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Agenda — Grading

Lectures posted on

https://www.lamsade.dauphine.fr/~ebenhamou/deep reinforcement learning/index.html



https://www.lamsade.dauphine.fr/~ebenhamou/deep_reinforcement_learning/index.html

Grading

3 Homeworks (after week 2, 2 weeks) to be filled on

Pauphine | PSL* Moodie

Final project consisting of a kagg|e P competition

Score: 20% x 3 homeworks + 40% project
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Option 1:

Understand the problem, design a solution

Option 2:

Set it up as a machine learning problem

supervised
learning
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What is reinforcement learning?



What is reinforcement learning?

Mathematical formalism for learning-based
decision making

Approach for learning decision making and control
from experience



How is this different from other machine
earning topics?

Standard (supervised)
machine learning:

Reinforcement learning:
given D = {(x;,4:)}

* Datais noti.i.d.: previous outputs influence

learn to predict y from x f(x)~y future inputs!
e Ground truth answer is not known, only know
if we succeeded or failed
Usually assumes: * more generally, we know the reward
e i.i.d.data

* known ground truth outputs in training



decisi tions)

®

conseguences
observations (states)
rewards

Observations: sight, smell Observations: camera images
Rewards: food Rewards: task success measure (e.g.,
"1g speed)

Actions: what to purchase
Observations: inventory levels
Rewards: profit



Complex physical tasks...

Rajeswaran, et al. 2018



In the real world...

Kalashnikov et al. ‘18



Not just games and robots!

Cathy Wu



Why should we care about deep
reinforcement learning?



How do we build intelligent machines?

HAL 9000




Intelligent machines must be able to adapt




Deep learning helps us handle unstructured
environments

LA ; - tiger _E

s\ e = E e i ’
L ﬁ: =t |13 L - 4 13 35: = 5 13 dense dens: tlger Cat
- b jaguar

Max
pooling

i

4096 4096




Reinforcement learning provides a formalism for
behavior
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Figure 2. An illustration of the normal opening position in backgammaon. TD-
Gammon has sparked a near-universal corwersion in the way experts play
certain opening rolls. For example, with an opening roll of 4-1, most players
have now switched from the traditional move of 13-9, 6-5, to TD-Gammaon's
preference, 13-9, 24-23. TD-Gammaon's analysis is given in Table 2.

¥

Schulman et al. ’14 & ‘15

Mnih et al. ‘13

Consequences observations rewards

Levine*, Finn*, et al. ‘16



What is deep RL, and why should we care?
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Example: robotics
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decisions (actions)

dDeep models are what aIIow remforcement
learning algorithms to solve complex problems
end to end!

The reinforcement learning problem is the Al problem! Actions: what to purchase
Observations: inventory levels

Rewards: profit



Why should we study this now?
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1. Advances in deep learning
2. Advances in reinforcement learning

3. Advances in computational capability



Why should we study this how?

Neural Networks
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Fig. 21. Direct adaptive control of nonlinear plants using neural networks.

This dissertation demonstrates how we can possibly overcome the slow learning problem
and tackle non-Markovian environments, making reinforcement learning more practical for
realistic robot tasks:

o Reinforcement learning can be naturally integrated with artificial neural networks to
obtain high-quality generalization, resulting in a significant learning speedup. Neural
networks are used in this dissertation, and they generalize effectively even in the presence
of noise and a large number of binary and real-valued inputs.

¢ Reinforcement learning agents can save many learning trials by using an action model,
which can be learned on-line. With a model, an agent can mentally experience the effects
of its actions without actually executing them. Experience replay is a simple technique
that implements this idea, and is shown to be effective in reducing the number of action
executions required.

black pieces
move clockwise

Table 11.1: Summary of TD-Gammon Results

Program || Hidden | Training | Opponents Results

ais || Games
TD-Gam00|| 40 || 300000 || _other programs tied for best
TD-Gam 10/( 80 || 300,000 | Robertic, Magricl, .. || —13pts /51 games
TD-Gam20]| 40 | ;m;ot; T[varionn Gramimasers || — Tﬁx games
TD-Gam 21| 80 1500000 Robertie 1pt/ 40 games
TD-Gam30| 80 1500000 Kazaros +6pts / 20 games

o Reinforcement learning agents can take advantage of instructive training instances pro-
vided by human teachers, resulting in a significant learning speedup. Teaching can also
help learning agents avoid local optima during the search for optimal control. Simulation
experiments indicate that even a small amount of teaching can save agents many learning
trials.

o Reinforcement learning agents can significantly reduce learning time by hierarchical
learning— they first solve elementary learning problems and then combine solutions to
the elementary problems to solve a complex problem. Simulation experiments indicate
that a robot with hierarchical learning can solve a complex problem, which otherwise is
hardly solvable within a reasonable time.

¢ Reinforcement learning agents can deal with a wide range of non-Markovian environ-

ments by having a memory of their past. Three memory architectures are discussed. They
work reasonably well for a variety of simple problems. One of them is also successfully
applied to a nontrivial non-Markovian robot task.

L.-J. Lin, “Reinforcement learning for robots using neural networks.” 1993

Tesauro, 1995



Why should we study this how?

Atari games: Real-world robots:

Q-learning: Guided policy search:

[.Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. S. Levine*, C. Finn*, T. Darrell, P Abbeel. “End-to-end
Antonoglou, et al. “Playing Atari with Deep training of deep visuomotor policies”. (2015).
Reinforcement Learning”. (2013). Q-learning:

Policy gradients: D. Kalashnikov et al. “QT-Opt: Scalable Deep
J.Schulman, S. Levine, P Moritz, M. I. Jordan, and P Reinforcement Learning for Vision-Based Robotic
Abbeel. “Trust Region Policy Optimization”. (2015). Manipulation”. (2018).

