IASD M2 at Paris Dauphine

Deep Reinforcement Learning

11: Optimal Control and Planning

Eric Benhamou - Thérèse des Escotais

Homework 3 : Q-Learning and Actor-Critic Algorithms

Due on Wed 28 February.

3 outputs to submit:

- 1. Report (pdf)
- (code) Submit.zip
 COC notebook

Any homework submitted late will not be graded

Ask your questions on Moodle and answer to others

Acknowledgement

These materials are based on the seminal course of Sergey Levine CS285

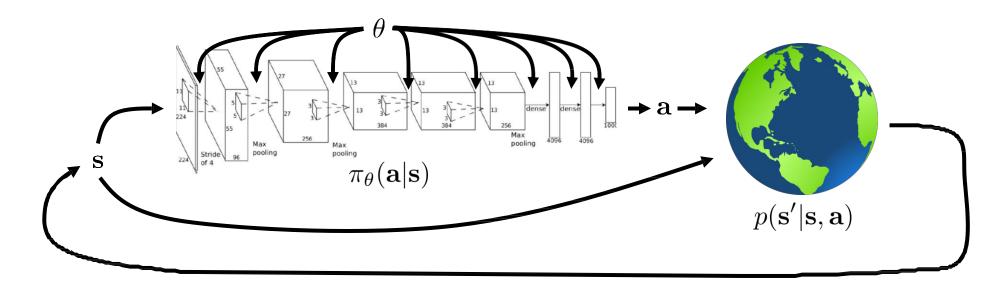
Today's Lecture

- 1. Introduction to model-based reinforcement learning
- 2. What if we know the dynamics? How can we make decisions?
- 3. Stochastic optimization methods
- 4. Monte Carlo tree search (MCTS)
- 5. Trajectory optimization

Goals:

- Understand how we can perform planning with known dynamics models in discrete and continuous spaces
- Get an overview of widely used algorithms for optimal control and trajectory optimization

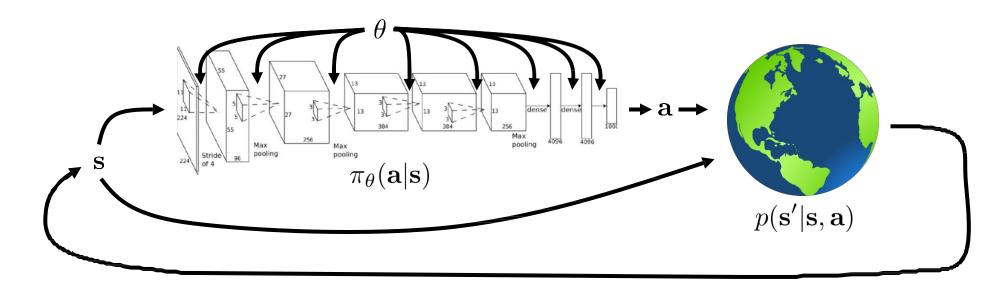
Recap: the reinforcement learning objective



$$\underbrace{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{\pi_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

Recap: model-free reinforcement learning



$$p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T}) = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) p(\mathbf{s}_{t} + \mathbf{s}_{t}, \mathbf{a}_{t})$$
assume this is unknown
don't even attempt to learn it
$$\theta^{\star} = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

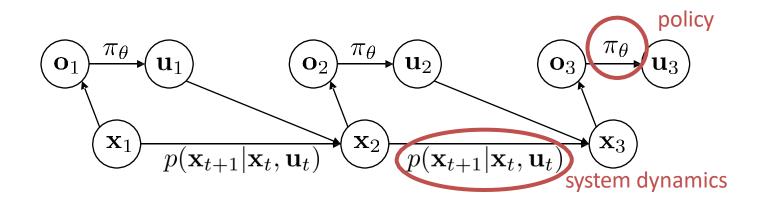
What if we knew the transition dynamics?

- Often we do know the dynamics
 - 1. Games (e.g., Atari games, chess, Go)
 - 2. Easily modeled systems (e.g., navigating a car)
 - 3. Simulated environments (e.g., simulated robots, video games)
- Often we can learn the dynamics
 - 1. System identification fit unknown parameters of a known model
 - 2. Learning fit a general-purpose model to observed transition data

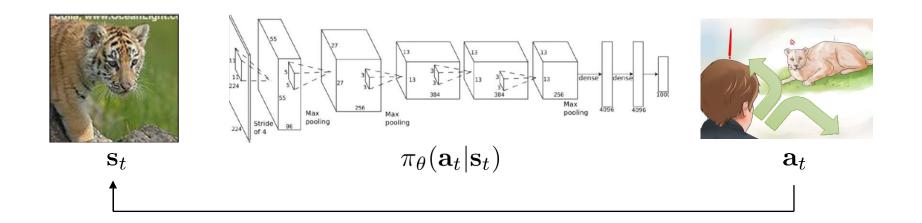
Does knowing the dynamics make things easier? Often yes!

