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Recall from previous session

* In the previous session, you learned the different Al modeling
techniques:
* |ogistic regression model,
 decision trees,
* and deep learning.

* We also learned the various metrics of model performance :
* ROC Curve
* Confusion matrix
* Classification report



Goals
* The goal of this chapter is to introduce additional techniques that can
be used in banking namely clustering.

* This is a different type of machine learning that enables to rapidly
identify and find similarities between data

* It is referred to as unsupervised learning
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Various examples:

e Stock classification — style
* Investor classification

* Mergers and acquisitions identifications

* We will develop the first two examples to explain how Al can help.



Stock classification — style

Stock classification — style

There are two schools of thought when it comes to classifying stocks: one based on
qualitative features and another based on quantitative features. We will be focusing
on the qualitative approach, which is called style. An example of such a scheme is
Morningstar Style Box

(http://news.morningstar.com/pdfs/FactSheet StyleBox Final.pdf).

Here, we can look at the sector/industry, the size of the stocks, the riskiness of the
stock, the potential of the stock, and so on. There are many ways to create features
and classify stocks. We will use sector and size as the features for qualitative
classification in this session.

The quantitative approach (for example, arbitrage pricing theory (APT)) groups
stocks that contain similar factors together analytically.



Investor classification

* Like stock classification, there are both quantitative and qualitative
approaches.

* Qualitative could be based on the type of money (pension, sovereign
wealth, insurance, and so on), strategies (long-short, global macro,
and so on), underlying holdings (futures, commodities, equities,
bonds, and private equities), riskiness, and so on.

* Quantitative could be based on proximate factors that these investors
are based on. In the first example of this session, we will use
investment riskiness and return as the features for qualitative
classification.



Database issue

* We are going to manage a large amount of data through the examples in this
chapter. Due to this, it is critical to understand the underlying data technologies
that we will use. These data technologies are related to storing varying types of
data and information. There are two challenges related to information storage —
first is the physical medium that we use to store the information, while the second
is the format in which the information is stored.

* Hadoop is one such solution that allows stored files to be physically distributed.
This helps us to deal with various issues such as storing a large amount of data in
one place, backup, recovery, and so on. In our case, we store the data on one
computer as the size does not justify using this technology, but the following
NoSQL databases could support this storage option.

* In Python, there is another file format called HDF5, which also supports
distributed filesystems.



SQL vs NoSQL

* While NoSQL databases can be used, the reason why | am not using them in this chapter
can be explained with the help of the following table, which compares SQLite, Cassandra,
and MongoDB side by side:

Pros Cons Conclusions
Structured data format, Cannot save unstructured We need this for
sQLite compatible with DataFrames data. simplicity.
We can't use these tor our
Can run at distributed [case as we aim to cluster
computing and can FUt in | When dealing with structured | similar investors and predict
Cassandra structured data (with fields as data, the syntax is not who will buy our
items) straightforward to insert. new issues in IPO.
Not suitable for tully
Can handle huge data sizes structured data such as
and parallel processing of tradlngtrgcc_oids; sgllltnFeed to
different records at scale convert It into a Uatarrame
MongoDB before running any machine
learning algorithm.

* Through this analysis, we see that it may not be necessary to have a NoSQL database for
the sake of being cutting-edge. In the case of capital markets, where data is quite
structured, it could be more efficient to use a SQL database that fits this purpose.




Clustering intuition

* Finding groups of objects such that the objects in a group will be
similar (or related) to one another and different from (or unrelated
to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized
9 %%




What is a good clustering?

* A good clustering method will produce high quality clusters with
* high intra-class similarity
* low inter-class similarity

* The quality of a clustering result depends on both the similarity
measure used by the method and its implementation

* The quality of a clustering method is also measured by its ability to
discover some or all of the hidden patterns



Measuring the quality of clustering

 Dissimilarity/Similarity metric: Similarity is expressed in terms of a
distance function, typically metric: d(i, j)

* There is a separate “quality” function that measures the “goodness”
of a cluster.

* The definitions of distance functions are usually very different for
interval-scaled, boolean, categorical, ordinal ratio, and vector
variables.

* Weights should be associated with different variables based on
applications and data semantics.

