IASD M2 at Paris Dauphine

Deep Reinforcement Learning

13: Model-Based Policy Learning

Eric Benhamou - Thérese des Escotais

Pauphine & &

UNIVERSITE PARIS M n X

N ‘_/

UNIVERSITE PARIS

Homework 3 : Q-Learning and Actor-Critic Algorithms

Due on Wed 27 March.

Pauphine | PSL* Moodle

3 outputs to submit:
1. Report (pdf)
2. (code) Submit.zip

Google
3. notebook

Any homework submitted late will not be graded

Ask your questions on Moodle and answer to others

Acknowledgement

These materials are based on the seminal course of Sergey Levine CS285

Advances in
Reinforcement Learning

https://rail.eecs.berkeley.edu/deeprlcourse/

every N steps

Last time: model-based RL with MPC

model-based reinforcement learning version 1.5:
1. run base policy mg(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
learn dynamics model f(s,a) to minimize >_. || f(s;,a;) — s||?

plan through f(s,a) to choose actions

execute the first planned action, observe resulting state s’ (MPC)

A

append (s,a,s’) to dataset D

The stochastic open-loop case

ar,..., ar = arg max
Al yeen, aT

why is this suboptimal?

The stochastic closed-loop case

7™ = arg max I
T

T~p(T)

form of 77

\
(o)
neural ne

tq\oo

time-varying linear

Backpropagate directly into the policy?

backprop

<

backprop

»
>

easy for deterministic policies, but also possible for stochastic policy

model-based reinforcement learning version 1.5:
1. run base policy mg(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y. || f(s;,a;) — si||?
3. backpropagate through f(s,a) into the policy to optimize my(as|s;)

4. run 7o (as|s¢), appending the visited tuples (s,a,s’) to D

What'’s the problem with backprop into policy?

backprop

backprop

bilg gradients here small gradients here

What'’s the problem with backprop into policy?

backprop

<

backprop

 Similar parameter sensitivity problems as shooting methods

« But no longer have convenient second order LQR-like method,
because policy parameters couple all the time steps, so no dynamic
programming

 Similar problems to training long RNNs with BPTT

« Vanishing and exploding gradients
o Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics
are chosen by nature

What's the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model

used to generate synthetic samples
o Seems weirdly backwards

o Actually works very well
o Essentially “model-based acceleration” for model-free RL

Model-Free Learning With a Model

Model-free optimization with a model

Policy gradient: Vo J(0 VG log mg (@ ¢|s;, t) it
1 =1 t=1

T
. . . dat dSt_|_1 d’l“t St” dat”—l dSt//
Backprop (pathwise) gradient: Vy.J (6 E 0 . (E (| | dam L dsi + dstul))

t’ t—+—1 "' =t+2

e Policy gradient might be more stable (if enough samples are used)
because it does not require multiplying many Jacobians

« See a recent analysis here:

o Parmas et al. “18: PIPP: Flexible Model-Based Policy Search Robust to the
Curse of Chaos

Model-based RL via policy gradient

model-based reinforcement learning version 2.5:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s, a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s

use f(s,a) to generate trajectories {7;} with policy my(als)

s~ W N

. use {7;} to improve my(als) via policy gradient

ot

. run my(as|st), appending the visited tuples (s, a,s’) to D

What's a potential problem with this approach?

The curse of long model-based rollouts

- = training-trajeetory— run my with true dynamics
. - — mpexpeeted-trajeetory run mg with learned model

How quickly does error accumulate?

O(eT?)

How to get away with short rollouts?

Model-based RL with short rollouts

model-based reinforcement learning version 3.0:
1. run base policy mo(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s
. pick states s; from D, use f(s,a) to make short rollouts from them

2
3
4. use both real and model data to improve 7y (als) with off-policy RI
5

. run 7p(a;|s;), appending the visited tuples (s, a,s’) to D

Dyna -Style Algorithms

Model-based RL with short rollouts

model-based reinforcement learning version 3.0:
1. run base policy mo(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s
. pick states s; from D, use f(s,a) to make short rollouts from them

2
3
4. use both real and model data to improve 7y (als) with off-policy RI
5

. run 7p(a;|s;), appending the visited tuples (s, a,s’) to D

Model-free optimization with a model

Dyna

online Q-learning algorithm that performs model-free RL with a model

given state s, pick action a using exploration policy

observe s’ and r, to get transition (s, a,s’,r)

update model p(s’|s,a) and 7(s,a) using (s, a, s’)

Q-update: Q(s,a) + Q(s,a) + aFEy [r +maxy, Q(s',a") — Q(s,a)]

repeat K times:

A

6. sample (s,a) ~ B from buffer of past states and actions

7. Q-update: Q(s,a) « Q(s,a) + aFEy .[r+ max, Q(s',a") — Q(s,a)]

Richard S. Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming.