Model-based reinforcement learning

- 1. Model-based reinforcement learning: learn the transition dynamics, then figure out how to choose actions
- 2. Today: how can we make decisions if we *know* the dynamics?
 - a. How can we choose actions under perfect knowledge of the system dynamics?
 - b. Optimal control, trajectory optimization, planning
- 3. Next lecture: how can we learn *unknown* dynamics?
- 4. How can we then also learn policies? (*e.g. by imitating optimal control*)

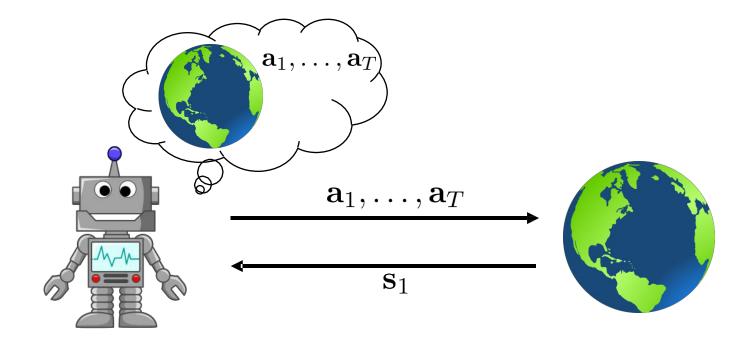


The objective



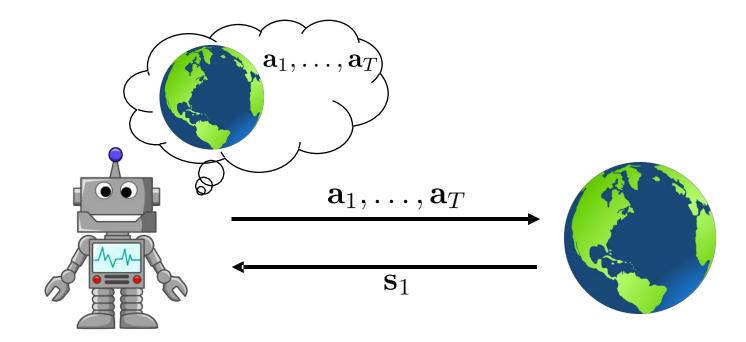
$$\min_{\mathbf{a}_1,\ldots,\mathbf{a}_T} \operatorname{Tog} p(\text{eaten by tiger}|\mathbf{a}_1,\ldots,\mathbf{a}_T)$$
$$\lim_{\mathbf{a}_1,\ldots,\mathbf{a}_T} \sum_{t=1}^{\mathbf{a}_1,\ldots,\mathbf{a}_T} c(\mathbf{s}_t,\mathbf{a}_t) \text{ s.t. } \mathbf{s}_t = f(\mathbf{s}_{t-1},\mathbf{a}_{t-1})$$

The deterministic case



$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg \max_{\mathbf{a}_1, \dots, \mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \text{ s.t. } \mathbf{s}_{t+1} = f(\mathbf{s}_{t+1}, \mathbf{a}_t)$$

