Program reskilling Data/Al PO

Specific session for [CeNERALE

3: Supervised learning logistic regression decision
trees and neural network

Eric Benhamou

PSL % Pauphine & . PRIAIRIE

PaRis Artificial Intelligence Research InstitutE

UNIVERSITE PARIS

Agenda

Session 3: Classification

The various classification models
Logistic regression model
Decision trees
Recursive features elimination

Metrics of model performance
ROC Curve
Confusion matrix
Classification reports

LAB

Building the model

Choose features with RFE

Train models (baseline model with logistic regression and Decision trees)
Compare with a deep network

Visualize models performance

Save model for production

Summary

Recall from previous session

* In the previous session, you learned about time series analysis, the
benefits of time series analysis for banking and two useful examples by
defining the problem statement and deriving the solution step by step.

* We also learned about the basic concepts of time series analysis and a
few technigues, such as ARIMA and deep learning

Goal of this session

* Commercial banks make money by earning interest on money that was loaned to borrowers. In
many cases, the loan becomes a Non-Performing Asset (NPA) for the bank. There are instances
where the borrower could go bankrupt, leaving the bank with a loss. In such situations, it becomes
critical for commercial banks to assess the borrower's ability to repay the loan in a timely manner.

* |n this session, we will learn about different Al modelling techniques to do classification with an
example for predicting the chances of the borrower going bankrupt. The algorithms that we will
investigate are

* |ogistic regression model,
» decision trees,
* and deep learning.

* We will also learn about the various metrics of model performance to validate if a model has learnt
something and how to pick the best model

Motivations

* Within a bank, as an intermediary between those with excess money (the depositors) and those
who need money (the borrowers), there are two important questions that need to be answered:

* How risky is a borrower?
* What is the funding cost of money?

* These are the two important questions that need to be considered before we look at the profit
required for sustaining the business operations in order to cover its running costs.

 When these decisions are not made properly, it threatens the viability of a bank. There could be
two possible outcomes in such instances:

* |f the bank does not make enough profit to cover the cost of risk and operations when a risky
event occurs, the bank could collapse.

* |f the bank fails to meet the depositor's requirements or fails to honor its borrower's
agreements to lend, it hurts the credibility of the bank, thus driving potential customers away.

Major types of risk

To answer the question, How risky is a borrower?, we first need to understand the factors
contributing to risk.

Risk is an unfavorable outcome in the future that impacts the functioning of a bank. For a bank, the
major contributors include the following:

 Credit risk: This risk concerns the borrower's inability to repay the capital back to the bank in a
lending transaction; for example, the financial distress of the borrowing firm, causing its
inability to repay the loan.

* Market risk: This risk concerns unfavorable price movements in financial markets, such as an
interest rate hike in the market from which the bank sources its funding.

* Operational risk: This risk concerns events happening in the operations of the bank as an
organization. This could include internal theft, a cyber attack, and so on.

For a complete list of the types of risk, please refer to the Basel Framework by BIS
(https://www.bis.org/bcbs/basel3.htm).

Asset liability management

* Commercial banks need deposits in order to fund loans. As well as assessing the riskiness of
borrowers, the bank also performs a useful function in that they convert deposits from savers into
loans for borrowers. Thus, a pricing mechanism for both depositors and borrowers is important. To
a bank, loans sit on the asset side of financial statements, while deposits sit on the liabilities side of
the business. Therefore, this is often called Asset and Liability Management (ALM).

* |gnoring other risks such as liquidity risk, interest rate risk, and foreign exchange risk, the objectives
of the ALM function of a bank are the following:

* Ensure loans are supported by deposits and that the bank will have sufficient deposits, in case the
depositors ask for their money back. In terms of the total quantity, approximately, a $100 deposit
supports a $S70 loan. Referencing the ratios from some of the biggest banks, the ratios should be around
1.2:1 to 1.5:1 for a customer deposit to a customer loan.

