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Recall from previous session

* In the previous session, we introduced Al, machine learning, and deep learning.

 We also discovered how the banking sector functions and how the use of Al can
enhance banking processes. We learned the importance of banking processes
being easily accessible.

* Overall, the session provided the necessary background for the application of
machine learning in the banking industry to solve various business problems.



Goal of this session

* In this session, we will learn about an algorithm that analyzes historical data to
forecast future behavior, known as time series analysis.

* Time series analysis works on the basis of one variable —time. It emphasizes the
importance of chronology

* |t is the process of capturing data points, also known as observations, at specific
time intervals.

* The goal of this session is to understand time series analysis in detail through
examples and explain how Machine-to-Machine (M2M) communication can be
helpful in the implementation of time series analysis.



What is a time series?

* A time series is technically defined as the ordered sequence of values
of a variable captured over a uniformly spaced time interval.

e Put simply, it is the method of capturing the value of a variable at specific time
intervals.

* |t can be 1 hour, 1 day, or 20 minutes.
* The captured values of a variable are also known as data points.

* Time series analysis is performed in order to understand the structure of the
underlying sources that produced the data. It is also used in forecasting,
feedforward control, monitoring, and feedback.



Type of time series analysis

* Can you cite applications of time series analysis?
 Utility studies
e Stock market analysis
* Weather forecasting

Sales projections

Workload scheduling

Expenses forecasting

Budget analysis



How to extract value

* Time series analysis is achieved by applying various analytical methods
to extract meaningful information from raw data that has been
captured from various data sources

* Time series analysis is also useful for producing statistics and other
characteristics of data—for example, the size of data, the type of data,
the frequency of data, and more.

* In time series analysis, the capturing of a value is done at a point of
observation.
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Lab: forecasting demand for electricity
consumption

* In this section, we will look at forecasting demand for electricity consumption, and
predict energy expenses using time series analysis.

* Motivations: Today, electricity or energy is a very basic necessity for all of us. We
use electricity and pay bills. Now, as a customer, we want to analyze electricity
consumption and predict future consumption and predict energy expenses. This is
the problem that we will solve in this section.

* Time series analysis is the optimal approach for solving this problem. Machine
learning models need large datasets to be fed before the actual solution is derived.

Here are the steps that we will follow:
1. Downloading the data
2. Preprocessing the data
3. Model fitting the data



Downloading the data

» Start by downloading data regarding electricity consumption and energy expenses. Even though we
can download data from public websites now, in a true production environment, it is not

uncommon to download data from an internal database and pass it to users as a flat file (a text file
with no database structure).

* You can download the files from the following paths:

e Consumption: https://www.eia.gov/opendata/qb.php?category=873sdid= ELEC.CONS TOT.NG-
CA-98.M

e Cost: https://www.eia.gov/opendata/gb.php?category=41625sdid=ELEC.COST. NG-CA-98.M
* Revenue: https://www.eia.gov/opendata/gb.php?category=1007sdid=E LEC. REV.CA-RES.M

10



Preprocessing the data 1/2

» After we obtain the data, we align it together in the same time series,
as the data we’ve downloaded can cover different periods of time. As
data scientists, we strive to align our data in one single sheet of data,
with all of the required data listed column by column (that is, cost,
consumption, sales, and more):

B

Average cosi of fossil fuels [for electricity generation coal Califomia electric power (io
hitps:/fwn eia govlopendata/gb. php?eateqony=41610&sdid=ELEC. COST. COW-CA-L
08:07:14 GMT+0800 (HKT)

Source: LS. Enengy Information Administration

Month Sares ID: ELEC.COST.COW-CA-98.M dollars per tons
Jan 2018
Dec 2007
Mowv 2017
Oct 2017
Sep 20017
Aug 2007
Jul 2017
Jun 2017
May 2017
Apr 2017
Mar 2017
Feb 2017
Jan 2017

[=J1=21=10=11=01=20=Ri=Ri=Ri=Ri=Ri=0i=]
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Preprocessing the data 2/2

* Each line (or row) of the data should represent a single month. Right before we feed our data for
the machine to learn the patterns, we will need to set aside some data for testing and some for
learning. With the testing data, we can see whether the model predicts well, without training on
the learning data first.. We do not feed the testing dataset for ML/training. This is a fundamental
step in all ML/predictive models

* In this program, we set aside the earliest 70% of data points as training data for the machine to
learn and adapt to, while keeping the latter 30% of data points as testing data. This is data that will
be used to compare against the prediction made by the model, not used to fit the data.



Model fitting the data

* In the part, we will first introduce the Autoregressive Integrated Moving Average
(ARIMA), the most traditional type of forecasting model before going to deep
networks to see the difference. We will also introduce a neural network model.

ARIMA is a class of statistical models that is used to forecast a time series using
past values.

