IASD M2 at Paris Dauphine

Deep Reinforcement Learning

11: Optimal Control and Planning

Eric Benhamou - Thérese des Escotais

Pauphine & &

UNIVERSITE PARIS M n X

N ‘_/

UNIVERSITE PARIS

Homework 3 : Q-Learning and Actor-Critic Algorithms

Due on Wed 28 February.

Pauphine | PSL* Moodle

3 outputs to submit:
1. Report (pdf)
2. (code) Submit.zip

Google
3. notebook

Any homework submitted late will not be graded

Ask your questions on Moodle and answer to others

Acknowledgement

These materials are based on the seminal course of Sergey Levine CS285

Advances in
Reinforcement Learning

https://rail.eecs.berkeley.edu/deeprlcourse/

Today’s Lecture

Introduction to model-based reinforcement learning

What if we know the dynamics? How can we make decisions?
Stochastic optimization methods

Monte Carlo tree search (MCTS)

Trajectory optimization

A

Goals:

« Understand how we can perform planning with known dynamics models in
discrete and continuous spaces

e Get an overview of widely used algorithms for optimal control and
trajectory optimization

Recap: the reinforcement learning objective

T
pe(Shal,-- ST,aT H at|St St+1|Staat)

0* = arg meax ET,\,pg(T) [; r(s¢, at)]

Recap: model-free reinforcement learning

T
p9(817a17°' STvaT H atlstw

assume this is unknown
don’t even attempt to learn it

0* = arg mgxx ETNpg(T) [; r(s¢, at)]

What if we knew the transition dynamics?

« Often we do know the dynamics

1. Games (e.g., Atari games, chess, Go)
2. Easily modeled systems (e.g., navigating a car)
3. Simulated environments (e.g., simulated robots, video games)

« Often we can learn the dynamics

1. System identification — fit unknown parameters of a known model
2. Learning —fit a general-purpose model to observed transition data

Does knowing the dynamics make things easier?
Often yes!

Model-based reinforcement learning

1. Model-based reinforcement learning: learn the transition dynamics,
then figure out how to choose actions

2. Today: how can we make decisions if we know the dynamics?
a. How can we choose actions under perfect knowledge of the system dynamics?
b. Optimal control, trajectory optimization, planning

3. Next lecture: how can we learn unknown dynamics?
4. How can we then also learn policies? (e.g. by imitating optimal control)

The objective

pooling

mm Tog p(eaten by tiger|ay,...,ar)
il’l ZC S¢,at) S.t. sy = f(St—laat—l)
al,..

The deterministic case

T
ai,...,apr = arg max Zr(st,at) s.t. S¢41= f(St+1, a)

al,...,.a7
ft=1

10

The stochastic open-loop case

T
po(s1,...,srlar,...,ar) = p(s1) | | p(sisilse, a)

Zr(st,atﬂal,...,aT

t
why is this suboptimal?

ai,...,ar = arg max
Al yeen, aT

11

Aside: terminology

what is this “loop”?

closed-loop open-loop

only sentatt=1,
then it’s one-way!

12

The stochastic closed-loop case

m =argmax F, ;) [Z r(st, at)]
¢

form of 77 \
neural net QC}O\O,a

time-varying linear

13

Open-Loop Planning

But for now, open-loop planning

ALy .-y ar = arg almaf’;T ZT(Su a;) s.t. ajp1 = f(s¢,a4)
..... —

15

Stochastic optimization

abstract away optimal control/planning:

ai,...,ar = arg_max (a,...,ar) A:argmpafo(A)

L J
Al

don’t care what this is

simplest method: guess & check “random shooting method”

1. pick Aq,..., Ay from some distribution (e.g., uniform)

2. choose A; based on arg max; J(A;)

Cross-entropy method (CEM)

1. pick Ay, ..., Ap{from some distributionde.g., uniform)

2. choose A; based on arg max; J(A;) can we do better?

J(A) typically use Gaussian
| ~ distribution

/ see also: CMA-ES (sort of
. A like CEM with
momentum)

cross-entropy method with continuous-valued inputs:
1. sample Aq,..., Ay from p(A)
2. evaluate J(Aq),...,J(AyN)
3. pick the elites A;,, ..., A;,, with the highest value, where M < N
4. refit p(A) to the elites A;,,..., A;,, 17

What’s the upside?

1. Very fast if parallelized
2. Extremely simple

What's the problem?

