacking multiple layers has proven very
effective and works very well for complex problems where single
algorithms are unable to obtain the best results.

100

• Moreover, one interesting aspect of stacking is that you don’t need
models of comparable predictive power, as in averaging and often in
blending. In fact, even worse-performing models may be effective as
part of a stacking ensemble.

• A k-nearest neighbors model may not be comparable to a gradient
boosting solution, but when you use its OOF predictions for stacking it
may contribute positively and increase the predictive performance of
the ensemble.

101

In practice

• When you have trained all the stacking layers, it is time to predict.

• As far as producing the pre- dictions used at various stacking stages, it
is important to note that you have two ways to do this.

• The original Wolpert paper suggests re-training your models on all
your training data and then using those re-trained models for
predicting on the test set.

• In practice, many Kagglers don’t retrain, but directly use the models
created for each fold and make multiple predictions on the test set that
are averaged at the end.

102

• In our experience, stacking is generally more effective with complete re-
training on all available data before predicting on the test set when you are
using a low number of k-folds.

• In these cases, the sample consistency may really make a difference in the
quality of the prediction because training on less data means getting more
variance in the estimates.

• As we discussed in Chapter 6, when creating OOF predictions it is always
better to use a high number of folds, between 10 to 20.

• This limits the number of examples that are held out, and, without re-
training on all the data, you can simply use the average of predictions
obtained from the cross-validation trained models for obtaining your
prediction on the test set.

103

• In our next example, for illustrative purposes, we only have five CV
folds and the results are stacked twice. In the diagram below, you can
follow how the data and the models move between different stages of
the stacking process:

104

2-layer stacking process with final averaging

105

• Notice that:

• Training data is fed to both levels of the stacking (OOF predictions at

the second level of the stacking are joined with the training data)

• After obtaining OOF predictions from the CV loops, models are re-

trained on the entire training dataset

• The final predictions are a simple average of all the predictions

obtained by the stacked predictors

106

• Let’s now take a look at the code to understand how this diagram
translates into Python com- mands, starting with the first level of
training:

107

Code

from sklearn.model_selection import KFold

kf = KFold(n_splits=5, shuffle=True,

 random_state=0) scores = list()

first_lvl_oof = np.zeros((len(X_train), 3))

108

Use the 3 models

fist_lvl_preds = np.zeros((len(X_test), 3)

for k, (train_index, val_index) in enumerate(kf.split(X_train)):
model_1.fit(X_train[train_index, :], y_train[train_index])

 first_lvl_oof[val_index, 0] = model_1.predict_proba(

 X_train[val_index, :])[:, 1]

model_2.fit(X_train[train_index, :], y_train[train_index])

first_lvl_oof[val_index, 1] = model_2.predict_proba(

X_train[val_index, :])[:, 1]

model_3.fit(X_train[train_index, :], y_train[train_index])

first_lvl_oof[val_index, 2] = model_3.predict_proba(

 X_train[val_index, :])[:, 1]

109

After the first layer, we retrain on the full
dataset:

model_1.fit(X_train, y_train)

fist_lvl_preds[:, 0] = model_1.predict_proba(X_test)[:, 1]

model_2.fit(X_train, y_train)

fist_lvl_preds[:, 1] = model_2.predict_proba(X_test)[:, 1]

model_3.fit(X_train, y_train)

fist_lvl_preds[:, 2] = model_3.predict_proba(X_test)[:, 1]

110

Second stacking

• In the second stacking, we will reuse the same models as those in the first layer, adding the stacked OOF
predictions to the existing variables:

second_lvl_oof = np.zeros((len(X_train), 3)) second_lvl_preds =

np.zeros((len(X_test), 3))

for k, (train_index, val_index) in enumerate(kf.split(X_train))

 skip_X_train = np.hstack([X_train, first_lvl_oof])

model_1.fit(skip_X_train[train_index, :], y_train[train_index])

second_lvl_oof[val_index, 0] = model_1.predict_proba(

skip_X_train[val_index, :])[:, 1]