* It is hard to define “similar enough” or “good enough”. The answer is
typically highly subjective.



Notion of clusters ambiguous

* How many clusters?

Two Clusters
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Six Clusters
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Importance of standardizing data
Standardize data

Calculate the mean absolute deviation:

S, :]1T(|X1f —M|+|X, =M, [+.4+|X  —m_ )
_ 1
where m, = ﬁ(xlf TXyp ot X))

Calculate the standardized measurement (z-score)
X.—M
7 = if

f
i Sf

Using mean absolute deviation is more robust than using standard
deviation

f




Similarity and Dissimilarity Between Objects

* Distances are normally used to measure the similarity or dissimilarity
between two data objects

* Some popular ones include: Minkowski distance

o — . q . q . q
d(l,J)_q\/(|xil Xj1| +|xi2 xj2| +...+|xip ij|)

where i=(xil, xi2, ..., xip) and j = (xj1, xj2, ..., Xjp) are two
p-dimensional data objects, and q is a positive integer

* If g =1, d is Manhattan distance
d(i,j)#)ﬁl—le|+|Xi2—Xj2|+..r|-|)ﬁp—ij|



And the Euclidean distance

 I[fg=2,dis Euclidean distance

d(, j)=\/(| %, 7X;; ? +x; ~X;, > ..+ X, X5, )
* Properties
* d(i,j)=0
* d(i,i)=0
* d(ij) = d(},i)
e d(i,j) <d(i,k)+d(k,)
* Also, one can use weighted distance, parametric Pearson product moment correlation, or other

dissimilarity measures



Clustering techniques

* Partitional
* K-Means
* Bisecting K-Means
* K-Medoids
* CLARA
* CLARANS

* Hierarchical
* Agglomerative
* Divisive

* Density
e DBSCAN



Clustering challenges

* One of the key challenges of adopting clustering in banking is that it
leads to clusters that are too large, which reduces the true positive
rate if all the clusters are targeted. As per my experience, | would use it
for preliminary data analysis to understand the major dynamics of the
target populations, not necessarily to draw actionable insights that
make economic sense in a wholesale banking setting.

* In our example, we will create lots of clusters with the very stringent
requirement that the distance of each data point from the centroid
averages a 5% deviation



Clustering tips

* Another key question regarding the clustering algorithm is determining
how many features we feed it.

* We could commit bias clustering by overweighing certain types of
financial ratios (for example, using two different kinds of profitability
ratios, such as return on equity and return on asset) for clustering.

* One of the solution to this is to run principle component analysis,
which removes similar features by merging them into the same
feature.



K means in more details

 The basic algorithm is very simple

* Number of clusters, K, must be specified

 Each cluster is associated with a centroid (mean or center point)
 Each point is assigned to the cluster with the closest centroid

—

: Select K points as the initial centroids.
repeat
Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.

ot o= W N

until The centroids don’t change




K-means Clustering — Details

Initial centroids are often chosen randomly. Clusters produced vary from one run to another.
The centroid is (typically) the mean of the points in the cluster.

‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
K-means will converge for common similarity measures mentioned above.

Most of the convergence happens in the first few iterations.

Often the stopping condition is changed to ‘Until relatively few points change clusters’ or some measure of

clustering doesn’t change.
ComplexityisO(n*K*|*d)
n = number of points,

K = number of clusters,

| = number of iterations, d = number of attributes



Evaluating K-means Clusters

* Most common measure is Sum of Squared Error (SSE)

* For each point, the error is the distance to the nearest cluster

To get SSE, we square these errors and sum them.

SSE = i > _dist*(m;, x)

i:1 XeCi

x is a data point in cluster C,and m; is the representative point for cluster C,

* can show that m,corresponds to the center (mean) of the cluster

Given two clusters, we can choose the one with the smallest error

* One easy way to reduce SSE is to increase K, i.e. the number of clusters

* A good clustering with smaller K can have a lower SSE than a poor clustering with higher K



Lab: Auto syndication for new issues

* If there are issues, there are investors behind them. Traditional investment banks will hire a group of professionals

called the syndication desk to handle the allocation of security issues to investors who can buy these shares and

bonds.