* ARIMA is an acronym for the following:

* AR (autoregression): Autoregression is a process that takes previous data values as inputs, applies this to
the regression equation, and generates resultant prediction-based data values.

* | (integrated): ARIMA uses an integrated approach by using differences in observations to make the time

series equally spaced. This is done by subtracting the observation from an observation on a previous step
or time value.

* MA (moving average): A model that uses the observation and the residual error applied to past
observations.



Some quick definition on ARIMA

* This ARIMA model belongs to parametric modelling—models that are fitted by known parameters. Normally, we classify this type of
model as a statistical model because we need to make assumptions about what the data looks like. This is considerably different for
wider machine learning models that do not have any preset assumptions about what the data looks like.

* However, in a real banking scenario, a statistical approach is still prevalent among the econometrics, quantitative finance, and risk
management domains. This approach works when we have a handful of data points, for example, around 30 to 100 data points.
However, when we have a wealth of data, this approach may not fare as well as other machine learning approaches.

* ARIMA assumes that there is a stationary trend that we can describe. The autoregressive terms, p and d, are each significant in their
own way:

* p means the number of past period(s) that is affecting the current period value (for example, p = 1: Y current period =Y current -1 period *
coefficient + constant).

* Non-seasonal difference (d) refers to the number of past periods progression impacting the current period values (for example, d = 1: the
difference between Y now versus Y in the past period).

* Lagged terms (g) means the number of the past period's forecast errors impacting the current period values.

* Consider an example in which g = 1: Yimpacted by an error in the t - 1 period—here, error refers to the difference between the
actual and predicted values.

* Ina nutshell, ARIMA specifies how the previous period's coefficient, constant, error terms, and even predicted values impact the
current predicted values. It sounds scary, but it is, in fact, very understandable. After the model is fit, it will be asked to make a
prediction and be compared against the actual testing data.

* The deviation of the prediction from the testing data will record the accuracy of the model. We will use a metric called the Mean
Square Error (MSE) in this chapter to determine the fitness of the model to the data.
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neural networks — the secret sauce for
accurately predicting demand 1/2

A neural network is an attempt by a computer to mimic how our brain works—it works by connecting different
computing points/neurons with different settings. Architecture-wise, it looks like layers of formulas. To make
it very simple, if we denote by Y the interested outcome and X, the input variable (features), with b being the
coefficient and ¢ being the constant term:

Y=bX+cC

* Yis what we wish to predict on the left-hand side; on the right-hand side, bX + ¢ are the forms that describe
how the feature (X) is related to Y. In other words, Y is the output, while X is the input. The neural network
describes the relationship between the input and the output.

* Suppose that Z (the output) is what we want to predict:
Z=dY +e

* |t seems that the formulas are linked:

Input Layer Hidden Layer(s) Output Layer




neural networks 2/2

* This is the simplest form of a neural network, with one input layer, one hidden layer, and one
output layer. Each of the layers has one neuron (point). Here we created linear relationship but we
can make non linear activation thanks to RelLu, Sigmoid, etc...




Backpropagation

* There are other concepts in neural networks, such as backpropagation. This refers
to the feedback mechanism that fine-tunes the neural network's parameters,
which mostly connect neurons within the network (except when it is a constant
parameter at the layer). It works by comparing the output at output layer Z
(predicted) versus the actual value of Z (actual). The wider the gap (or the loss)
between actual and predicted, the more adjustment of b, ¢, d, and e is needed.



Neural network architecture

* Architecture concerns the layers and number of neurons at each layer, as well as how the neurons are
interconnected in a neural network. The input layer is represented as features. The output layer can be a
single number or a series of numbers (called a vector), which generates a number ranging from Oto 1 or a
continuous value—subject to the problem domain.

* For example, to understand the structure of a neural network, we can project that it will look like the following
screenshot from TensorFlow Playground (https:/ / playground.tensorflow. org/ ), which is the visualization of
another network with the same hidden layers—three layers with a size of 6:
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Using epochs for neural network training

* Besides the design of the neural network, we also utilize the epoch parameter, which

* indicates the number of times the same set of data is fed to the neural network. We need to increase the
number of epochs if we do not have enough data to satisfy the number of parameters in neural networks.
Given that we have X parameters in the neural network, we need at least X data points to be fed to the
network. Unfortunately, if our data point is only X/2, we need to set epoch to 2 in order to make sure that we
can feed X data points (all of them are fed twice) to the network.



Scaling and train test

* Before feeding the features to the machine learning model, we will normalize the input features of different
magnitudes to be of the same magnitude.

* For example, the price and volume of goods are different types of numeric data. The scaling process will make
sure that both of them are scaled to the same range, from O to 1. In classical statistical modelling processes,
this step is very important to avoid a particular feature of bigger scales that dominate the influence on the
prediction.