111

model_2.fit(skip_X_train[train_index, :],

 y_train[train_index])

second_lvl_oof[val_index, 1] = model_2.predict_proba(

 skip_X_train[val_index, :])[:, 1]

model_3.fit(skip_X_train[train_index, :],

 y_train[train_index])

second_lvl_oof[val_index, 2] = model_3.predict_proba(

 skip_X_train[val_index, :])[:, 1]

112

Retraining

• Again, we retrain on the full data for the second layer:

skip_X_test = np.hstack([X_test, fist_lvl_preds])

model_1.fit(skip_X_train, y_train)
second_lvl_preds[:, 0] = model_1.predict_proba(skip_X_test)[:, 1]

model_2.fit(skip_X_train, y_train)
second_lvl_preds[:, 1] = model_2.predict_proba(skip_X_test)[:, 1]

model_3.fit(skip_X_train, y_train)
second_lvl_preds[:, 2] = model_3.predict_proba(skip_X_test)[:, 1]

113

• The stacking is concluded by averaging all the stacked OOF results
from the second layer:

arithmetic = second_lvl_preds.mean(axis=1)

ras = roc_auc_score(y_true=y_test,

 y_score=arithmetic)

scores.append(ras)

print(f"Stacking ROC-AUC is: {ras:0.5f}")

114

Result

• The resulting ROC-AUC score is about 0.90424, which is better than
previous blending and averaging attempts on the same data and
models.

115

Stacking variations

• The main variations on stacking involve changing how test data is
processed across the layers, whether to use only stacked OOF
predictions or also the original features in all the stacking layers, what
model to use as the last one, and various tricks in order to prevent
overfitting.

116

Tips

• Optimization may or may not be used. Some solutions do not care
too much about optimizing single models; others optimize only the
last layers; others optimize on the first layers.

• Based on our experiences, optimization of single models is important
and we prefer to do it as early as possible in our stacking ensemble.

117

• Models can differ at the different stacking layers, or the same
sequence of models can be repeated at every stacking layer.

• Here we don’t have a general rule, as it really depends on the problem.

• The kind of models that are more effective may vary according to the
problem.

• As a general suggestion, putting together gradient boosting solutions
and neural networks has never disappointed us.

118

• At the first level of the stacking procedure, just create as many models
are possible.

• For instance, you can try a regression model if your problem is a
classification one, and vice versa.

• You can also use different models with different hyperparameter settings,
thus avoiding too much extensive optimization because the stacking will
decide for you.

• If you are using neural networks, just changing the random initialization
seed could suffice to create a diverse bag of models.

• You can also try models using different feature engineering and even use
unsupervised learning (like Mike Kim did when he used t-SNE dimensions in
a solution of his: https://www.kaggle.com/c/otto-group-product-classification-
challenge/discussion/14295).

119

https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14295
https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14295

• The idea is that the selection of all such contributions is done during the
second level of the stacking.

• This means that, at that point, you do not have to experiment any
further and you just need to focus on a narrower set of better
performing models.

• By applying stacking, you can re-use all your experiments and let the
stacking decide for you to what degree you should use something in
your modeling pipeline.

120

• Some stacking implementations take on all the features or a selection of
them to further stages, reminiscent of skip layers in neural networks.

• We have noticed that bringing in features at later stages in the stacking
can improve your results, but be careful: it also brings in more noise
and risk of overfitting.

121

• Ideally, your OOF predictions should be made from cross-validation

schemes with a high number of folds, in other words, between 10 to

20, but we have also seen solutions working with a lower number,

such as 5 folds.

• For each fold, bagging the data (resampling with repetition) multiple

times for the same model and then averaging all the results from the

model (OOF predictions and test pre- dictions) helps to avoid

overfitting and produces better results in the end.

122

Early stopping

• Beware of early stopping in stacking.

• Using it directly on the validation fold may cause a certain degree of
overfitting, which may or may not be mitigated in the end by the
stacking procedure.

• We suggest you play it safe and always apply early stopping based on a
validation sample from your training folds, not your validation one.