* |f we consider the role of the syndication desk of the investment bank, our work will be to identify the cornerstone
investors of the upcoming new issues with Duke Energy, as the CFO has the funding needs in equities. To do so, we
will use the institutional holding data of US stocks from SEC filing via Quandl/Sharadar, which will help us find out the

investment preferences of investors who share similar interests and match those with the investors who also hold

similar stocks, such as Duke Energy.

* With regard to who to sell to, we will take the largest investors of US stocks as our universe of investors. The
syndicated desk's job is to sell the major position of any equity issues to these investors. Using the unsupervised
learning method, we recommend the relevant stocks to the right investors as an initial public offering. This can be

done using securities similarities (called holding similarities) and investment styles (called investor similarities).



Solving the problem

* The following diagram shows the steps involved in solving the

problem at hand:

1. Build Similarity Models

Load Investors

Load Ticker in

Holding Industry
L 2 v
Generate Generate Stocks
Investors Clustering
Clustering Model Model

3. Run Similarity Models

Same Industry

v

 J

Stock
Similarity

2. Forecast Financials of

the New Stocks

New Stock
Financial
Projection

v

Industry

v

Financial Ratios

¥

Find Investor with
the similar Stock

L2

Find More
Investors
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Building similarity models

e Here, we will build two similarity models — one on stock similarity and another on finding similar
investors. Both models are clustering models, and they belong to the last type of machine learning
approach —unsupervised learning. We have picked 21 financial ratios to build the clustering model
at the stock level, while for the investor model, we have a maximum of 60 features (six
capitalization sizes * five investment decisions * two types of indicators):

 Six capitalization scales: Nano, Micro, Small, Medium, Large, and Mega

* Five investment decisions: Two for Buy (New, or Partial), one for Hold, and two for Sell (All or
Partial)

* Seven indicators: Quarterly return (total return, realized, unrealized), new money changing
rate's mean and standard deviation, and current value

* Import all the relevant libraries and then load the ticker's universe by reading the CSV files together
with the scale fields that describe the stocks. To reduce the processing time, load the investor lists
instead of all the investors. For each investor, calculate the direction per market segment stock
(that is, we use scale as the only market segment, but in reality, we should use country x industry x
scale).



Code: import the required libraries and data

PIT 3k 3k 3k ok ok ok 3k 3k 3k 3k 3k 3k ok ok 3k 3k 3k %k 3k ok ok %k %k 3k

1a) Load Data

#import relevant libraries

import quandl|

from datetime import date,timedelta
import pandas as pd

Import os

27



To avoid calling multiple times save data

e def quandl_get_table(csv_filename, datatable code, paginate=True,
investorname=", calendardate='YYYY-MM-DD'):
if not os.path.exists('quandl//'):
os.makedirs('quandl//")

if os.path.exists('quandl//' + csv_filename):
return pd.read_csv('quandl//' + csv_filename, index_col=0,
parse_dates=True)
else:
df = quandl.get_table(datatable code,
paginate=paginate,investorname=investorname,calendardate=calendardat
e)
df.to_csv('quandl//' + csv_filename)
return df

28



Code: load data 1/4

#load tickers universe and description field (scale)
print(‘load ticker universe')

df_tkr = pd.read_csv('industry_tickers_list.csv')

dict_scale_tkr ={}

for index, row in df_tkr.iterrows():
scale = row['scalemarketcap']
tkr = row['ticker']
dict_scale_tkr[tkr] = [scale]

start_d =date(2018,1,1)
end_d =date(2018,1,5)

#loop through investors
guandl.ApiConfig.api_key = QUANDLKEY
#comment this out if you prefer the longer list
f name = open('investors_select.txt','r")