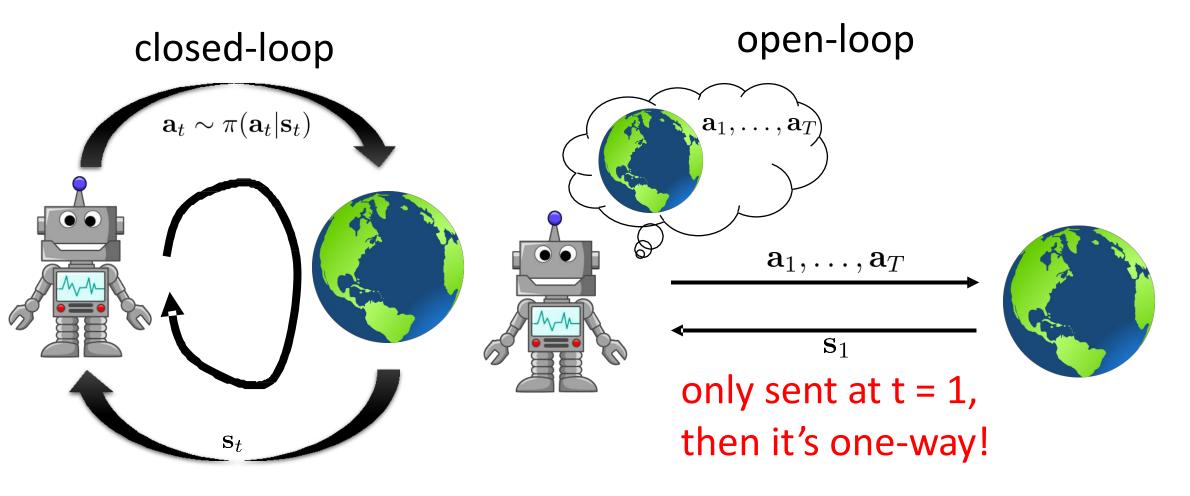
The stochastic open-loop case



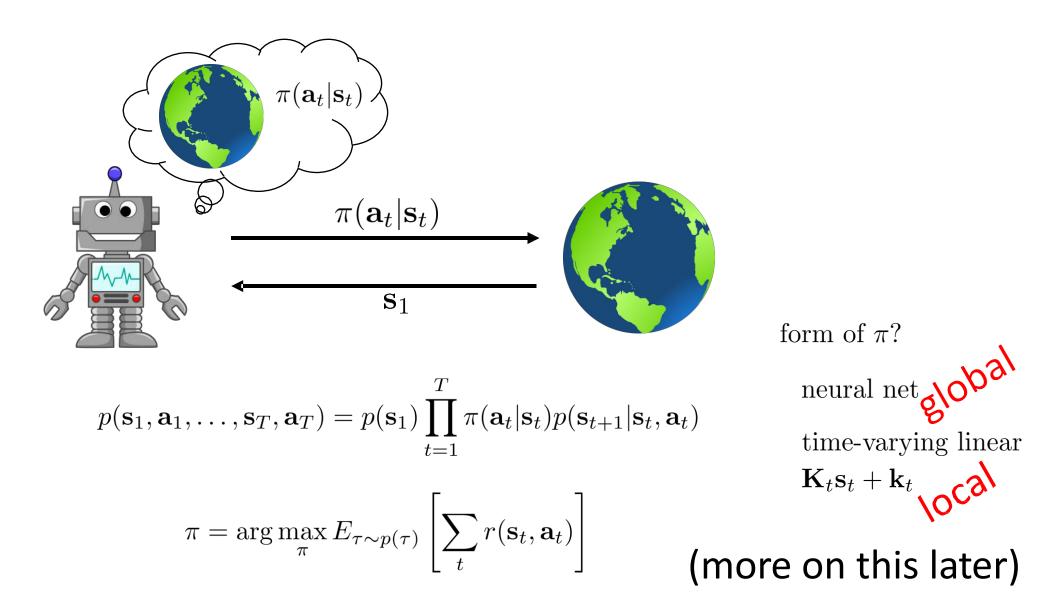
$$p_{\theta}(\mathbf{s}_{1}, \dots, \mathbf{s}_{T} | \mathbf{a}_{1}, \dots, \mathbf{a}_{T}) = p(\mathbf{s}_{1}) \prod_{t=1}^{T} p(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \mathbf{a}_{t})$$
$$\mathbf{a}_{1}, \dots, \mathbf{a}_{T} = \arg \max_{\mathbf{a}_{1}, \dots, \mathbf{a}_{T}} E \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) | \mathbf{a}_{1}, \dots, \mathbf{a}_{T} \right]$$
why is this suboptimal?

Aside: terminology

what is this "loop"?

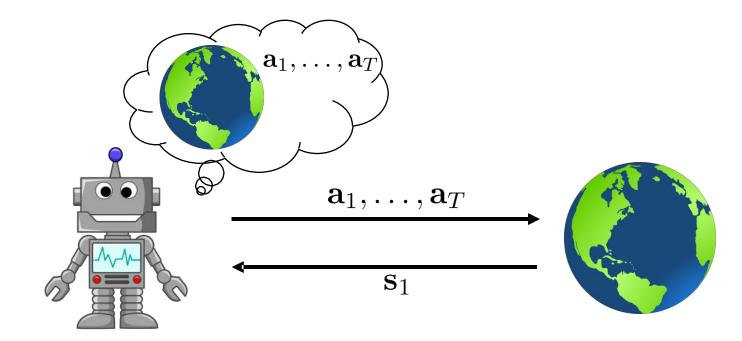


The stochastic closed-loop case



Open-Loop Planning

But for now, open-loop planning



$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg \max_{\mathbf{a}_1, \dots, \mathbf{a}_T} \sum_{t=1}^T r(\mathbf{s}_t, \mathbf{a}_t) \text{ s.t. } \mathbf{a}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$$

Stochastic optimization

abstract away optimal control/planning:

 $\mathbf{a}_{1}, \dots, \mathbf{a}_{T} = \arg \max_{\mathbf{a}_{1}, \dots, \mathbf{a}_{T}} J(\mathbf{a}_{1}, \dots, \mathbf{a}_{T}) \qquad \mathbf{A} = \arg \max_{\mathbf{A}} J(\mathbf{A})$ don't care what this is

simplest method: guess & check "random shooting method"

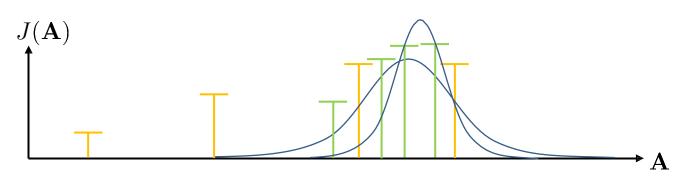
1. pick $\mathbf{A}_1, \ldots, \mathbf{A}_N$ from some distribution (e.g., uniform)

2. choose \mathbf{A}_i based on $\arg \max_i J(\mathbf{A}_i)$

Cross-entropy method (CEM)

1. pick $\mathbf{A}_1, \ldots, \mathbf{A}_N$ from some distribution (e.g., uniform)

2. choose \mathbf{A}_i based on $\arg \max_i J(\mathbf{A}_i)$



see also: CMA-ES (sort of like CEM with momentum)

typically use Gaussian

distribution

can we do better?

cross-entropy method with continuous-valued inputs:

- 1. sample $\mathbf{A}_1, \ldots, \mathbf{A}_N$ from $p(\mathbf{A})$
 - 2. evaluate $J(\mathbf{A}_1), \ldots, J(\mathbf{A}_N)$
 - 3. pick the *elites* $\mathbf{A}_{i_1}, \ldots, \mathbf{A}_{i_M}$ with the highest value, where M < N
- 4. refit $p(\mathbf{A})$ to the elites $\mathbf{A}_{i_1}, \ldots, \mathbf{A}_{i_M}$

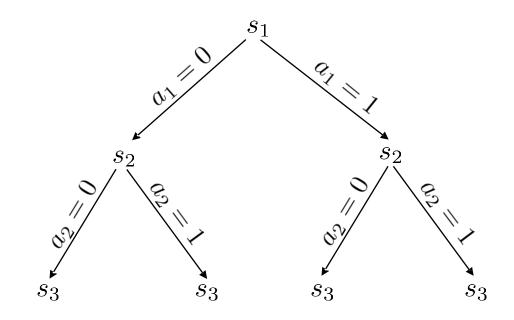
What's the upside?