* Ensure over time, the loan is viable, which is measured by concept of the duration. To meet long-term
loan commitments, the bank also needs deposits to be locked in for a long enough time to ensure that
loans are supported by deposits in a long- term manner.

e Thirdly, ensure ALM is profitable, which means the ALM income should be higher than the ALM cost. The
cost is the ALM pricing that you are giving out. This cost is, in fact, the income for ALMs/banks, while the
deposit rate quoted to the client is the bank's expense.

All is about conversion

 Part of a bank's well-known secret for profit is to convert the short-term deposit (lower priced) into
a long-term loan (higher interest income). The following curve shows the pricing aspect for a bank
for its deposits and loans:

400
380
300

250

= |oan
e (2 POSIT

2040

150

100

0 ¥ L4
0 1 2 35 7 10 14 28 79 30 31 60 90 180 30

* In the preceding graph, the x axis shows how long (in days) the deposit/loan position will remain
with the bank, while the y axis shows the annualized interest rate.

ML taxonomy

Supervised

Machine
learning

T

Semi-
supervised

Regression

Classification

Unsupervised

Reinforcement
learning

Clustering

Associations

Supervised learning

* In supervised learning, the algorithms are presented with a set of classified instances from which
they learn a way of classifying unseen instances. When the attribute to be predicted is numeric
rather than nominal it is called regression.

prediction

— A —

10

Logistic regression model

* The logistic regression model is one of the most popular adoptions of Al in banking,
especially in the domain of credit risk modeling. The target variable of the model
will be a binary outcome of 1 or 0, with a probability of meeting the target of 1.
The decision of what 1 and O refer to depends on how we prepare the data.

* As an optimization problem, binary class €2 penalized logistic regression minimizes
the following cost function:

min %-wru: + GZ log(exp(—y: (X w + €)) + 1).

w,c :
i=1

* The model is called logistic because the function that models the 1 and O is called
logit. It is called regression because it belongs to a statistical model called the
regression model, which strives to determine the causation of factors of an
outcome

implementation

e Use sklearn.linear_model.LogisticRegression
* Choose the solver

Solvers

Penalties ‘liblinear” ‘Ibfgs’ ‘newton-cg” ‘sag’
Multinomial + L2 penalty no yes yes yes
OVR + L2 penalty Ves yes yes yes
Multinomial + L1 penalty no no no no
OVR + L1 penalty yes no no no
Elastic-Net no no no no
No penalty (‘none’) no yes yes yes
Behaviors

Penalize the intercept (bad) yes no no no
Faster for large datasets no no no yes
Robust to unscaled datasets yes yes yes no

‘saga’
yes
yes
yes
yes
yes
yes

no
yes
no

12

Decision trees

* The decision tree algorithm actually belongs to the supervised learning group of algorithms. However, due to
the nature of the algorithm, it is commonly used to solve regression and classification problems. Regression
and classification often require decision- making based on the situation at hand. So, these problems are
commonly solved using reinforcement learning algorithmes.

* The beneficial element of having a decision tree is that we can actually visualize the decision tree's
representation. The decision-making process starts at the top of the tree and branches out toward the leaf
nodes of the tree. The leaf nodes are the point at which the target variables will end up. All the values of a
variable that are classified to the same leaf node contain the same probability of defaulting. The following is
an example visualization of a decision tree algorithm that is making a decision to give a loan to the applicant

Income range of applicant

/ $30-70k \

Criminal record? Years in present job Criminal record?
<1 1-5 >5
Yes No No Yes
Make credit card
I loan | Ino loan | I loan I payments? | no loan I [loan | l no loan I

No

no loan

Yes

13

Decision trees: interpretability

* The most common way to move forward in the decision tree is to look at the minimal leaf size,
which refers to the size of the bucket that each of the training samples is being classified in. If the
bucket contains too few samples than min_samples_leaf dictates, then it will be scrapped. This can
be done to reduce the number of buckets (known as the leaf node of a decision tree).

* Reading the decision tree is easy. However, it is quite amazing to realize how the machine learns
about the various conditions used for splitting

Neural networks 1/2

* Asimple neural network looks like the one shown in the following diagram:

Input Hidden Output
layer layer layer

* |t consists of three layers, namely the input layer, the hidden layer, and the output layer. Each layer is made up
of nodes. The artificial neural network that is used to solve Al problems mimics the physical neural network
present in the human brain. The neurons in the human brain are represented by nodes in the artificial neural
network. The connections between the neurons are represented in the artificial neural network by weights.