#use this if you prefe the full list

#f name = open('investors.txt','r')

investorNamelist = f_name.readlines()

st yr=2013

end_yr=2019

qtr_mmdd_list= ['-03-31','-06-30,-09-30","-12-31']
prev_investor =""

prev_data_df = pd.DataFrame()

current_file_dir = os.path.dirname(__file__)

delta = timedelta(days=1)

print('prep investor movement')
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Code: load data 2/4

for investor in investorNamelList:
investor = investor.rstrip('\n")
print(investor)
if os.path.exists('data//' + investor+'.csv'):
print(‘already done, skipping!')
continue

curr_d =start_d
investor_df = pd.DataFrame()
data_df = pd.DataFrame()
prev_investor_df = pd.DataFrame()
prev_investor ="
#calculate the change in position by ticker on Quarter-to-quarter basis
for yr_num in range(st_yr,end_yr):
yr = str(yr_num)
for mmdd in gtr_mmdd_list:
dte_str = yr + mmdd
print(dte_str)
try:
data_df = quandl_get_table(f"{investor}_data_df {yr num}{mmdd}.csv", "SHARADAR/SF3",
paginate=True,investorname=investor,calendardate=dte_str)
except Exception:
print(‘'no data')
continue

30



Code: load data 3/4

* if (len(data_df)>0 and len(prev_data_df)>0):
df_combined = data_df.merge(prev_data_df, on="ticker")
#fld_y is prev, fld_x is current
df _combined['units_chg'] = df _combined['units_x'] - df combined['units_y']
df _combined['price_chg'] = df combined['price_x'] - df _combined['price_y']
if len(investor_df)==0:
investor_df = df _combined
else:
investor_df = investor_df.append(df_combined)
prev_data_df = data_df
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Code: load data 4/4

#qual{fy investor's activities
print(‘classify investor decision for', investor)
investor_df['action'] ="
investor_df['scale’] ="
| =
for index, row in investor_df.iterrows():
try:
this_scale = dict_scale_tkr[row]['ticker']][0]
except Exception:
continue
#is_scale = (this_scale in list_scale)
if row['unitsl_chg'i <0:
if row['units_x'
I investor_df.at[index,'action']='SELL-ALL'
else:
investor_df.atLindex,‘action']='SELL-PARTIAL'
elif row['units_chg'] > 0:

if row['units_y'] ==0:
I investor_df.at[index,'action']='"BUY-NEW'
else:

I investor_df.at[index,'action']='"BUY-MORE'
else:

investor df.at[index,'action']="HOLD'
invesitor_dT.at[index,'scale']=this_sca|e
i +=

if i == 1 or round(i/len(investor_df) *|100)>round((i—l)/len(investor_df) *100):

print%f'did {i/len(investor_df):.0%}')
#output the ticker’s activities of the investor

output_path = os.path.join(current_file_dir,'data’,investor+'.csv')
investor_df.to_csv(output_path)

print(‘'saved’, output_path)
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Code: prepare data

m
T8 3k s 3k 3k ok ok 3k 3k ok dk 3k ok ok ok 3k 3k ok ok ok ok ok ok ok ok

}Ib) Prepare investor Profile

#load relevant libraries

import os

import pandas as pd

import numpy as np

from time import time

from sklearn import metrics

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler
import pickle

np.random.seed(42)

list_fld = ['investorname_x','calendardate_x','scale’,'action’]
measure_fld =['value_x',"'value_y','realized_return','unrealized_return’,'new_money']
current_file_dir = os.path.dirname(__file__}

#Summarize quarterly per{‘ormance of investors per quarter
input_path = os.path.join(current_file_dir,'data’,'investor_data’)
file_list = os.listdir(input_path)
investor_pd = pd.DataFrame()
for file in file_list:
rint(file)
if not file.endswith('.csv'):
T:'Icontir%ue S, hfile)
ile_path = os.path.join(input_path,file
tmp_pd = pd.read_csv(#ile_path)
tmp_pd|['unrealized_return']=0
tmp_pd|'realized_return']=0
tmp_pd['new_money']=0
forindex, row in tm _pd.iterrows} :
#units_chg = row/['units_x'l-row/['units_y']

if row['units_chg'] > 0:
realized_return=0
unrealized_return = row['units X']*row['price chg']
new_money = row['units_chg'T™* row['price_x"]
else: #sell off or hold
realized_return = (-row['units_ch '})*(row['price chg'])
unrealized_return = row['units_yﬁ (row['prlce_c'ﬁg']%
new_money =0
tmp_pd.loc[index, 'unrealized_return']=unrealized_return
tmp_pd.loc[index,'realized_return']=realized_return
tmp_pd.loc[index,'new_money']=realized_return

investor profile) 1/2
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Code: prepare data (investor profile) 2/2