- 1. Very fast if parallelized
- 2. Extremely simple

What's the problem?

- 1. Very harsh dimensionality limit
- 2. Only open-loop planning

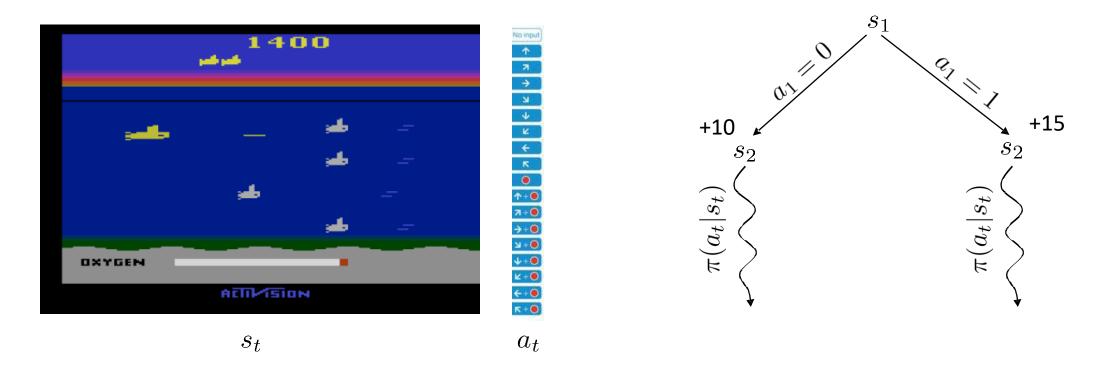
discrete planning as a search problem



No inpu 1400 s_1 Q_{j} 0) s_2 S_2 Ś OXYGEN ACTIVISION s_3 s_3 s_3 s_3 s_t a_t $\pi(a_t|s_t)$ $\pi(a_t|s_t)$ $\pi(a_t|s_t)$ $s_{t_{j}}$ $\pi(a_t)$ e.g., random policy 20

how to approximate value without full tree?

can't search all paths – where to search first?



intuition: choose nodes with best reward, but also prefer rarely visited nodes

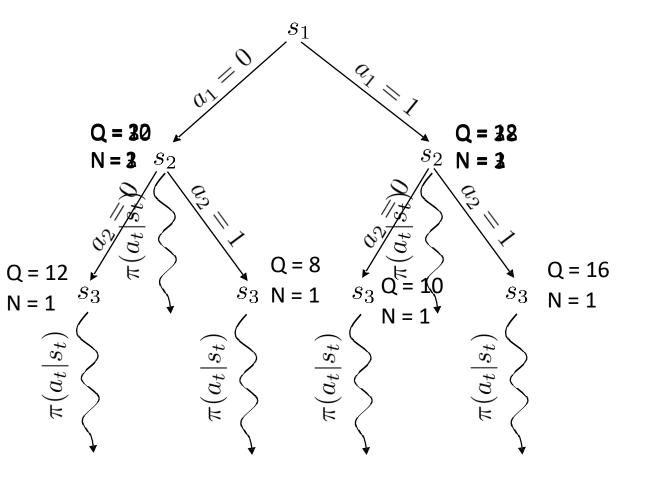
generic MCTS sketch

- ▶ 1. find a leaf s_l using TreePolicy (s_1)
 - 2. evaluate the leaf using $DefaultPolicy(s_l)$
- **3**. update all values in tree between s_1 and s_l take best action from s_1

UCT TreePolicy (s_t)

if s_t not fully expanded, choose new a_t else choose child with best $Score(s_{t+1})$

$$\operatorname{Score}(s_t) = \frac{Q(s_t)}{N(s_t)} + 2C\sqrt{\frac{2\ln N(s_{t-1})}{N(s_t)}}$$



Additional reading

Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, Colton. (2012). A Survey of Monte Carlo Tree Search Methods.

• Survey of MCTS methods and basic summary.

Trajectory Optimization with Derivatives

Can we use derivatives?

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\ldots)\ldots),\mathbf{u}_T)$$

usual story: differentiate via backpropagation and optimize!

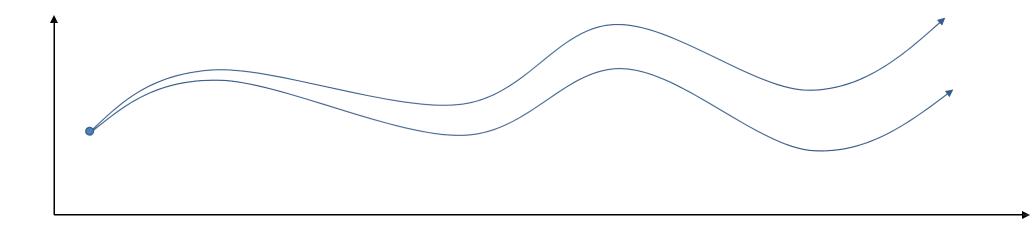
need
$$\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}, \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}$$

in practice, it really helps to use a 2nd order method!