* Let's understand the significance of each of the layers in the neural network. The input layer is used to feed
the input into the model. It is also responsible for presenting the condition that the model is being trained for.
Every neuron or node in the input layer represents one independent variable that has influence over the

output.

15

Neural networks 2/2

* The hidden layer is the most crucial because its job is to process the data it has received from the input layer
and is responsible for extracting the necessary features from the input data. The hidden layer consists of one
or more layers.

* In the case of solving a problem with linearly represented data, the activation function (which processes the
input data) can be included in the input layer itself. However, for processing complex representations of data,
one or more hidden layers are required and non linear activation is requireds. The number of hidden layers
depends on the complexity of the data. The hidden layer passes on the processed data to the output layer.

* The output layer is responsible for collecting and transmitting information. The pattern that the output layer
presents can be traced back to the input layer. The number of nodes in the output layer depends on the
number of decisions to be made eventually

Metrics of model performance

* When we build an Al model, the most important aspect of the process is to define a way to

measure the performance of a model. This enables the data scientist to decide how to improve and
pick the best model.

* In this section, we will learn about three common metrics that are commonly used in the industry
to assess the performance of the Al model.

* ROCcurve
* confusion matrix
* classification report

Metric 1: ROC curve 1/3

* The Receiver Operating Characteristic (ROC) metric measures how well the classifier performs its classification
job versus a randomized classifier. The classifier that's used in this metric is a binary classifier. The binary
classifier classifies the given set of data into two groups on the basis of a predefined classification rule.

* This is linked to a situation where, say, we compare this model against flipping a fair coin to classify the
company as being default or non-default, with heads indicating default and tails indicating non-default. Here,
there's a 50% chance of classifying default and a 50% chance of classifying non-default.

* For a completely randomized predictive system such as coin flipping, it is very likely that the probability of
hitting a true positive is the same as hitting a false positive rate. But in the case of companies defaulting in 1
year, in the following example, it is 6.3% (123 out of 1,828), which means we have an actual count of 1,828
non-default cases and 123 default cases. A truly random model will predict half of the default cases as non-
default.

Metric 1: ROC curve 2/3

* Llet's plot a chart that shows the true positive and false

Receiver Operating Characteristic - Decision Tree

positive rate as an ROC chart. True or false means the
prediction that was made for the default event is factually
true or false. Positive means that the classifier is positive
(equals 1, which is default, in this case).

—
o
I
T

o
o

o
o

* When we make no prediction, the true positive and false
positive rate is 0. When we have gone through 50% of the
sample, which is given as 1,951/2, we should be getting 50%
of the sample by default, where 50% of the guesses are false
positive. When we get to 100% of the sample, we should
have 100% of the sample as true positive and 100% as false
positive.

o
iy

True Positive Rate

o
o

ROC curve (area = 0.74)
L

o

o
OF
ol

0.2 0.4 0.6 0.8 1.0
False Positive Rate

* This randomized classifier's performance is denoted by the
dotted line in this diagram:

19

Metric 1: ROC curve 3/3

. Olrlwr%heromo_f,[g}lerauleclassﬁle(recasg tW B ul\?lwb ehbée
%Ise Bos\l/tefve rate at%%; H/enoted% heo’ell 1ilne in
e preceding diagram).

e e A

and alse |v ra ?o /
gnote the rpe ci SC s also
prevalentl credit ris mode va |dat|on

True positive rate

Perfect
classifier ROC curve
10e

0.0 0.5 1.0
False positive rate

20

Metric 2: Confusion matrix

* The confusion matrix is the most popular metric used to measure the performance of a classifier and has two

outcomes:

Actual: Ground Truth

True Default

False/Non-default

bPr%(iiiCti, n Positive/Default 62 27
y Liassiher Negative/Non-default 61 1,801
True Positive Rate = False Positive Rate =
62/(62+61) 27?(27+1,801)

* The confusion matrix also provides results similar to the ROC curve. The major idea behind this is to separate

prediction and the ground truth by rows and columns.