#calculate return (realized, unrealized and new money)
if len(tmp_pd)>0:
tmp_pd_group = tmp_pd.groupby(list_fld)[measure_fld].sum()
tmp_pd_group['return’] =
(tmp_pd_group|'realized_return']+tmp _pd group['unrealized_return'])/tmp_pd group['value_y']
tmp_pd_group['unrealized_returnT = (tmp_pd_group['unrealized_return'])/tmp_pd_group|'value_y']
tmp_pd_group 'realized_return'{= (tmp_pd_group|'realized_return'])/tmp_pd_ roupg['value_y']
tmp_pg_group 'new_money'] = (tmp_pd_group['new_money'])/tmp_pd_group|'value_y']
tmp_pd_pivot =
tmp_p _group.pivot_table(vaIues=['vaIue_x','realized_‘return','return','unrealized_return','new_money']
,index =J investorname_x'],columns=['scale’,'action’'],aggfunc={'return':np.mean,'return':np.std,
‘realized_return':np.mean, realized_return':np.std,
'unrealized_return':np.mean,'unrealized_return':np.std,
'value_x':np.sum})
#tmp_pd_pivot = tmp_pd_group.pivot_table(values=['return'],index
=['investorname_x'],columns=['scale’,'action’],aggfunc={'return':np.mean})
investor_pd = investor_pd.append(tmp_pd_pivot)

investor_pd.to_csv('investor_summary.csv')
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Code: cluster data

° T3k 3k 3k 3k 3k 3k 3k 3k sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok
'1"c) Cluster investors

#cleansed and transform data {‘or clusterin

investor_pd = investor_pd.replace([np.inf, ], 999999999)
investor_pd = investor_pd.fillna(0)

investor_pd = investor_pd.dropna()

sc_X= StandardScaIer&)
X = sc_X.fit_transform(investor_pd)

#define the k means function
def bench_k_means(estimator, name, data):
t0 = time(
cluster_labels = estimator.fit_predict(data)
siore = m(g:trics.silhouette_score(data, cluster_labels, metric="euclidean’')
tl =time
print(‘time spent :' +str(t1-t0))
return score,cluster_labels

#try out different K means parameters and find out the best parameters
best_score =1
best_cluster=0
best_labels = pd.DataFrame()
track ={}
best_KMeans_model = KMeans()
for num_cluster in range(5, 500):
KMeans_model = KMeans(init='k-means++', n_clusters=num_cluster, n_init=10)
this_score,this_labels = bench_k_means(KMeans_model,
name="k-means++", data=X)
track[num_cluster] = this_score
if this_score < best_score:
best_score = this_score
best_cluster = num_cluster
best_KMeans_model = KMeans_model
best_labels = this_labels
print(num_cluster)
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Code: output results

T3k 3k ok ok ok sk 3k ok 3k ok ok ok 3k ok ok ok ok ok ok ok ok ok k ok

'1"d) Output the results

#TO RUN

best_labels pd = pd.DataFrame(best_labels)

best labels_pd.columns = ['cluster’]

X_pd = pd.DataFrame(X)

best_labels_data = pd.concat([X_pd,best_labels_pd],axis=1)

#Output clusters

f cluster=open('investor_cluster '+str(best_cluster)+".pkl’,"wb+")

Fickle.dump(best_KMeans_modEI, f _cluster)

_cluster.close()

f SC=open('investor_SC_'+str(best_cluster)+'.pkl’,"wbh+")
ickle.dump(sc_X, f_SC)

_SC.cIose(;o

f labels=open('investor_labels '+str(best_cluster)+'.pkl',"wb+")

Fickle.dump(best_labels__data,'f_labels)
labels.close()
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Well donel!

Congsals/

* You have now delivered a model that can be used at the operational level for clustering stock types

Training

Deployment

1. Data
Freprocessing

1. Data
Preprocessing

3. Read in Model
& Data

_ -

6. Visualize
Test Result

s




summary

* In this lecture, we learned about supervised learning and clustering in
particular to help find similarities between data

* We discuss the concept of distance and the subjectivity of number of
clusters

* In the lab, we presented KMeans