123

Possibilities

• The possibilities are endless.

• Once you have grasped the basic concept of this ensembling technique,
all you need is to apply your creativity to the problem at hand.

• We will discuss this key concept in the final section of this chapter,
where we will look at a stacking solution for a Kaggle competition.

124

Creating complex stacking and blending
solutions
• At this point in the chapter, you may be wondering to what extent you

should apply the techniques we have been discussing.

• In theory, you could use all the ensembling techniques we have
presented in any competition on Kaggle, not just tabular ones, but you
have to consider a few limiting factors:

125

• Sometimes, datasets are massive, and training a single model takes a long time.

• In image recognition competitions, you are limited to using deep learning
methods.

• Even if you can manage to stack models in a deep learning competition, you have a

limited choice for stacking different models. Since you are restricted to deep

learning solutions, you can only vary small design aspects of the networks and

some hyperparameters (or sometimes just the initialization seed) without

degrading the performance.

• In the end, given the same type of models and more similarities than differences

in the architectures, the predictions will tend to be too similar and more

correlated than they should be, lim- iting the effectiveness of ensembling.

126

• Under these conditions, complex stacking regimes are usually not
feasible. By contrast, averaging and blending are usually possible when
you have large datasets.

127

• In earlier competitions, as well as in all recent tabular competitions,
complex stacking and blending solutions ruled the day.

• To give you an idea of the complexity and creativity that needs to be
put into stacking for a competition, in this last section we will discuss
the solution provided by Gilberto Titericz
(https://www.kaggle.com/titericz) and Stanislav Semenov (https://www.
kaggle.com/stasg7) to the Otto Group Product Classification Challenge
(https://www.kaggle. com/c/otto-group-product-classification-challenge).

• The competition was held in 2015 and its task required classifying over
200,000 products into 9 distinct classes based on 93 features

128

https://www.kaggle.com/titericz
https://www.kaggle.com/stasg7
https://www.kaggle.com/stasg7
https://www.kaggle.com/c/otto-group-product-classification-challenge
https://www.kaggle.com/c/otto-group-product-classification-challenge

3 levels stakcing

• The solution proposed by Gilberto and Stanislav comprised three levels:

1. On the first level, there were 33 models. All the models used quite different algorithms, apart from

a cluster of k-nearest neighbors where only the k parameter varied. They also used unsupervised t-

SNE. In addition, they engineered eight features based on dimen- sionality manipulation

(computations performed on distances from nearest neighbors and clusters) and on row statistics

(the number of non-zero elements in each row). All the OOF predictions and features were passed

to the second level.

2. On the second level, they started optimizing hyperparameters and doing model selec- tion and

bagging (they created multiple versions of the same model by resampling and averaged the

results for each model). In the end, they had only three models that they re-trained on all the

data: an XGBoost, an AdaBoost, and a neural network.

3. On the third level, they prepared a weighted average of the results by first doing a geo- metric

mean of XGBoost and the neural network and then averaging it with the AdaBoost.

129

• We can learn a lot from this solution, and not just limited to this
competition.

• Aside from the complexity (on the second level, the number of times
they resampled was in the order of hundreds for each model), it is
noticeable that there are multiple variations on the schemes we
discussed in this chapter.

• Creativity and trial and error clearly dominate the solution.

• This is quite typical of many Kaggle competitions, where the problems
are seldom the same from one competition to another and each
solution is unique and not easily repeatable.

130

AutoGluon

• Many AutoML engines, such as AutoGluon, more or less explicitly try
to take inspiration from such procedures in order to offer a predefined
series of automated steps that can ensure you a top result by stacking
and blending.

131

Summary

•In this chapter, we discussed how ensembling multiple solutions

works and proposed some basic code examples you can use to start

building your own solutions.

•We started from the ideas that power model ensembles such as

random forests and gradient boosting.

•Then, we moved on to explore the different ensembling approaches,

from the simple averaging of test submissions to meta-modeling across

multiple layers of stacked models.

132

Summary

•As we discussed at the end, ensembling is more an art form based on some

shared common practices.