Metric 3: Classification report 1/2

* The classification report is another way to appraise the performance
of the model, with the following indicators:

precision recall fl-score support
O 0.97 0.99 0.98 1828
1 0.69 0.50 0.58 123

avg / total 0.95 0.95 0.95 1951

Metric 3: Classification report 2/2

e The details of the indicators are as follows:

* Precision and recall: Precision addresses the true positive rate of the model
prediction, while recall addresses the coverage of the model. Precision
measures the percentage of the predicted value being the predicted value.
Recall measures the percentage of the target values being predicted as the
expected values.

* Fl-score: One of the most important measures of the overall accuracy of the

model is the Fl-score. It is the harmonic mean of precision and recall. This is
what we use to compare the performance of models.

e Support: This is another term that means the number of records that are of the
value listed in the leftmost column. There are 123 actual default cases (with
target value = 1 under the default column).

Code: import all the relevant libraries

TTTK 3k kKK KKK KK KKK KKK KK KK KK KKKKKK KKK KKKKKK

1. Import libraries and define key variables
import os

import re

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import classification_report,roc_curve, auc,confusion_matrix,f1_score
from sklearn.model_selection import train_test_split

from sklearn.feature_selection import RFE

from sklearn import linear_model,tree

from sklearn.neural_network import MLPClassifier

from sklearn.preprocessing import StandardScaler

import pickle
import graphviz

24

Need for RFE (Recursive Features Elimination)

For logistic regression, when it comes to deciding which features are to
be chosen, we will rely on testing the accuracy of different features. The
combination that delivers the highest accuracy will be chosen.

Define the optimize RFE() function, which will perform the feature
selection process. This function will try out different combinations of
features that give the highest true positive and the lowest possible false
positive. We will measure the performance in order to decide on the
number of features that generate the best performance. We will shortly
define the code for that purpose:

Code: define variables

Tinskskskskskskskkskskkkskkkskkkkkkkkkkkkkkkkkkkkkk
1. Define program-wide variables and values

#set up the working directory where datafiles are all located
data_path = os.getcwd()
os.chdir(data_path)

#read in gles
file_attrib_in = os.path.join(data_path,'attrib.txt')
file_path_in = os.path.join(data_path,'5year.csv')

file_path _out = os.path.join(data_path,'output dataset.txt')
file_corr_out = os.path]Join(data_path,'corr.txt'f

f name = pd.read_csv(file_path in,sep=",")

f_attrib = open(file_attrib_in,"r")

attrib_str =f attrib.read()

26

Code: defined more variables

e #assign column headers
label _name = 'default’
re_obj = re.compile(r' X{O -9]+\s')
fields list = re_obj.split(attrib str)
fields list = fields Ilst[l]
fields_list.append(label name)
f name.columns = fields_list

#create X and Y dataset with the right header
X =f name.iloc[;, -1]
Y=f name.ilocl[;,-
#make sure data types are correct and missing values are handled
Y=Y.astype(int)
cols = X.columns[X.dtypes.eq(object)]
for cin cols:
X[c] = pd.to_numeric(X[c], errors="'coerce’)
X=X.fillna(0)

Code: Define function helpers

%.‘ Define all the functions

H#H#2A. Logistic Regression model

#H2A.i
#input the dataframe and the list of columns wanted from it, it return the dataframe with columns selected
def select_columns(df, col_list):

df selected = df[df.columns.intersection(col_list)]

return df_selected

HH2A. i
#input the support (true/false) of the column lists, and the column header, return the list only with true value
de g%nerate_column_Iists(coI_support,col_list):
| =
select_cols =[]
len_list = len(col_list)
while i< len_list:
if col _support[i]:
select_cols.append(col_list[i])
i=i+1
return select_cols

