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Assignment 3: Q-Learning and Actor-Critic Algorithms

Due February 28, 11:59 pm

1 Multistep Q-Learning

Consider the N -step variant of Q-learning described in lecture. We learn Qϕk+1
with the following updates:

yj,t ←
( t+N−1∑

t′=t

γt′−trj,t′

)
+ γN max

aj,t+N

Qϕk
(sj,t+N ,aj,t+N ) (1)

ϕk+1 ← argmin
ϕ∈Φ

∑
j,t

(
yj,t −Qϕ(sj,t,aj,t)

)2
(2)

In these equations, j indicates an index in the replay buffer of trajectories Dk. We first roll out a batch of B
trajectories to update Dk and compute the target values in (1). We then fit Qϕk+1

to these target values with
(2). After estimating Qϕk+1

, we can then update the policy through an argmax:

πk+1 (at | st)←
{

1 if at = argmaxat
Qϕk+1

(st,at)
0 otherwise.

(3)

We repeat the steps in eqs. (1) to (3) K times to improve the policy. In this question, you will analyze some
properties of this algorithm, which is summarized in Algorithm 1.

Algorithm 1 Multistep Q-Learning

Require: iterations K, batch size B
1: initialize random policy π0, sample ϕ0 ∼ Φ
2: for k = 0 . . .K − 1 do
3: Update Dk+1 with B new rollouts from πk

4: compute targets with (1)
5: Qϕk+1

← update with (2)
6: πk+1 ← update with (3)
7: end for
8: return πK

1.1 TD-Learning Bias (2 points)

We say an estimator fD of f constructed using data D sampled from process P is unbiased when ED∼P [fD(x)−
f(x)] = 0 at each x.

Assume Q̂ is a noisy (but unbiased) estimate for Q. Is the Bellman backup BQ̂ = r(s, a) + γmaxa′ Q̂(s′, a′)
an unbiased estimate of BQ?

□ Yes

□ No

1.2 Tabular Learning (6 points total)

At each iteration of the algorithm above after the update from eq. (2), Qϕk
can be viewed as an estimate of

the true optimal Q∗. Consider the following statements:

I. Qϕk+1
is an unbiased estimate of the Q function of the last policy, Qπk .

II. As k →∞ for some fixed B, Qϕk
is an unbiased estimate of Q∗, i.e., limk→∞ E

[
Qϕk

(s, a)−Q∗(s, a)] = 0.

III. In the limit of infinite iterations and data we recover the optimalQ∗, i.e., limk,B→∞ E
[
∥Qϕk

−Q∗∥∞
]
= 0.
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We make the additional assumptions:

• The state and action spaces are finite.

• Every batch contains at least one experience for each action taken in each state.

• In the tabular setting, Qϕk
can express any function, i.e., {Qϕk

: ϕ ∈ Φ} = RS×A.

When updating the buffer Dk with B new trajectories in line 3 of Algorithm 1, we say:

• When learning on-policy, Dk is set to contain only the set of B new rollouts of π (so |Dk| = B). Thus,
we only train on rollouts from the current policy.

• When learning off-policy, we use a fixed dataset Dk = D of B trajectories from another policy π′.

Indicate which of the statements I-III always hold in the following cases. No justification is required.

1. N = 1 and . . . I. II. III.

(a) on-policy in tabular setting □ □ □

(b) off-policy in tabular setting □ □ □

2. N > 1 and . . .

(a) on-policy in tabular setting □ □ □

(b) off-policy in tabular setting □ □ □

3. In the limit as N →∞ (no bootstrapping) . . .

(a) on-policy in tabular setting □ □ □

(b) off-policy in tabular setting □ □ □

1.3 Variance of Q Estimate (2 points)

Which of the three cases (N = 1, N > 1, N →∞) would you expect to have the highest-variance estimate of
Q for fixed dataset size B in the limit of infinite iterations k? Lowest-variance?

Highest variance:

□ N = 1

□ N > 1

□ N →∞

Lowest variance:

□ N = 1

□ N > 1

□ N →∞

1.4 Function Approximation (2 points)

Now say we want to represent Q via function approximation rather than with a tabular representation. Assume
that for any deterministic policy π (including the optimal policy π∗), function approximation can represent
the true Qπ exactly. Which of the following statements are true?