* Apart from data column-level scaling, we also need to pay attention to the sampling bias of the model.
Normally, we will set aside a portion of the data unseen by the machine while it is training and learning on
another set of data—which is called a training set. Later on, the testing set (which is the dataset kept aside)
will be used to check against the prediction made by the model.



Lab 1: doing ARIMA

e Once the data is clean, we will start training the machine to learn about the pattern. The training
data will be fed to the machine as fitting. The model is like a shirt and the training data is like the
body we're attempting to fit it to.

e Here are the steps to fit our data into an ARIMA model:

» 1. For each data file/field in the consolidated file, we run step 3 and step 4 (which have been marked in the code file
for the following code block).

* 2.Ifthe Boolean variable, parameter_op, is set to True, then we will run step 5 (which is marked as well). This explores
all the possible combinations of parameters in ARIMA with regard to p, d, and g, which are set as follows:
p: Ranging from 0 to 12
d: Ranging from O to 2
g: Ranging from O to 3
* 3. For combinations of any of the preceding values, we calculate the fitness of the data to the actual pattern and
measure the error values. The combinations with the lowest error values are selected as the chosen parameters of the
ARIMA model.
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Lab 2:Procuring commodities using neural
networks on Keras

* In this example, we want to forecast the procurement of commodities based on historical data. The
commodity that we are going to use is natural gas. In the case of natural gas, we do not have any control over
its pricing because it is a hugely globalized commodity. However, we can still set up the internal procurement
strategy when the pricing of the natural gas hits a certain range. The profitability ratio target will constrain the
maximum pricing we can pay for the raw material to be profitable for the owners of the firm. We will track the
profitability ratio, which is the ratio of cost of natural gas to sales.



Data

* Let's understand this pricing constraint with an example. In this example, we assume that for each dollar
spent where the unit cost of natural gas (for electric power) increased, the cost of materials to sales of the
energy company will increase by 9.18% (this is based on 3 years of data):
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CONSOLIDATED STATEMENTS OF OPERATIONS
Yaars Ended Dessmbar 31,
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Fuel vsad in ¢lecric geserafio aad punchased pewer 5350 6625 TA
Cestof natural s [1H] 165 14
Oparation, mainlenance and e 5784 G0ES 5519
Depreciabon and amartizabion a2 M ELE
Property and olher Laes 1213 114z 115
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Total nperating sipenses 1reL2 T4z 1734




Data flow

* The following data flow outlines the steps we need to take in order to prepare and generate the code to build
the commodity procurement model. The first box denotes a script run on the SQLite database; the other
boxes denote steps run on Python:

1. Data
Preprocessing T i ' ' i

24




Pre-processing the data (in the SQL database)

e Data pre-processing means converting the data into the desired data features. We
run it outside of Python coding to reduce the layers involved (that is, we interact
directly with SQLite rather than using Python to interact with SQLite). Here are the
steps involved in performing database operations:

1. Create the SQLite database.

2. Import the data as a staging table.

3. Create the required table(s)—a one-time operation.

4. Insert the staging table into the actual table with data type and format
transformation.

5. Create the view that does the feature engineering.

6. Output the preprocessed view as CSV data.



Importing libraries and defining variables

e Import libraries and define variables to make sure that the relevant functions can be used. Import
all of the relevant libraries:

pandas: This is for data storage before data is fed to the machine learning module.
keras: This an easy-to-use machine learning framework that has another library.
tensorflow: This is used as the backend.

sklearn: This is a very popular machine learning module that provides lots of data
preprocessing toolkits along with some machine learning models that are easy to use. The
models are not used in this example, as we wish to build up the foundation for the more
extensive use of machine learning models afterward. In addition, sklearn also has metrics that
appraise the performance of the models.

matplotlib: This is the default data visualization tool.



Code: importing libraries

T3k 3k 3k ok ok ok 3k 3k ok ok ok ok 3k ok 3k sk ok 3k sk 3k 3k ok 3k ok 3k 3k ok ok ok ok 3k ok ok ok ok k ok

2. import all the libraries required

import pandas as pd

from keras.models import Model

from keras.layers import Dense, Input

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

import matplotlib.pyplot as plt
import pickle

demand_model_path = 'demand_model.h5'
f_in_name ='consumption_ng_exp.csv'
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Code: reading the data

T3k ok ok 3k ok ok ok ok 3k ok ok ok 3k ok ok ok 3k ok ok ok ok 3k ok ok 3k 3k ok %k ok 3k ok ok ok ok %k %k ok

#3. Read in data

pd_trade_history = pd.read_csv(f_in_name,header=0)
pd_trade_history = pd_trade_history.drop('date_d',1)
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Code: Preprocessing the data

T3k 3k 3k ok ok ok 3k 3k ok ok ok ok 3k ok 3k sk ok 3k sk 3k 3k ok 3k ok 3k 3k ok ok ok ok 3k ok ok ok ok k ok