28

Code: define RFE 1/2

o HH#2A.Iii
##try any number of features, return the #of features that deliver the best accuracy (AUC)
def optimize_RFE(logreg, X, Y, min_features_to_select = 5):
trial_cnt=1
max_roc_auc=0
#best feature =0
best_col_list =]
result_list = f}
col_list = list(X.columns.values)

rfe = RFETUogreg,verbosezl, min_features_to_select=min_features_to_select)
rfe = rfe.fit(X,Y)

print(rfe.support_)

print rfe.ranking__)

col_support = rfe.support_

#select the columns))
select_cols = generate_column_lists(col_support, col_list)

#generate the dataframe with only the list of columns
X_selected = select_columns(X,select_cols)
print(list(X_selected.columns))

#build model

print('split data’)

X_train, X _test, Y_train, Y_test = train_test_split(X_selected, Y, test_size=0.33, random_state=42)
rint('build model')

ogreg.fit(X_train,Y_train)

Y score = logreg.decision_function(X_test)

Code: define RFE 2/2

#H#metric 1: roc
fpr, tpr, thresholds = roc_curve(Y_test,Y score, pos_label=1)
roc_auc = auc(fpr,tpr)

result_list[trial_cnt] = roc_auc
result_list['F_"+str(trial_cnt)] = select_cols

#memorize this setting if this ROC is the highest
if roc_auc > max_roc_auc:
Max_roc_auc = roc_auc
#best feature = trial cnt
best_col_list = select_cols
print('roc_updated at '+ str(trial_cnt))

return max_roc_auc, best_col_list, result_list

30

Code: train the model 1/3

#H#2A.iv
#feed in data to the logistic regression model
ef train_logreg(X,Y):
Print('LoFlstic Regression')
ogreg = linear_model.LogisticRegression(C=1e5, solver='saga’)
roc_auc, best_col_list, result_list = optimize_RFE(logreg, X,Y

#split the dataset into training set and testing set
X_selected = select_columns(X, best_col_list))
X_train, X_test, Y_train, Y_test = train_test_split(X_selected, Y, test_size=0.33, random_state=42)

#fit the training data to the model
#preprocessing the data

scaler = StandardScaler()
scaler.fit(X_train)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
logreg.fit(X_train,Y_train)

##metric 1: roc

Y_score_logreg = logreg.decision_function(X_test)

fpr, tpr, thresholds = roc_curve(Y_test,Y_score_logreg, pos_label=1)
roc_auc = auc(fpr,tpr)

lw=2

plt.figure()

plt.plot(fpr,tpr,color="darkorange',lw=Iw,label="ROC curve (area = %0.2f)' %roc_auc)
plt.plot([0,1],[0,1],color="navy',lw=Ilw,linestyle="--")

plt.xlim([0.0, 1.0

plt.ylim([0.0, 1.05])

plt.xlabe E'False Positive Rate')

plt.ylabel('True Positive Rate'z‘

plt.title('"Receiver operating characteristic - Logistics Regression Model')
plt.legend(loc="lower right")

plt.show()

31

Code: train the model 2/3

#H2A.iv
#feed in data to the logistic regression model
ef train_logreg(X,Y):

##metric 2: Confusion matrix

Y pred_logreg = lo reg.predict#X_test)

confusion _matrix_logreg = contfusion_matrix(Y_test, Y _pred_logreg)
print(confusion_matrix_logreg)

print(classification_report(Y_test, Y _pred_logreg))

#common standard to compare across models
f1 _clf =f1_score(Y_test, Y _pred logreg, average='binary')

##Quality Check: tets for dependency
corr_m = X_selected.corr()
sns.heatmap(corr_m)
corr_m.to_csv(file_corr_out)
plt.show()

32

Code: train the model 3/3

#H2A.iv
#feed in data to the logistic regression model
ef train_logreg(X,Y):

?‘#;3. save modtz.’ll " be)
_logreg=open('log_reg.pkl',"wb+"
ick e.(fump(logreg, f_?ogreg)

" logreg.close()

f_logreg_sc = open('logreg_scaler.pkl’,"wb+")
ickle.dump(scaler, f_logreg_sc)
_logreg_sc.close()

print('These columns are in the final model’)
print(best_col_list)

thefile = open(logreg_cols.txt', 'w+')

for item in best_col [ist:

o thefile.write(™%s\n" % item)