□ When N = 1, Qϕk+1
is an unbiased estimate of the Q-function of the last policy Qπk .

□ When N = 1 and in the limit as B →∞, k →∞, Qϕk
converges to Q∗.

□ When N > 1 (but finite) and in the limit as B →∞, k →∞, Qϕk
converges to Q∗.

□ When N →∞ and in the limit as B →∞, k →∞, Qϕk
converges to Q∗.

1.5 Multistep Importance Sampling (5 points)

We can use importance sampling to make the N -step update work off-policy with trajectories drawn from an
arbitrary policy. Rewrite (2) to correctly approximate a Qϕk

that improves upon π when it is trained on data
D consisting of B rollouts of some other policy π′(at | st).
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Do we need to change (2) when N = 1? What about as N →∞?

You may assume that π′ always assigns positive mass to each action. [Hint: re-weight each term in the sum
using a ratio of likelihoods from the policies π and π′.]

2 Deep Q-Learning

2.1 Introduction

Part 1 of this assignment requires you to implement and evaluate Q-learning for playing Atari games. The
Q-learning algorithm was covered in lecture, and you will be provided with starter code. This assignment will
be faster to run on a GPU, though it is possible to complete on a CPU as well. Note that we use convolutional
neural network architectures in this assignment. Therefore, we recommend using the Colab option if you do
not have a GPU available to you. Please start early!

2.2 File overview

The starter code for this assignment can be found at

https://github.com/berkeleydeeprlcourse/homework_fall2023/tree/main/hw3

You will implement a DQN agent in cs285/agents/dqn_agent.py and cs285/scripts/run_hw3_dqn.py. In
addition to those two files, you should start by reading the following files thoroughly:

• cs285/env_configs/dqn_basic.py: builds networks and generates configuration for the basic DQN
problems (cartpole, lunar lander).

• cs285/env_configs/dqn_atari.py: builds networks and generates configuration for the Atari DQN
problems.

• cs285/infrastructure/replay_buffer.py: implementation of replay buffer. You don’t need to know
how the memory efficient replay buffer works, but you should try to understand what each method does
(particularly the difference between insert, which is called after a frame, and on_reset, which inserts
the first observation from a trajectory) and how it differs from the regular replay buffer.

• cs285/infrastructure/atari_wrappers.py: contains some wrappers specific to the Atari environ-
ments. These wrappers can be key to getting challenging Atari environments to work!

There are two new package requirements (gym[atari] and pip install gym[accept-rom-license]) beyond
what was used in the first two assignments; make sure to install these with pip install -r requirements.txt

if you’re re-using your Python environment from last assignment.

2.3 Implementation

The first phase of the assignment is to implement a working version of Q-learning, with some extra bells
and whistles like double DQN. Our code will work with both state-based environments, where our input is a
low-dimensional list of numbers (like Cartpole), but we’ll also support learning directly from pixels!

In addition to the double Q-learning trick (which you’ll implement later), we have a few other tricks imple-
mented to stabilize performance. You don’t have to do anything to enable these, but you should look at the
implementations and think about why they work.

• Exploration scheduling for ϵ-greedy actor. This starts ϵ at a high value, close to random sampling,
and decays it to a small value during training.

• Learning rate scsheduling. Decay the learning rate from a high initial value to a lower value at the
end of training.

• Gradient clipping. If the gradient norm is larger than a threshold, scale the gradients down so that
the norm is equal to the threshold.

https://github.com/berkeleydeeprlcourse/homework_fall2023/tree/main/hw3
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• Atari wrappers.

– Frame-skip. Keep the same constant action for 4 steps.

– Frame-stack. Stack the last 4 frames to use as the input.

– Grayscale. Use grayscale images.

2.4 Basic Q-Learning

Implement the basic DQN algorithm. You’ll implement an update for the Q-network, a target network, and

What you’ll need to do:

• Implement a DQN critic update in update_critic by filling in the unimplemented sections (marked
with TODO(student)).

• Implement ϵ-greedy sampling in get_action

• Implement the TODOs in run_hw3_dqn.py.

Hint: A trajectory can end (done=True) in two ways: the actual end of the trajectory (usually triggered
by catastrophic failure, like crashing), or truncation, where the trajectory doesn’t actually end but we
stop simulation for some reason (commonly, we truncate trajectories at some maximum episode length).
In this latter case, you should still reset the environment, but the done flag for TD-updates (stored in
the replay buffer) should be false.