Shooting methods vs collocation

shooting method: optimize over actions only

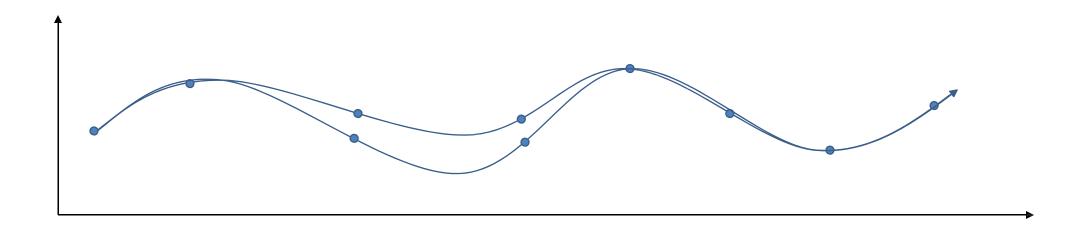
 $\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\ldots)\ldots),\mathbf{u}_T)$



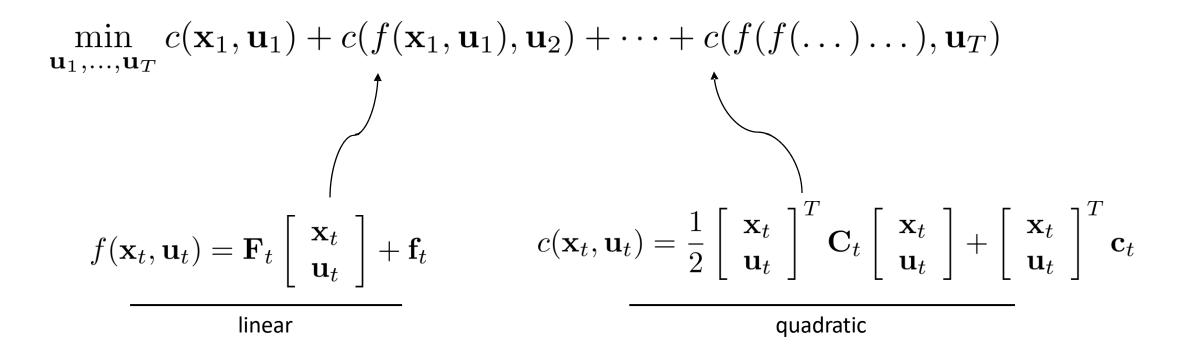
Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T,\mathbf{x}_1,\ldots,\mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$



Linear case: Linear Quadratic Regulator (LQR)



Linear case: LQR

$$\begin{array}{l} \underset{\mathbf{u}_{1},...,\mathbf{u}_{T}}{\min} c(\mathbf{x}_{1},\mathbf{u}_{1}) + c(f(\mathbf{x}_{1},\mathbf{u}_{1}),\mathbf{u}_{2}) + \cdots + c(f(f(\ldots)\ldots),\mathbf{u}_{T}) \\ c(\mathbf{x}_{t},\mathbf{u}_{t}) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{c}_{t} \quad \begin{array}{c} \text{only term that} \\ \text{depends on } \mathbf{u}_{T} \end{array}$$

$$f(\mathbf{x}_{t},\mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t} \quad \mathbf{C}_{T} = \begin{bmatrix} \mathbf{C}_{\mathbf{x}_{T},\mathbf{x}_{T}} & \mathbf{C}_{\mathbf{x}_{T},\mathbf{u}_{T}} \\ \mathbf{C}_{\mathbf{u}_{T},\mathbf{x}_{T}} & \mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}} \end{bmatrix}$$

Base case: solve for \mathbf{u}_T only

$$Q(\mathbf{x}_T, \mathbf{u}_T) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{c}_T \qquad \mathbf{c}_T = \begin{bmatrix} \mathbf{c}_{\mathbf{x}_T} \\ \mathbf{c}_{\mathbf{u}_T} \end{bmatrix}$$

$$\nabla_{\mathbf{u}_T} Q(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{x}_T + \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{u}_T + \mathbf{c}_{\mathbf{u}_T}^T = 0 \qquad \mathbf{K}_T = -\mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T}^{-1} \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T}$$
$$\mathbf{u}_T = -\mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T}^{-1} \left(\mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{x}_T + \mathbf{c}_{\mathbf{u}_T} \right) \qquad \mathbf{u}_T = \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \qquad \mathbf{k}_T = -\mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T}^{-1} \mathbf{c}_{\mathbf{u}_T}$$

$$\mathbf{u}_{T} = \mathbf{K}_{T}\mathbf{x}_{T} + \mathbf{k}_{T} \qquad \mathbf{K}_{T} = -\mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}}^{-1}\mathbf{C}_{\mathbf{u}_{T},\mathbf{x}_{T}} \qquad \mathbf{k}_{T} = -\mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}}^{-1}\mathbf{c}_{\mathbf{u}_{T}}$$
$$Q(\mathbf{x}_{T},\mathbf{u}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T}\mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T}\mathbf{c}_{T}$$

Since \mathbf{u}_T is fully determined by \mathbf{x}_T , we can eliminate it via substitution!