1. Very harsh dimensionality limit
2. Only open-loop planning

Discrete case: Monte Carlo tree search (MCTS)

discrete planning as a search problem

S1
//Q @,
N N
o s
K
S9 S92
N =) QS =
< <
/ N 7 N
&Y v NY; '
[2
S3 S3 S3 S3

NEEAAMBE z
QL EEELELE rslefecelx]e
~+~ ®) Q @] (o] (] :

19

Discrete case: Monte Carlo tree search (MCTS)

how to approximate value without full tree?

S1
EEH
Q
R 4 < «
N N
7 ® 7
= K
(0] S9 52
> NG YR
>+0
FIe) 4 N\ W/ A\
Y, 4 N g
0]
V
S S3 S3 S3 S3
St 7
~ ~~ ~~ ~
+~ -+~ + +~
. @0 Va A
TS S s s
e.g., random policy = S = S
= S S =

20

Discrete case: Monte Carlo tree search (MCTS)

can’t search all paths — where to search first?

- S1
Q
— / %
e A

BT o> V4
+10 +15
S S9
== 2
(O)
" g
. .
+ +
0 S S
S S
e
e

St 7

intuition: choose nodes with best reward, but also prefer rarely visited nodes
21

Discrete case: Monte Carlo tree search (MCTS)

generic MCT'S sketch
1. find a leaf s; using TreePolicy(s1)
2. evaluate the leaf using DefaultPolicy(s;)

3. update all values in tree between s; and s;

take best action from sy

UCT TreePolicy(s;)

if s; not fully expanded, choose new a;

else choose child with best Score(ssy1)

Score(sy) =]%EZ)) 4+ 20\/2 ln]\]fv(iig—l)

22

Additional reading

Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener, Perez,
Samothrakis, Colton. (2012). A Survey of Monte Carlo Tree Search Methods.
« Survey of MCTS methods and basic summary.

Trajectory Optimization with Derivatives

Can we use derivatives?

T
min Zc(xt,ut) s.t. x¢ = f(Xp_1,U4_1)

ui,...,ur
t=1

min c(x1,u1) + c(f(x1,u1),us) + -+ c(f(f(...)-.

ui,...,ur

usual story: differentiate via backpropagation and optimize!

df df dc dc s; — state
dx;’ du;’ dx;’ duy a; — action

need

s
in practice, it really helps to use a 2" order method! [“5"” oy
\:-'{ : g

')7uT)

X; — state
u; — action

25

Shooting methods vs collocation

shooting method: optimize over actions only

min c¢(x1,u1) + c(f(xy,uy),u2) + - +c(f(f(...)...),up)

Ug,..., ur

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints
T

min Zc(xt,ut) s.t. x¢ = f(X¢—1,0p1)

ul,...,.ur7,X1,...,. X717
t=1

/V\/

Linear case: Linear Quadratic Regulator (LQR)

Ui,..., urT

linear quadratic

Linear case: LQR xr (unknown)

min ¢(x1,u1) + c(f(x1,u1),u2) + - - —|—C(}(f(..)...ﬁ),uT)

u1,...,ur L r
10 x 1" X x; |] h
(X, uy) = = t C, N S [¢] c only term that
2 | uy uy Uy depends on ur
Xt
f(xe,up) = Fy [] + 1
Uy
|: CXT XT
Cr = ’
Base case: solve for ur only Cur xr
Cxr
— const + = | X7 TC R) CT:[CuT]
Q(x7,ur) = const + 5 | ur T ap | ©T
VUTQ<XT7 uT) — CuTaxTXT + CuT,uTuT + C?;T =0 Kr = —Cl_r;,uT CuT,XT
ur = _C;;,uT (CuT,xTXT + CuT) ur = Krxpr + kp kr = _C;;,uTCuT

Q QO

XT,urT

ur,ur

|

29

Linear case: LQR

ur = Krxr + kr Kr = —-Cg! v, Curxr kr = —Cg. 4, Cur
1] x r X X g
_ t 4= T C T T
Q(x7,ur) = cons —I—QIUT} T[uT]+[uT] Cr

Since ur is fully determined by x7, we can eliminate it via substitution!

V(XT):consHl[T]TCT[xT]+[xT]TCT

2 | Krxr +kr Krxr + kr Krxr + kr
1 1 1 oo R
V(xr) _§XTCXT’XTXT + 2XTCXT ur KX + 2XTK Cup xrXT + 2XTK Curur Krxr+

1

xr K3Cupup K1 + ZX%CXT ar k7 + xmcy, + xnKhey,. + const

1
V (x7) = const + §X%:VTXT + XAV

V= CXT,XT + CXT,UT Kr + K%:C + KCZZZCUT,UTKT

ur,XT

vy = Cxp + Cuxpurkr + KEC,, + KiC kr

ur,ur

30

Linear case: LQR

Solve for uy_7 in terms of x7_1 ur_1 affects x7!