• Call all of the required updates, and update the target critic if necessary, in update.

Testing this section:

• Debug your DQN implementation on CartPole-v1 with experiments/dqn/cartpole.yaml. It should
reach reward of nearly 500 within a few thousand steps.

Deliverables:

• Submit your logs of CartPole-v1, and a plot with environment steps on the x-axis and eval return on
the y-axis.

• Run DQN with three different seeds on LunarLander-v2:

python cs285/scripts/run_hw3_dqn.py -cfg experiments/dqn/lunarlander.yaml --seed 1

python cs285/scripts/run_hw3_dqn.py -cfg experiments/dqn/lunarlander.yaml --seed 2

python cs285/scripts/run_hw3_dqn.py -cfg experiments/dqn/lunarlander.yaml --seed 3

Your code may not reach high return (200) on Lunar Lander yet; this is okay! Your returns
may go up for a while and then collapse in some or all of the seeds.

• Run DQN on CartPole-v1, but change the learning rate to 0.05 (you can change this in the YAML
config file). What happens to (a) the predicted Q-values, and (b) the critic error? Can you relate this
to any topics from class or the analysis section of this homework?

2.5 Double Q-Learning

Let’s try to stabilize learning. The double-Q trick avoids overestimation bias in the critic update by using two
different networks to select the next action a′ and to estimate its value:

a′ = argmax
a′

Qϕ(s
′, a′)

Qtarget = r + γ(1− dt)Qϕ′(s′, a′).

In our case, we’ll keep using the target network Qϕ′ to estimate the action’s value, but we’ll select the action
using Qϕ (the online Q network).
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Implement this functionality in dqn_agent.py.

Deliverables:

• Run three more seeds of the lunar lander problem:

python cs285/scripts/run_hw3_dqn.py -cfg experiments/dqn/lunarlander_doubleq.yaml --

seed 1

python cs285/scripts/run_hw3_dqn.py -cfg experiments/dqn/lunarlander_doubleq.yaml --

seed 2

python cs285/scripts/run_hw3_dqn.py -cfg experiments/dqn/lunarlander_doubleq.yaml --

seed 3

You should expect a return of 200 by the end of training, and it should be fairly stable compared to
your policy gradient methods from HW2.

Plot returns from these three seeds in red, and the “vanilla” DQN results in blue, on the same set of
axes. Compare the two, and describe in your own words what might cause this difference.

• Run your DQN implementation on the MsPacman-v0 problem. Our default configuration will use double-
Q learning by default. You are welcome to tune hyperparameters to get it to work better, but the
default parameters should work (so if they don’t, you likely have a bug in your implementation). Your
implementation should receive a score of around 1500 by the end of training (1 million steps. This
problem will take about 3 hours with a GPU, or 6 hours without, so start early!

python cs285/scripts/run_hw3_dqn.py -cfg experiments/dqn/mspacman.yaml

• Plot the average training return (train_return) and eval return (eval_return) on the same axes. You
may notice that they look very different early in training! Explain the difference.

2.6 Experimenting with Hyperparameters

Now let’s analyze the sensitivity of Q-learning to hyperparameters. Choose one hyperparameter of your choice
and run at least three other settings of this hyperparameter, in addition to the one used in Question 1, and
plot all four values on the same graph. Your choice what you experiment with, but you should explain why
you chose this hyperparameter in the caption. Create four config files in experiments/dqn/hyperparameters,
and look in cs285/env_configs/basic_dqn_config.py to see which hyperparameters you’re able to change.
You can use any of the base YAML files as a reference.

Hyperparameter options could include:

• Learning rate

• Network architecture

• Exploration schedule (or, if you’d like, you can implement an alternative to ϵ-greedy)

3 Continuous Actions with Actor-Critic

DQN is great for discrete action spaces. However, it requires you to be able to calculate maxa Q(s, a) in closed
form. Doing this is trivial for discrete action spaces (when you can just check which of the n actions has the
highest Q-value), but in continuous action spaces this is potentially a complex nonlinear optimization problem.

Actor-critic methods get around this by learning two networks: a Q-function, like DQN, and an explicit policy
π that is trained to maximize Ea∼π(a|s)Q(s, a).