4. Pre-processing data

#4.A: select features and target
df X = pd_trade_history.iloc[:,:-5]
df Y = pd_trade_history.iloc|[:,-4:]

np_X = df_X.values
np_Y =df Y.alues

#4.B: Prepare training and testing set
X_train, X_test, Y_train, Y_test = train_test_split(np_X, np_Y, test_size = 0.2)

#4.C: scaling the inputted features
sc_X = StandardScaler()

X_train_t = sc_X.fit_transform(X_train)
X_test_t =sc_X.fit_transform(X_test)
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Code: Training and validating the model

T3k 3k 3k ok ok ok 3k 3k ok ok ok ok 3k ok 3k sk ok 3k sk 3k 3k ok 3k ok 3k 3k ok ok ok ok 3k ok ok ok ok k ok

#5. Build the model

inputs = Input(shape=(14,))

x = Dense(7, activation="relu’)(inputs)

x = Dense(7, activation="relu")(x)

x = Dense(7, activation="relu")(x)

x = Dense(4, activation="relu’)(x)

x = Dense(4, activation="relu’)(x)

x = Dense(4, activation="relu’')(x)

x = Dense(4, activation="relu’')(x)

predictions = Dense(units=4, activation='linear")(x)

demand_model= Model(inputs=inputs,outputs=predictions)
demand_model.compile(loss="mse’, optimizer="adam’, metrics=['mae’])
demand_model.fit(X_train_t,Y_train, epochs=7000, validation_split=0.2)
Y pred = demand_model.predict(X_test_t)

#conver numpy as dataframe for visualization
pd_Y test = pd.DataFrame(Y_test)
pd_Y pred = pd.DataFrame(Y_pred)
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Code: Testing the model

T3k 3k 3k ok ok ok 3k 3k ok ok ok ok 3k ok 3k sk ok 3k sk 3k 3k ok 3k ok 3k 3k ok ok ok ok 3k ok ok ok ok k ok

##6. Test model: Measure the model accuracy

combine both actual and prediction of test data into data

data = pd.concat([pd_Y_test,pd_Y pred], axis=1)

data_name = list(data)[0]
data.columns=['actuall’,'actual2’,'actual3’,'actuald’,'predictedl’,'predicted?2’,'predicted3’,'predicted4']

errorl = mean_squared_error(data['actuall’],data['predictedl'])
print('Test MSE 1: %.3f' % errorl)
error2 = mean_squared_error(data['actual2'],data['predicted2'])
print('Test MSE 1: %.3f' % error2)
error3 = mean_squared_error(data['actual3'],data['predicted3'])
print(‘Test MSE 1: %.3f' % error3)
error4 = mean_squared_error(data['actual4’],data['predicted4'])
print(‘Test MSE 1: %.3f' % error4)
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Code: visualizing the prediction accuracy

data.actuall.plot(color='blue’,grid=True,label="actuall’,title=data_name)
data.predictedl.plot(color="red’,grid=True,label="predictedl’)
plt.legend(); plt.show(); plt.close()

data.actual2.plot(color="blue’,grid=True,label="actual2',title=data_name)
data.predicted2.plot(color="red’,grid=True,label="predicted2’)
plt.legend(); plt.show(); plt.close()

data.actual3.plot(color="blue’,grid=True,label="actual3’,title=data_name)
data.predicted3.plot(color="red’,grid=True,label="predicted3")
plt.legend(); plt.show(); plt.close()

data.actual4.plot(color='blue’,grid=True,label="actual4',title=data_name)
data.predicted4.plot(color="red’,grid=True,label="predicted4’)
plt.legend(); plt.show(); plt.close()
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Expected result
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Code: Generating model for production

TRE3K 3k 3k 3k ok ok ok ok ok ok ok ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok ok ok %k 5k ok ok ok %k k

#8. Output the models
demand_model.summary()
demand_model.save(demand_model path)
f scaler=open('x_scaler.pkl’,"wb+")
pickle.dump(sc_X, f scaler)
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Generating model for production

* The model that was trained and tested in steps 5 and 6 will be output
as a file for the production system to run on unseen production data.
We will output two files

* one for scaling the input features
* and another one for the neural network



Well donel!

Congsals/

* You have now delivered a model that can be used at the operational level to identify the quantity to order for
this month's demand, next month, and the month after. The following diagram shows the steps in the training
versus the deployment of machine learning models:

Training

Deployment

1. Data
Freprocessing

1. Data
Preprocessing

3. Read in Model
& Data

_ -

6. Visualize
Test Result

e




summary

* In this chapter, you learned about time series analysis, the benefits of time series
analysis for banking and two useful examples by defining the problem statement
and deriving the solution step by step.

* We also learned about the basic concepts of time series analysis and a few
techniques, such as ARIMA and deep learning