$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T} \mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix}^{T} \mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T} \mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{K}_{T} \mathbf{x}_{T} + \mathbf{k}_{T} \end{bmatrix}^{T} \mathbf{c}_{T}$$

$$V(\mathbf{x}_{T}) = \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{x}_{T},\mathbf{x}_{T}} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{x}_{T},\mathbf{u}_{T}} \mathbf{K}_{T} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{K}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T},\mathbf{x}_{T}} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{K}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}} \mathbf{K}_{T} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{K}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}} \mathbf{K}_{T} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}} \mathbf{K}_{T} \mathbf{x}_{T} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{u}_{T},\mathbf{u}_{T}} \mathbf{k}_{T} + \mathbf{x}_{T}^{T} \mathbf{c}_{\mathbf{u}_{T}} + \mathbf{x}_{T}^{T} \mathbf{c}_{\mathbf{u}_{T}} + \mathbf{c}_{\mathbf{n}_{T}} \mathbf{c}_{\mathbf{u}_{T},\mathbf{u}_{T}} \mathbf{k}_{T} + \mathbf{c}_{\mathbf{n}_{T}} \mathbf{c}_{\mathbf{n}_{T},\mathbf{u}_{T}} \mathbf{c}_{\mathbf{n}_{T},\mathbf{u}_{T}} \mathbf{k}_{T} + \mathbf{c}_{\mathbf{n}_{T}} \mathbf{c}_{\mathbf{n}_{T},\mathbf{n}_{T}} \mathbf{c}_{\mathbf{n}_{T},\mathbf{n}_{T}} \mathbf{c}_{\mathbf{n}_{T}} \mathbf{c}_{$$

30

Solve for
$$\mathbf{u}_{T-1}$$
 in terms of \mathbf{x}_{T-1} \mathbf{u}_{T-1} affects \mathbf{x}_{T} !

$$f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \mathbf{x}_{T} = \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \mathbf{f}_{T-1}$$

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{C}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{c}_{T-1} + V(f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}))$$

$$\sqrt{V(\mathbf{x}_{T})} = \operatorname{const} + \frac{1}{2} \mathbf{x}_{T}^{T} \mathbf{V}_{T} \mathbf{x}_{T} + \mathbf{x}_{T}^{T} \mathbf{v}_{T}$$

$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{f}_{T-1} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{F}_{T-1}^{T} \mathbf{v}_{T}$$

$$Iinear$$

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{C}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{c}_{T-1} + V(f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1})))$$

$$V(\mathbf{x}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \frac{\mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{F}_{T-1}}{\mathbf{quadratic}} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \frac{\mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{f}_{T-1}}{\mathbf{linear}} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \frac{\mathbf{F}_{T-1}^{T} \mathbf{v}_{T}}{\mathbf{linear}}$$

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{Q}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^{T} \mathbf{q}_{T-1}$$

$$\mathbf{Q}_{T-1} = \mathbf{C}_{T-1} + \mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{F}_{T-1}$$

$$\mathbf{q}_{T-1} = \mathbf{c}_{T-1} + \mathbf{F}_{T-1}^{T} \mathbf{V}_{T} \mathbf{f}_{T-1} + \mathbf{F}_{T-1}^{T} \mathbf{v}_{T}$$

$$\nabla_{\mathbf{u}_{T-1}} Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{x}_{T-1}} + \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}} \mathbf{q}_{\mathbf{u}_{T-1}} = 0$$

$$\mathbf{u}_{T-1} = \mathbf{K}_{T-1} \mathbf{x}_{T-1} + \mathbf{k}_{T-1}$$

$$\mathbf{K}_{T-1} = -\mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}} \mathbf{Q}_{\mathbf{u}_{T-1}, \mathbf{x}_{T-1}}$$

$$32$$

Backward recursion

for
$$t = T$$
 to 1:

$$\mathbf{Q}_{t} = \mathbf{C}_{t} + \mathbf{F}_{t}^{T} \mathbf{V}_{t+1} \mathbf{F}_{t}$$

$$\mathbf{q}_{t} = \mathbf{c}_{t} + \mathbf{F}_{t}^{T} \mathbf{V}_{t+1} \mathbf{f}_{t} + \mathbf{F}_{t}^{T} \mathbf{v}_{t+1}$$

$$Q(\mathbf{x}_{t}, \mathbf{u}_{t}) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{Q}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{q}_{t}$$

$$\mathbf{u}_{t} \leftarrow \arg\min_{\mathbf{u}_{t}} Q(\mathbf{x}_{t}, \mathbf{u}_{t}) = \mathbf{K}_{t} \mathbf{x}_{t} + \mathbf{k}_{t}$$

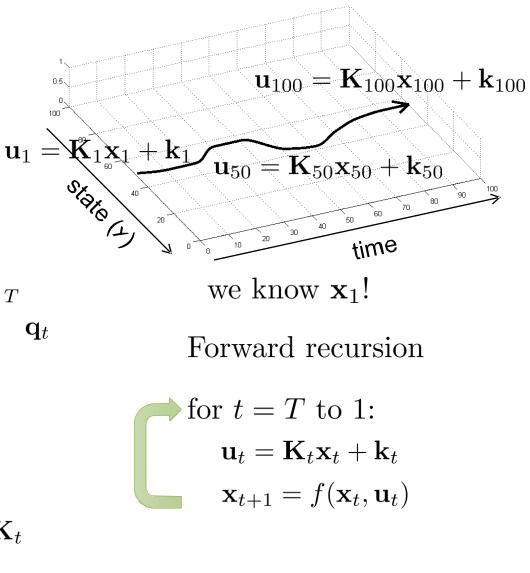
$$\mathbf{K}_{t} = -\mathbf{Q}_{\mathbf{u}_{t}, \mathbf{u}_{t}}^{-1} \mathbf{Q}_{\mathbf{u}_{t}, \mathbf{x}_{t}}$$