X7
f(xr—1,ur—1) =x7 =Fpr_; [-l] + 74
ur—1

1| x7r_q g [XT-1] [XT-1]T
_1,ur_1) = t+— Cr_ -+ 1tV _1,ur—
Q(XT 1, ar 1) cons 9 { ur_q] T-—1 ur_ U1 Cr—1 (f(jT 1, ur 1))

(1 |

V (x7) = const + §X%VTXT + Xhvr

T T T
L x4 T XT—1 XT-1 T XT-1 T
V(x7) = const + — F+_ VrFp_ + F+_ Vpfr_1 + F+_ v,
(xr) 2 [ur—1] oL T [ur—1 ur—1 Ch ur—1 -t

guadratic linear linear

31

Linear case: LQR

T T
1| xr_ X7 _ X7

Q(Xp_1,ur_1) :const—|—§ [=1] CT_1[=1 }%—[-l] cr—1+V (f(xr—1,ur—1))
ur—1 ur—1 ur—1

ur—1q ur—1 u7r—1 u7r—1q

qguadratic linear linear

T T T
1
V(XT) — const + 5 [A1] F%_lvTFT_l [AT-1 :| —+ [AT-1] F%_lvaT—l + [AT-1] F%_1V5

T T
L x4 XT—1 XT—-1
X7-1,Ur—1) = const + — _ + _
Q(x7-1,ur-1) 5 [wr] Qr—1 [W wp_, | A1
Qr_1=Cr_1+F;_VrFr_,

ar-1=cr_1 +Fp_Vofr 1 + F1_ vy

T
vuT_lQ(XT—la uT—l) — QuT_l,xT_le—l + QuT_l,uT_luT—l + quT—l — 0

—1
ur_1 = Kr_1x7_1 +kr 1 Kr-1=-Qur_, ur_, Qur_i,xr_;
! 32

kT—l — = uT_l,uT_lquT—l

Linear case: LQR

Backward recursion s e o

for t =T to 1:
Q. =Ci+F/ V., F,
ar =c; +F Vi f, + F{ v
Q(x¢,uy) zconst—l—% [it]TQt [Xy] n [Xy]th

U; < arg min Q(Xt, ut) = K;x; + kt

we know x1!

Forward recursion

fort =T to 1:
K; = ut,ut Qut,Xt u; = Kyxy + ky

k; = — ut,utqut X1 = f(x¢, uy)
Vt — th,xt + th,uth + K?Qut,xt + K?Qut,utK

Vi = (x, + th,utkt + K?Qut -+ K?Qutautkt

1
V(x¢) = const + §fotxt +x! vy
33

Linear case: LQR

Backward recursion

fort =T to 1: total cost from now until end if we take u; from state x;

Qt — Ct + F?Vt_}_lFt /
q: = C¢ + F,},th—l—lft + FtTVt+1

1 Xt g Xt X¢ g
Q(x¢,u;) = const + 5| u Q: + op

U; < arg min Q(Xt, ut) = K;x; + kt
U

K,— Q- Q total cost from now until end from state x;
e i V(x¢) = min Q(x¢, uy)

k, = -Qg uy
t ut,thut

Vt — th,xt + th,uth + K?Qutaxt +

Vi = (Qx, + th,utkt T K?Qut + K?

t Qllt,ut Kt

U, Ut kt

1
V(x¢) = const + §fotxt + vat g »

LQR for Stochastic and Nonlinear Systems

Stochastic dynamics

|+
Xt41 ™~ p(Xt—|—1|Xta ut)

X
P(Xep1|xe,) =N (Ft [ut] +ft72t>

Solution: choose actions according to u; = K;x; + k;
x; ~ p(X¢), no longer deterministic, but p(x;) is Gaussian
no change to algorithm! can ignore X; due to symmetry of Gaussians

(checking this is left as an exercise; hint: the expectation of a quadratic under
a Gaussian has an analytic solution)

36

The stochastic closed-loop case

T =argmax F ;) [Z r(st, at)]
t

form of 77

time-varying linear

KtSt + kt

37

Nonlinear case: DDP/iterative LQR

Linear-quadratic assumptions:

I R I e

Uy
Can we approrimate a nonlinear system as a linear-quadratic system?