All parts in this section are run with the following command:

python cs285/scripts/run_hw3_sac.py -cfg experiments/sac/<CONFIG>.yaml
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3.1 Implementation

First, you’ll need to take a look at the following files:

• cs285/scripts/run_hw3_sac.py - the main training loop for your SAC implementation.

• cs285/agents/soft_actor_critic.py - the structure for the SAC learner you’ll implement.

You may also find the following files useful:

• cs285/networks/state_action_critic.py - a simple MLP-based Q(s, a) network. Note that unlike
the DQN critic, which maps states to an array of Q-value, one per action, this critic maps one (s, a) pair
to a single Q-value.

• cs285/env_configs/sac_config.py - base configuration (and list of hyperparameters).

• experiments/sac/*.yaml - configuration files for the experiments.

You’ll primarily be implementing your code in cs285/agents/soft_actor_critic.py.

Before implementing SAC:

• Fill in all of the TODOs in cs285/scripts/run_hw3_sac.py. This should look pretty similar to your
DQN run script, as both are off-policy methods!

3.1.1 Bootstrapping

As in DQN, we train our critic by “bootstrapping” from a target critic. Using the tuple (st, at, rt, st+1, dt)
(where dt is the flag for whether the trajectory terminates after this transition), we write:

y ← rt + γ(1− dt)Qϕ(st+1, at+1), a ∼ π(at+1|st+1)

min
ϕ

(Qϕ(st, at)− y)2

In practice, we stabilize learning by using a separate target network Qϕ′ . There are two common strategies
for updating the target network:

• Hard update (like we implemented in DQN), where every K steps we set ϕ′ ← ϕ.

• Soft update, where ϕ′ is continually updated towards ϕ with Polyak averaging (exponential moving
average). After each step, we perform the following operation:

ϕ′ ← ϕ′ + τ(ϕ− ϕ′)

What you’ll need to do (in cs285/agents/soft_actor_critic.py):

• Implement the bootstrapped critic update in the update_critic method.

• Update the critic for num_critic_updates in the update method.

• Implement soft and hard target network updates, depending on the configuration, in update.

Testing this section:

• Train an agent on Pendulum-v1 with the sample configuration experiments/sac/sanity_pendulum.yaml.
It shouldn’t get high reward yet (you’re not training an actor), but the Q-values should stabilize at some
large negative number. The “do-nothing” reward for this environment is about -10 per step; you can use
that together with the discount factor γ to calculate (approximately) what Q should be. If the Q-values
go to minus infinity or stay close to zero, you probably have a bug.

Deliverables: None, once the critic is training as expected you can move on to the next section!
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3.1.2 Entropy Bonus and Soft Actor-Critic

In DQN, we used an ϵ-greedy strategy to decide which action to take at a given time. In continuous spaces,
we have several options for generating exploration noise.

One of the most common is providing an entropy bonus to encourage the actor to have high entropy (i.e. to
be “more random”), scaled by a “temperature” coefficient β. For example, in the REPARAMETRIZE case:

Lπ = Q(s, µθ(s) + σθ(s)ϵ) + βH(π(a|s)).

Where entropy is defined as H(π(a|s)) = Ea∼π [− log π(a|s)]. To make sure entropy is also factored into the
Q-function, we should also account for it in our target values:

y ← rt + γ(1− dt) [Qϕ(st+1, at+1) + βH(π(at+1|st+1))]

When balanced against the “maximize Q” terms, this results in behavior where the actor will choose more
random actions when it is unsure of what action to take. Feel free to read more in the SAC paper: https:

//arxiv.org/abs/1801.01290.

Note that maximizing entropy H(πθ) = −E[log πθ] requires differentiating through the sampling distribution.
We can do this via the “reparametrization trick” from lecture - if you’d like a refresher, skip to the section on
REPARAMETRIZE.

What you’ll need to do (in cs285/agents/soft_actor_critic.py):

• Implement entropy() to calculate the approximate entropy of an actor distribution.

• Add the entropy term to the target critic values in update_critic() and the actor loss in update_actor().