$$\mathbf{k}_{t} = -\mathbf{Q}_{\mathbf{u}_{t}, \mathbf{u}_{t}}^{-1} \mathbf{Q}_{\mathbf{u}_{t}}$$

$$\mathbf{V}_{t} = \mathbf{Q}_{\mathbf{x}_{t}, \mathbf{x}_{t}} + \mathbf{Q}_{\mathbf{x}_{t}, \mathbf{u}_{t}} \mathbf{K}_{t} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t}, \mathbf{x}_{t}} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t}, \mathbf{u}_{t}} \mathbf{K}_{t}$$

$$\mathbf{v}_{t} = \mathbf{q}_{\mathbf{x}_{t}} + \mathbf{Q}_{\mathbf{x}_{t}, \mathbf{u}_{t}} \mathbf{k}_{t} + \mathbf{K}_{t}^{T} \mathbf{Q}_{\mathbf{u}_{t}, \mathbf{u}_{t}} \mathbf{k}_{t}$$

$$\mathbf{V}(\mathbf{x}_{t}) = \text{const} + \frac{1}{2} \mathbf{x}_{t}^{T} \mathbf{V}_{t} \mathbf{x}_{t} + \mathbf{x}_{t}^{T} \mathbf{v}_{t}$$



Backward recursion

for t = T to 1: total cost from now until end if we take \mathbf{u}_t from state \mathbf{x}_t $\mathbf{Q}_t = \mathbf{C}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{F}_t$ $\mathbf{q}_t = \mathbf{c}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{f}_t + \mathbf{F}_t^T \mathbf{v}_{t+1}$ $Q(\mathbf{x}_t, \mathbf{u}_t) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{q}_t$ $\mathbf{u}_t \leftarrow \arg\min_{\mathbf{u}_t} Q(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$ total cost from now until end from state \mathbf{x}_t $\mathbf{K}_t = -\mathbf{Q}_{\mathbf{u}_t,\mathbf{u}_t}^{-1}\mathbf{Q}_{\mathbf{u}_t,\mathbf{x}_t}$ $V(\mathbf{x}_t) = \min Q(\mathbf{x}_t, \mathbf{u}_t)$ $\mathbf{k}_t = -\mathbf{Q}_{\mathbf{u}_t}^{-1}\mathbf{u}_t\mathbf{q}_{\mathbf{u}_t}$ $\mathbf{V}_{t} = \mathbf{Q}_{\mathbf{x}_{t},\mathbf{x}_{t}} + \mathbf{Q}_{\mathbf{x}_{t},\mathbf{u}_{t}}\mathbf{K}_{t} + \mathbf{K}_{t}^{T}\mathbf{Q}_{\mathbf{u}_{t},\mathbf{x}_{t}} + \mathbf{K}_{t}^{T}\mathbf{Q}_{\mathbf{u}_{t},\mathbf{u}_{t}}\mathbf{K}_{t}$ $\mathbf{v}_{t} = \mathbf{q}_{\mathbf{x}_{t}} + \mathbf{Q}_{\mathbf{x}_{t},\mathbf{u}_{t}}\mathbf{k}_{t} + \mathbf{K}_{t}^{T}\mathbf{Q}_{\mathbf{u}_{t}} + \mathbf{K}_{t}^{T}\mathbf{Q}_{\mathbf{u}_{t},\mathbf{u}_{t}}\mathbf{k}_{t}$ $V(\mathbf{x}_{t}) = \text{const} + \frac{1}{2}\mathbf{x}_{t}^{T}\mathbf{V}_{t}\mathbf{x}_{t} + \mathbf{x}_{t}^{T}\mathbf{v}_{t}$ 34

LQR for Stochastic and Nonlinear Systems

Stochastic dynamics

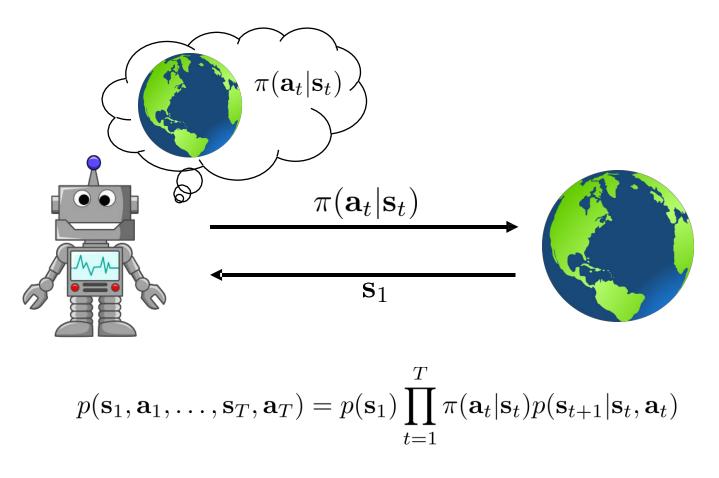
$$f(\mathbf{x}_{t}, \mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t}$$
$$\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_{t}, \mathbf{u}_{t})$$
$$p(\mathbf{x}_{t+1} | \mathbf{x}_{t}, \mathbf{u}_{t}) = \mathcal{N} \left(\mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t}, \Sigma_{t} \right)$$

Solution: choose actions according to $\mathbf{u}_t = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$

 $\mathbf{x}_t \sim p(\mathbf{x}_t)$, no longer deterministic, but $p(\mathbf{x}_t)$ is Gaussian

no change to algorithm! can ignore Σ_t due to symmetry of Gaussians (checking this is left as an exercise; hint: the expectation of a quadratic under a Gaussian has an analytic solution)

The stochastic closed-loop case



 $\pi = \arg\max_{\pi} E_{\tau \sim p(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$

time-varying linear $\mathbf{K}_t \mathbf{s}_t + \mathbf{k}_t$

form of π ?