\/ Mnih, A. P Badia, M. Mirza, A. Graves, T. P Lillicrap,
et al. “Asynchronous methods for deep reinforcement
learning”. (2016).

LEE SEDOL
00:01:00

Beating Go champions:
Supervised learning + policy
gradients + value functions +
Monte Carlo tree search:

D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, et al. “Mastering the game of Go

with deep neural networks and tree
search”. Nature (2016).



What other problems do we need to solve to
enable real-world sequential decision making?



Beyond learning from reward

* Basic reinforcement learning deals with maximizing rewards

* This is not the only problem that matters for sequential decision
making!

* We will cover more advanced topics
* Learning reward functions from example (inverse reinforcement learning)
* Transferring knowledge between domains (transfer learning, meta-learning)
* Learning to predict and using prediction to act



Where do rewards come from?

reward

1l Basal ganglia
(movement, reward)

M Thalamus
(sensory gateway)

M Hippocampus

Forebrain (memory)

Hypothalamus

(regulates body

function)
Amygdala
(emotion)

Mnih et al.’15

reinforcement learning agent what is the reward?

[-] LazyOptimist 32 points 5 days ago
As human agents, we are accustomed to operating with
rewards that are so sparse that we only experience them
once or twice in a lifetime, if at all.




Are there other forms of supervision?

* Learning from demonstrations
* Directly copying observed behavior
* Inferring rewards from observed behavior (inverse reinforcement learning)

* Learning from observing the world
* Learning to predict
* Unsupervised learning

* Learning from other tasks
* Transfer learning
* Meta-learning: learning to learn



Imitation learning

Bojarski et al. 2016



More than imitation: inferring intentions

Warneken & Tomasello



Inverse RL examples

Demo 1 (0f20).

Finn et al. 2016



Prediction

“the idea that we predict the consequences of our motor
commands has emerged as an important theoretical
concept in all aspects of sensorimotor control”

Prediction Precedes Control in Motor Learning

J. Randall Flanagan,'* Philipp Vetter,’ Procedures for detalls), Figure 1 shows, for & single
Roland S§. Johansson,” and Danlel M. Wolpert* subjoct, the hand path (top trace) and the grp (middio)

Predicting the Consequences of Our Own Actions: The Role of
Sensorimotor Context Estimation

Sarah J. Blakemore, Susan J. Goodbody, and Daniel M. Wolpert
Sobell Dapartment of Newrophysiclogy, institute of Newrology, Universtty Collage London, London WCIN 368G,

Predictive coding in the visual cortex:
a functional interpretation of some
extra-classical receptive-field effects

Rajesh P. N. Rao' and Dana H, Ballard®



Prediction for real-world control

AGASATATASIAN,
SR NS L SO OSSN LG S

Ebert et al. 2017



Using tools with
predictive models

Xie et al. 2019



Playing games with predictive models

But sometimes there are issues...

predicted real

Kaiser et al. 2019



How do we build intelligent machines?



How do we build intelligent machines?

* Imagine you have to build an intelligent machine, where do you start?

Anatomy and Functional Areas of the Brain

Parietal lobe




Learning as the basis of intelligence

e Some things we can all do (e.g. walking)
* Some things we can only learn (e.g. driving a car)
* We can learn a huge variety of things, including very difficult things

* Therefore our learning mechanism(s) are likely powerful enough to do
everything we associate with intelligence

e But it may still be very convenient to “hard-code” a few really important bits



A single algorithm?

* An algorithm for each “module”?
* Or a single flexible algorithm?

r , X ; ,i" -
v - A l
Auditory /—
Cortex

[BrainPort; Martinez et al; Roe et al.]
adapted fromA. Ng




What must that single algorithm do?

* Interpret rich sensory inputs \M\ 9 (
)

* Choose complex actions




Why deep reinforcement learning?

* Deep = can process complex sensory input
= ...and also compute really complex functions

* Reinforcement learning = can choose complex actions



Some evidence in favor of deep Iearmng

Unsupervised learning models of primary cortical
receptive fields and receptive field plasticity

Andrew Saxe, Maneesh Bhand, Ritvik Mudur, Bipin Suresh, Andrew Y. Ng
Department of Computer Science
Stanford University
{asaxe, mbhand, rmudur, bipins, ang}@cs.stanford.edu
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Some evidence for reinforcement learning

* Perce pts that antici pate rewa rd Reinforcement learning in the brain
become associated with similar
.. Yael Niv
fl Il ng patte 'NS as t h e rewd I‘d Psychology Department & Princeton Neuroscience Institute, Princeton University
itself

e Basal ganglia appears to be
related to reward system

 Model-free RL-like adaptation is
often a good fit for experimental
data of animal adaptation
* But not always...



What can deep learning & RL do well now?

* Acquire high degree of proficiency in
domains governed by simple, known
rules

* Learn simple skills with raw sensory
inputs, given enough experience

* Learn from imitating enough human-
provided expert behavior




What has proven challenging so far?

* Humans can learn incredibly quickly
* Deep RL methods are usually slow

* Humans can reuse past knowledge
* Transfer learning in deep RL is an open problem

* Not clear what the reward function should be
* Not clear what the role of prediction should be



Instead of trying to produce a
program to simulate the adult
mind, why not rather try to
produce one which simulates the
child's? If this were then subjected
to an appropriate course of
education one would obtain the
adult brain.

- Alan Turing

general learning
algorithm

environment
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