•When we explored a successful complex stacking regime that won a Kaggle

competition, we were amazed by how the combinations were tailored to the

data and the problem itself.

•You cannot just take a stacking, replicate it on another problem, and hope that

it will be the best solution.

•You can only follow guidelines and find the best solution consisting of

averaging/stacking/ blending of diverse models yourself, through lots of

experimentation and computational effort.

133

	Slide 1
	Slide 2: Acknowledgement
	Slide 3: Agenda
	Slide 4: Overview
	Slide 5: Winning Kaggle competition
	Slide 6: Ensembling as a team
	Slide 7: Why ensembling?
	Slide 8: What this chapter is about?
	Slide 9: Agenda
	Slide 10: Example
	Slide 11: A brief introduction to ensemble algorithms
	Slide 12: Breiman
	Slide 13: References
	Slide 14: Stacking 1/
	Slide 15: Stacking 2/
	Slide 16: Averaging models into an ensemble
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Ensembling techniques
	Slide 21: Rule of thumbs
	Slide 22
	Slide 23: Summary
	Slide 24
	Slide 25: In practice
	Slide 26: Majority voting
	Slide 27
	Slide 28: Madelon dataset
	Slide 29: Code
	Slide 30: train_test_split
	Slide 31: Code 2/
	Slide 32: Training the different models
	Slide 33: Testing
	Slide 34: Code
	Slide 35
	Slide 36
	Slide 37: What about regression
	Slide 38: Averaging of model predictions
	Slide 39: For regression
	Slide 40: Averaging type?
	Slide 41
	Slide 42: Code
	Slide 43
	Slide 44: Result
	Slide 45: Different types of mean
	Slide 46: Different types of mean
	Slide 47: What works best?
	Slide 48: Weighted averages
	Slide 49: Weighted averages
	Slide 50
	Slide 51: Using correlatin
	Slide 52: Code
	Slide 53: Result
	Slide 54: Averaging in your cross-validation strategy
	Slide 55: Test, test,test!
	Slide 56: Code 1/
	Slide 57: Code 2/
	Slide 58: Code 3/
	Slide 59: Correcting averaging for ROC-AUC evaluations
	Slide 60: Scaling?
	Slide 61: Code
	Slide 62
	Slide 63: Blending models using a meta-model
	Slide 64: Meta model
	Slide 65: Blending
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Best practices for blending
	Slide 70: Best practices for blending
	Slide 71
	Slide 72
	Slide 73: Code
	Slide 74: Code
	Slide 75: Train our linear meta-learner
	Slide 76: Result
	Slide 77
	Slide 78
	Slide 79: Stack model
	Slide 80: Code
	Slide 81: References
	Slide 82: How to combine?
	Slide 83: How to combine?
	Slide 84: Why ensembling
	Slide 85: Implementation
	Slide 86: Steps
	Slide 87: Code
	Slide 88: Code
	Slide 89: Ensembling with iterations
	Slide 90: Code
	Slide 91: For loop
	Slide 92: For loop
	Slide 93: Finally count
	Slide 94
	Slide 95: Stacking models together
	Slide 96: What about Netflix competition?
	Slide 97
	Slide 98
	Slide 99
	Slide 100: In practice
	Slide 101
	Slide 102: In practice
	Slide 103
	Slide 104
	Slide 105: 2-layer stacking process with final averaging
	Slide 106
	Slide 107
	Slide 108: Code
	Slide 109: Use the 3 models
	Slide 110: After the first layer, we retrain on the full dataset:
	Slide 111: Second stacking
	Slide 112
	Slide 113: Retraining
	Slide 114
	Slide 115: Result
	Slide 116: Stacking variations
	Slide 117: Tips
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123: Early stopping
	Slide 124: Possibilities
	Slide 125: Creating complex stacking and blending solutions
	Slide 126
	Slide 127
	Slide 128
	Slide 129: 3 levels stakcing
	Slide 130
	Slide 131: AutoGluon
	Slide 132: Summary
	Slide 133: Summary