[1790 21]
118 22]]
precision recall fl-score support

0 094 099 096 1811
1 051 o016 024 140

ﬁyg/total 091 0.93 091 1951

return logreg, f1_clf

Code: decision trees 1/2

ﬁftZB. Decision Tree

H##2B.i
#feed in data to the decision tree
ef train_tree(X,Y):
print('Decision Tree')
#split the dataset into training set and testing set
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.33, random_state=0)

min_leaf_size = int(len(X_train) * 0.01)
tree_clf = tree.DecisionTreeClassifier(min_samples_leaf=min_leaf_size)

#preprocessing the data
scaler = StandardScaler()
scaler.fit(X_train)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

#fit the training data to the model
tree_clf.fit(X_train,Y_train)

##metric 1: roc

Y_score_tree = tree_clf.predictsx_test)

fpr, tpr, thresholds = roc_curve(Y_test,Y_score_tree, pos_label=1)
roc_auc = auc(fpr,tpr)

lw=2

plt.figure()

plt.plot(fpr,tpr,color="darkorange',Iw=Iw,label="ROC curve (area = %0.2f)' %roc_auc)
plt.plot([0,1],[0,1],color="navy', lw=Ilw,linestyle="--')

plt.xlim([0.0, 1.0]

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate'lzl

plt.title('"Receiver operating characteristic - Decision Tree')
plt.legend(loc="lower right")

plt.show()

34

Code: decision trees 2/2

thB. Decision Tree

##2B.i
#feed in data to the decision tree
ef train_tree(X,Y):

##metric 2: Confusion matrix

Y_pred_tree = tree_clf.predict(X_test)

confusion_matrix_tree = confusion_matrix(Y_test, Y_pred_tree)
print(confusion_matrix_tree)

print(classification_report(Y_test, Y_pred_tree))

#common standard to compare across models
f1_clf = f1_score(Y_test, Y_pred_tree, average='binary')

##save model

f_tree = open('tree_clf.pkl',"wb+")

Plckle.dumpStree_c'lT, f_tree)

"~ tree.close(

f_tree_sc = open(‘tree_scaler.pkl',"wb+")
ickle.dump(scaler, f_tree_sc)

[tree_sc.c ose()

[[1801 27]
62 61]]
precision recall fl-score support

0 097 0.99 0.98 1828
1 069 050 058 123

ﬁyg/total 095 0.95 0.95 1951

return tree_clf,f1_clf

35

Code: neural network 1/3

##2C Neural Network
##2Ci. Grid search that simulate the performance of different neural network design
def grid_search(X_train,X_test, Y_train,Y_test,num_training_sample):

best f1=0
best_hidden_layers_list =]
best_hidden_layers_tuple = ()
#various depth
for depth in range(1,53:
rint('Depth = "+str depth})
or layer_size in range(1,8
neuron_cnt =0
hidden_layers_list =[]
| =
while i<depth:
hidden_layers_list.append(layer_size)
neuron_cnt += layer_size
i+=1
#pruning - to avoid over-training
if num_training_sample<neuron_cnt:
break

hidden_layers_tuple = tuple(hidden_layers_list)
nn_clf = MLPClassifier(alpha=1e-5,
hidden_layer_sizes=hidden_layers_tuple, random_state=1)

nn_clf.fit(X_train,Y_train)
Y _pred =nn_clf.predict(X_test)
temp_f1 =1 score(Y_test, Y_pred, average="'binary')
if temp_f1 > best_f1:
best 1 =temp_f1
best _hidden_layers_list = hidden_layers_list
best_hidden layers_tuple = hidden_layers_tuple
print(best_hidden_Tayers_Tist)
return best_hidden_layers_list,best_hidden_layers_tuple

36

Code: neural network 2/3

* #various size
referencing: https://www.st)ringboard. com/blog/beginners-guide-neural-network-in-python-scikit-learn-0-18/
##2Cii. train network networ,
def train_NN(X,Y):
print(‘Neural Network')
#split the dataset into training set and testing set
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.33, random_state=0)