Linear-quadratic assumptions:

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t \qquad c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t$$

Can we *approximate* a nonlinear system as a linear-quadratic system?

$$\begin{aligned} f(\mathbf{x}_t, \mathbf{u}_t) &\approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} \\ c(\mathbf{x}_t, \mathbf{u}_t) &\approx c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} \end{aligned}$$

$$\begin{aligned} f(\mathbf{x}_t, \mathbf{u}_t) &\approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} \\ c(\mathbf{x}_t, \mathbf{u}_t) &\approx c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} \end{aligned}$$

$$\bar{f}(\delta \mathbf{x}_{t}, \delta \mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix} \qquad \bar{c}(\delta \mathbf{x}_{t}, \delta \mathbf{u}_{t}) = \frac{1}{2} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \\ \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \qquad \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t})$$

 $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$

Now we can run LQR with dynamics \overline{f} , cost \overline{c} , state $\delta \mathbf{x}_t$, and action $\delta \mathbf{u}_t$

Iterative LQR (simplified pseudocode)

→ until convergence:

- $\mathbf{F}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$
- $\mathbf{c}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$
- $\mathbf{C}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$

Run LQR backward pass on state $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ and action $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$ Run forward pass with real nonlinear dynamics and $\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t$ Update $\hat{\mathbf{x}}_t$ and $\hat{\mathbf{u}}_t$ based on states and actions in forward pass

Why does this work?

Compare to Newton's method for computing $\min_{\mathbf{x}} g(\mathbf{x})$:

until convergence: $\mathbf{g} = \nabla_{\mathbf{x}} g(\hat{\mathbf{x}})$ $\mathbf{H} = \nabla_{\mathbf{x}}^{2} g(\hat{\mathbf{x}})$ $\hat{\mathbf{x}} \leftarrow \arg \min_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^{T} \mathbf{H} (\mathbf{x} - \hat{\mathbf{x}}) + \mathbf{g}^{T} (\mathbf{x} - \hat{\mathbf{x}})$

Iterative LQR (iLQR) is the same idea: locally approximate a complex nonlinear function via Taylor expansion

In fact, iLQR is an approximation of Newton's method for solving

 $\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\ldots)\ldots),\mathbf{u}_T)$

In fact, iLQR is an approximation of Newton's method for solving

 $\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\ldots)\ldots),\mathbf{u}_T)$

To get Newton's method, need to use *second order* dynamics approximation:

$$f(\mathbf{x}_t, \mathbf{u}_t) \approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} + \frac{1}{2} \left(\nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \cdot \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} \right) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}$$

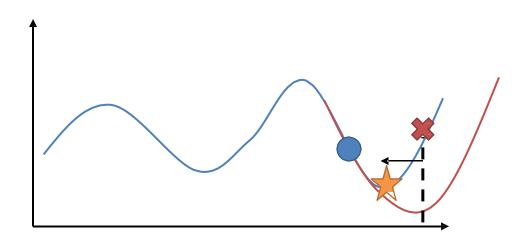
differential dynamic programming (DDP)

$$\hat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^T \mathbf{H} (\mathbf{x} - \hat{\mathbf{x}}) + \mathbf{g}^T (\mathbf{x} - \hat{\mathbf{x}})$$

why is this a bad idea?

until convergence:

 $\begin{aligned} \mathbf{F}_t &= \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \\ \mathbf{c}_t &= \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \\ \mathbf{C}_t &= \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \\ \text{Run LQR backward pass on state } \delta \mathbf{x}_t = \\ \text{Run forward pass with } \mathbf{u}_t &= \mathbf{K}_t (\mathbf{x}_t - \mathbf{z}_t) \end{aligned}$



search over α until improvement achieved

Run LQR backward pass on state $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ and action $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$ Run forward pass with $\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t \mathbf{k}_t + \hat{\mathbf{u}} \hat{\mathbf{\mu}}_t$

Update $\hat{\mathbf{x}}_t$ and $\hat{\mathbf{u}}_t$ based on states and actions in forward pass

Case Study and Additional Readings

Case study: nonlinear model-predictive control

Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization

Yuval Tassa, Tom Erez and Emanuel Todorov University of Washington

every time step: observe the state \mathbf{x}_t use iLQR to plan $\mathbf{u}_t, \ldots, \mathbf{u}_T$ to minimize $\sum_{t'=t}^{t+T} c(\mathbf{x}_{t'}, \mathbf{u}_{t'})$ execute action \mathbf{u}_t , discard $\mathbf{u}_{t+1}, \ldots, \mathbf{u}_{t+T}$

Synthesis of Complex Behaviors with Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference on Intelligent Robots and Systems 2012

Additional reading

- 1. Mayne, Jacobson. (1970). Differential dynamic programming.
 - Original differential dynamic programming algorithm.
- 2. Tassa, Erez, Todorov. (2012). Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization.
 - Practical guide for implementing non-linear iterative LQR.
- 3. Levine, Abbeel. (2014). Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics.
 - Probabilistic formulation and trust region alternative to deterministic line search.

What's wrong with known dynamics?