Testing this section:

• The code should be logging entropy during the critic updates. If you run sanity_pendulum.yaml from
before, it should achieve (close to) the maximum possible entropy for a 1-dimensional action space.
Entropy is maximized by a uniform distribution:

H(U [−1, 1]) = E[− log p(x)] = − log
1

2
= log 2 ≈ 0.69

Because currently our actor loss only consists of the entropy bonus (we haven’t implemented anything
to maximize rewards yet), the entropy should increase until it arrives at roughly this level.

If your logged entropy is higher than this, or significantly lower, you have a bug.

3.1.3 Actor with REINFORCE

We can use the same REINFORCE gradient estimator that we used in our policy gradients algorithms to
update our actor in actor-critic algorithms! We want to compute:

∇θEs∼D,a∼πθ(a|s) [Q(s, a)]

To do this using REINFORCE, we can use the policy gradient:

Es∼D,a∼π(a|s) [∇θ log(πθ(a|s))Qϕ(s, a)]

Note that the actions a are sampled from πθ, and we do not require real data samples. This means that to
reduce variance we can just sample more actions from π for any given state! You’ll implement this in your
code using the num_actor_samples parameter.

What you’ll need to do (in cs285/agents/soft_actor_critic.py):

• Implement the REINFORCE gradient estimator in the actor_loss_reinforce method.

• Update the actor in update.

https://arxiv.org/abs/1801.01290 
https://arxiv.org/abs/1801.01290 
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Testing this section:

• Train an agent on InvertedPendulum-v4 using sanity_invertedpendulum_reinforce.yaml. You
should achieve reward close to 1000, which corresponds to staying upright for all time steps.

Deliverables

• Train an agent on HalfCheetah-v4 using the provided config (halfcheetah_reinforce1.yaml). Note
that this configuration uses only one sampled action per training example.

• Train another agent with halfcheetah_reinforce_10.yaml. This configuration takes many samples
from the actor for computing the REINFORCE gradient (we’ll call this REINFORCE-10, and the single-
sample version REINFORCE-1). Plot the results (evaluation return over time) on the same axes as the
single-sample REINFORCE. Compare and explain your results.

3.1.4 Actor with REPARAMETRIZE

REINFORCE works quite well with many samples, but particularly in high-dimensional action spaces, it starts
to require a lot of samples to give low variance. We can improve this by using the reparametrized gradient.
Parametrize πθ as µθ(s) + σθ(s)ϵ, where ϵ is normally distributed. Then we can write:

∇θEs∼D,a∼πθ(a|s) [Q(s, a)] = ∇θEs∼D,ϵ∼N [Q(s, µθ(s) + σθ(s)ϵ))] = Es∼D,ϵ∼N [∇θQ(s, µθ(s) + σθ(s)ϵ))]

This gradient estimator often gives a much lower variance, so it can be used with few samples (in practice,
just using a single sample tends to work very well).

Hint: you can use .rsample() to get a reparametrized sample from a distribution in PyTorch.

What you’ll need to do:

• Implement actor_loss_reparametrize(). Be careful to use the reparametrization trick for sampling!

Testing this section:

• Make sure you can solve InvertedPendulum-v4 (use sanity_invertedpendulum_reparametrize.yaml)
and achieve similar reward to the REINFORCE case.

Deliverables:

• Train (once again) on HalfCheetah-v4 with halfcheetah_reparametrize.yaml. Plot results for all
three gradient estimators (REINFORCE-1, REINFORCE-10 samples, and REPARAMETRIZE) on the
same set of axes, with number of environment steps on the x-axis and evaluation return on the y-axis.

• Train an agent for the Humanoid-v4 environment with humanoid_sac.yaml and plot results.

3.1.5 Stabilizing Target Values

As in DQN, the target Q with a single critic exhibits overestimation bias! There are a few commonly-used
strategies to combat this:

• Double-Q: learn two critics QϕA
, QϕB

, and keep two target networks Qϕ′
A
, Qϕ′

B
. Then, use Qϕ′

A
to

compute target values for QϕB
and vice versa:

yA = r + γQϕ′
B
(s′, a′)

yB = r + γQϕ′
A
(s′, a′)

• Clipped double-Q: learn two critics QϕA
, QϕB

(and keep two target networks). Then, compute the target
values as min(Qϕ′

A
, Qϕ′

B
).

yA = yB = r + γmin
(
Qϕ′

A
(s′, a′), Qϕ′

B
(s′, a′)

)
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• (Optional, bonus) Ensembled clipped double-Q: learn many critics (10 is common) and keep a target
network for each. To compute target values, first run all the critics and sample two Q-values for each
sample. Then, take the minimum (as in clipped double-Q). If you want to learn more about this, you
can check out “Randomized Ensembled Double-Q”: https://arxiv.org/abs/2101.05982.