#preprocessing the data

scaler = StandardScaler()
scaler.fit(X_train)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

num_training_sample = len(X_train)
best_hidden_Tayers_list,best "hidden_layers_tuple = grid_search(X_train, X_test, Y_train, Y_test,num_training_sample)
nn_clf = MLPClassifier(alpha=1e-5,

hidden_layer_sizes=best_hidden_layers_tuple, random_state=1)

#fit the training data to the model
nn_clf.fit(X_train,Y_train)

##metric 1: roc

Y_score_nn = nn_clf.predict(X_test)

fpr, tpr, thresholds = roc_curve(Y_test,Y_score_nn, pos_label=1)

roc_auc = auc(fpr,tpr)

lw=2

plt.figure()

plt.plot(fpr,tpr,color="darkorange’,lw=Iw,label="ROC curve (area = %0.2f)" %roc_auc)
plt.plot([0,1],[0,1],color="navy',lw=Ilw,linestyle="--")
plt.xlim([0.0, 1.0]

plt.ylim([0.0, 1.05])

plt.xlabe i'FaIse Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('"Receiver operating characteristic - Neural Network')
plt.legend(loc="lower right")

plt.show()

37

Code: neural network 3/3

#various size

referencing: https://www.si)ringboard. com/blog/beginners-guide-neural-network-in-python-scikit-learn-0-18/
##2Cii. train network networ

def train_NN(X,Y):

##metric 2: Confusion matrix

Y_pred_tree = nn_clf.predictgx_test)

confusion_matrix_tree = confusion_matrix(Y_test, Y_pred_tree)
print(confusion_matrix_tree)

print(classification_report(Y_test, Y_pred_tree))

#common standard to compare across models
f1_clf = f1_score(Y_test, Y_score_nn, average='binary')

##save model
f_nn= openﬁ'nn_clf. kl',"wb+")
kale.dum? nn_clf, f_nn)

~nn.close(

f_nn_sc=open('nn_scaler.pkl',"wb+")
ickle.dump(scaler,T_nn_sc)
" nn_sc.close()

[{1808 20]
85 38]]
precision recall fl-score support

0 09 099 0.97 1828
1 066 031 042 123

ﬁyg/total 094 0.95 094 1951

return nn_clf, f1_clf

Code: run all the functions above

3. Run the functions above

f1 list =]

f1 _score_temp=0

#logistic regression model

log reg,f1 _score temp =train_logreg(X,Y)
f1 Tist.append(f1_score_temp)
log_reg.get params()

#decision tree

tree_clf,f1_score_temp = train_tree(X,Y)
f1_list.append(f1_score temp)
tree_clf.get_params()

#neural network

nn_clf,f1_score temp = train_NN(X,Y)
f1 Tist.append(fl_score_temp)
nn_clf.get_params()

39

Code: visualize the results

#4 Visualize the result

"
Hnt'********************W

print('f1 of the models')

print(f1_list)
pﬂnt'*f******************v

#for visualization of decision tree

x_feature_name = fields_list[:-1]

y_target_name = fields_Tist[-1]

d_tree_out_file = 'decision_tree'

dot_data = tree.export_graphviz(tree_clf, out_file=None,
feature_names=x_feature_name,
class_names=y_target name,
filled=True, rounded=True,
special_characters=True)

graph = graphviz.Source(dot_data)

graph.render(d_tree_out_file)

40

Well donel!

Congsals/

* You have now delivered a model that can be used at the operational level for predicting the
chances of a borrower going bankrupt

Training

Deployment

1. Data
Freprocessing

1. Data
Preprocessing

3. Read in Model
& Data

_ -

6. Visualize
Test Result

-

summary

* |n this lecture, we learned about different Al modeling techniques to do
classification with an example for predicting the chances of the borrower
going bankrupt. The algorithms that we investigated were

* |ogistic regression model,
» decision trees,
* and deep learning.

* We also learned about the various metrics of model performance :
* ROC Curve
* Confusion matrix
* Classification report

* This is useful to validate if a model has learnt something and how to pick the
best model