f(xe,wp) = f(Xe, 01) + Vi, u, f (X,) [w—]

ut—ﬁt

. . T
A A X; — X 1
C(Xtaut) ~ C(Xt7ut)+vXt7utC<Xt7ut) [uz . ﬁi]+§ [-] Vit,ut

38

Nonlinear case: DDP/iterative LQR

f(xe,wp) = f(Xe, 1) + Vi, u, f (X, 1) [w]

ut—ﬁt

. AT
. o X; — X 1| x4 —x o X; — X
c(xt,ut) ~ c(xt,ut)+th,utc(Xt,ut) [uz B lAli]—|—§ |: t t] Vit,ut(j(Xtaut) [t At

ut—ﬁt

= 5Xt _ 1 5Xt g 5Xt
f 5Xt, 51175 = Ft C 5Xt, 51175 = — Ct
LYJ (5ut 2 (5ut \\Y/; 5ut
Vs f (0, 2 el
xeup S (Xt W) Vi u, C(Xe; Uy)

(SXt — Xt — }A(t

5ut — Ut —ﬁt

Now we can run LQR with dynamics f, cost ¢, state dx;, and action Ju,

39

Nonlinear case: DDP/iterative LQR

Iterative LQR (simplified pseudocode)

until convergence:

Ft — vxt,ut f()/\('llh ﬁt)
Ct — vXt,utC()A(t7 ﬁt)

Ct:VQ

xt,utc(j\ct? ﬁt)
Run LQR backward pass on state dx; = x; — X; and action du; = u; — Uy
Run forward pass with real nonlinear dynamics and u; = K;(x; —x;)+k;+ 1,

Update x; and 0; based on states and actions in forward pass

40

Nonlinear case: DDP/iterative LQR

Why does this work?

Compare to Newton’s method for computing miny g(x):

until convergence:
g = Vxg(x)
H = Vig(%)
1
X ¢— arg min §(X ~3)THx - %)+ gl (x— %)

[terative LQR (iILQR) is the same idea: locally approximate a complex nonlinear
function via Taylor expansion

In fact, iLQR is an approximation of Newton’s method for solving

min c(xi,u1) +c(f(xy,uy),u) + -+ c(f(f(...)...),up)

u1,...,ur

41

Nonlinear case: DDP/iterative LQR

In fact, iLQR is an approximation of Newton’s method for solving

min c¢(x1,u1) + c(f(x1,uy1),u2) + - +c(f(f(...)...),ur)

ui,...,ar

To get Newton’s method, need to use second order dynamics approximation:

f(Xt,ut) ~ f(}/\(t,ﬁt)‘i_th,Utf()A(taﬁt) [5Xt]—1—% (vit’utf(&t,ﬁt) | [5Xt :|> [

5ut 5ut

differential dynamic programming (DDP)

5Xt
51175

|

42

Nonlinear case: DDP/iterative LQR

1
X ¢— arg min §(X —3)TH((x - %) +gl'(x— %)

X

why is this a bad idea?

until convergence: :

Ft — th,utf(fcta ﬁt)

¢t = Vix, u,Cc(X¢, Uy) search over «
until improvement achieved

C, = Vi, uc(k¢, 1)

Run LQR backward pass on state dx; = x; — X; and action pu; = u; — Oy
Run forward pass with u; = K;(x; — X;) + kksiaj,

Update x; and 0; based on states and actions in forward pass

43

Case Study and Additional Readings

Case study: nonlinear model-predictive control

Synthesis and Stabilization of Complex Behaviors through
Online Trajectory Optimization

Yuval Tassa, Tom Erez and Emanuel Todorov
University of Washington

every time step:
observe the state x;

, . t+T
use iLQR to plan uy, ..., ur to minimize Zt,it c(xy, uy)

execute action uy, discard wsyq,..., Uy

45

Synthests of Complex Behaviors
with
Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference
on Intelligent Robots and Systems

2012

46

Additional reading

1. Mayne, Jacobson. (1970). Differential dynamic programming.
 Original differential dynamic programming algorithm.

2. Tassa, Erez, Todorov. (2012). Synthesis and Stabilization of Complex

Behaviors through Online Trajectory Optimization.
« Practical guide for implementing non-linear iterative LQR.

3. Levine, Abbeel. (2014). Learning Neural Network Policies with Guided

Policy Search under Unknown Dynamics.
« Probabilistic formulation and trust region alternative to deterministic line search.

What’s wrong with known dynamics?

48