Implement double-Q and clipped double-Q in the q_backup_strategy function in soft_actor_critic.py.

Deliverables:

• Run single-Q, double-Q, and clipped double-Q on Hopper-v4 using the corresponding configuration files.
Which one works best? Plot the logged eval_return from each of them as well as q_values. Discuss
how these results relate to overestimation bias.

• Pick the best configuration (single-Q/double-Q/clipped double-Q, or REDQ if you implement it) and
run it on Humanoid-v4 using humanoid.yaml (edit the config to use the best option). You can truncate it
after 500K environment steps. If you got results from the humanoid environment in the last homework,
plot them together with environment steps on the x-axis and evaluation return on the y-axis. Otherwise,
we will provide a humanoid log file that you can use for comparison. How do the off-policy and on-policy
algorithms compare in terms of sample efficiency? Note: if you’d like to run training to completion (5M
steps), you should get a proper, walking humanoid! You can run with videos enabled by using -nvid 1.
If you run with videos, you can strip videos from the logs for submission with this script.

4 Submitting the code and experiment runs

In order to turn in your code and experiment logs, create a folder that contains the following:

• A folder named data with all the experiment runs from this assignment. Do not change the names
originally assigned to the folders, as specified by exp name in the instructions. Video logging
is disabled by default in the code, but if you turned it on for debugging, you will need to run
those again with --video log freq -1, or else the file size will be too large for submission.

• The cs285 folder with all the .py files, with the same names and directory structure as the original
homework repository (excluding the data folder). Also include any special instructions we need to run
in order to produce each of your figures or tables (e.g. “run python myassignment.py -sec2q1” to generate
the result for Section 2 Question 1) in the form of a README file.

As an example, the unzipped version of your submission should result in the following file structure. Make
sure that the submit.zip file is below 15MB and that they include the prefix q1 , q2 , q3 , etc.

https://arxiv.org/abs/2101.05982
https://gist.github.com/kylestach/e9964f5f34ee74367547dec83eaf5fae
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submit.zip

data

hw3 dqn ...

events.out.tfevents.1567529456.e3a096ac8ff4

hw3 sac ...

events.out.tfevents.1567529456.e3a096ac8ff4

...

cs285

agents

soft actor critic.py

dqn agent.py

...

README.md

...

If you are a Mac user, do not use the default “Compress” option to create the zip. It creates
artifacts that the autograder does not like. You may use zip -vr submit.zip . -x "*.DS Store" from
your terminal from within the top-level cs285 directory.

Turn in your assignment on Moodle. Upload the zip file with your code and log files to HW3 -> Code, and 
upload the PDF of your report to HW3 -> Report.
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SAC-related questions. We wanted to address some of the common questions that have been asked re-
garding Question 6 of the HW. The full algorithm for SAC is summarized below, the equations listed in this
paper will be helpful for you: https://arxiv.org/pdf/1812.05905. Some definitions that will be useful:

1. What is alpha and how to update it: Alpha is the entropy regularization coefficient denoting how much
exploration to add to the policy. You should update based on Eq. 18 in Section 5 in the above paper as
follows:

J(α) = E
at∼πt

[−α logπt
(at|st)− αH̄].

2. Target entropy is the negative of the action space dimension that is used to update the alpha term.

3. SquashedNorm: This is a function that takes in mean and std as in previous homeworks, and will give
you a distribution that you can sample your action from.

4. To update the critic, refer to how to update Q-function parameters in Equation 6 of the paper above as
follows:

JQ(θ) = Qθ(st, at)− (r(st, at) + γ(Qθ̄(st+1, at+1)− α log(πϕ(at+1, st+1)))

5. To update the policy, follow Equation 18:

J(α) = Eat∼πt
[−α log πt(at|st)− αH̄]

6. You don’t need to alter any parameters from the SAC run commands. The correct implementation
should work with the provided default parameters.

https://arxiv.org/pdf/1812.05905
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