General “Dyna-style” model-based RL recipe

1. collect some data, consisting of transitions (s, a, s’,r)
2. learn model p(s’|s,a) (and optionally, 7(s,a))
3. repeat K times:
4. sample s ~ B from buffer
choose action a (from B, from 7, or random)
. simulate s’ ~ p(s’[s,a) (and r = 7(s,a))

train on (s, a,s’,r) with model-free RL

o N o

(optional) take N more model-based steps

Model-accelerated off -policy RL

evict each time

process 4 process 5: model data collection PN § § model changes

—
‘ V

. rollout start
state s ~ B

process 2
target

update

process 1: data collection

(s,a,s',r)

process 3

\
|
Lo
LA
\ |
|
’ 1
\
1 “ \
\
| \ & 3
N ==

JL

i evict old data

|

m(als) (e.g., e-greedy)

Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)

Model-Based Policy Optimization (MBPO)

take some action a; and observe (s;,a;,s.,r;), add it to B
sample mini-batch {s;,a;,s’,r;} from B uniformly

use {s;,a;,s’} to update model p(s’[s, a)

. sample {s;} from B

for each s;, perform model-based rollout with a = 7(s)

S

use all transitions (s, a, s’,r) along rollout to update Q-function

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16
Feinberg et al. Model-based value expansion. 18
Janner et al. When to trust your model: model-based policy optimization. ‘19

Multi-Step Models & Successor Representations

What kind of model do we need to evaluate a
policy?

The job of the model is to evaluate the policy (if you can evaluate it, you can make it better)
fit model f(s,a)

fit a model to
ﬁ estimate return

generate

‘](ﬂ-) - Eswp(s1) [V7r (51)]

5o -
Vﬂ(st) — Z 7t _tEMNW(at/ EW, [T(St’a at’)]
-

let’s keep it simple samples i.e.
run the policy)

oo
_ t'—t
- Z 7 Ep(st’ |st) r(se)] (easy to re-derive for
t=t’ action-dependent rewards) improve the
00 policy
= Z v ZP(St' = s|s¢)r(s)
S

t=t’

=) (Z v (s = S|St)> r(s)

S t=t’

What kind of model do we need to evaluate a
policy?

(if you can evaluate it, you can make it better)

VT (st) = Y 2" "' Ep(s, jsn) [r(ser)]

= fit model f(s,a)
% ' fit a model to
- yj yj 7t —tp(st' = sls¢) | r(s) ﬁ estimate return
S t=t’
\) generate
! samples (i.e.
pﬂ' (Sfuture p— S|St) run the policy)
; improve the
- policy

pw(sfuture — S|St) . (]- — ’7) Z’yt,_tp(st’ — S|St)

Y} t—t

just to ensure it sums to 1

What kind of model do we need to evaluate a
policy?

(if you can evaluate it, you can make it better)

fit model f(s,a)

1 fit a model to
V(1) = 72 3 pr(Stutue = sls0)r (o) e

(J generate
! samples (i.e.
,U'ﬂ- (St) T,’:* run the policy)

‘ improve the

00
pﬂ'(sfuture — S|St) = (1 - ’7) Z 7t _tp(st’ . S|St)
t'=t

policy

,lLZ;r(St) — pw(sfuture — Z.|St)

This is called a successor representation

Dayan. Improving Generalisation for Temporal Difference Learning: The Successor Representation . 1993.

Successor representations

2% (Z’Yt - St’ — Z‘St>

t'=t

= <]‘ o 7)5(81; - 7’) _I_ ’YEath(at\st),st+1~p(st+1|st,at)[N?(St—i—l)]

\ J
1

like a Bellman backup with “reward” r(s;) = (1 — v)d(s; = 1)

in practice, we can use vectorized backups for all 7 at once

A few issues...

> Not clear if learning successor representation is easier than model - free RL
> How to scale to large state spaces?
> How to extend to continuous state spaces ?

Successor features

15 (Z p(sy = i[s)

so what?

f the number of features is much
ess than the number of states,
earning them is much easier!

:zs:“

if r(s) =)_;

then V7 (s;)

D(st)pj(s) U7 (se) = p™(se)" &5

dj(s)w; = o(s)"'w
=7 (s)"' w

= Z ¢;(St)w3
= Zu) hjw

= p" (st TZ¢jW = p"(se)' T
J

Successor features

/,L?(St) — (1 - 7)5(815 — Z) + ,YEatNﬂ'(at|St)ast+1’\’p(st+1|Styat)[/’L?(St‘*‘l)] >

?ﬂ;r (St) — ¢j (St) T ’YEatNﬂ(at|st),st+1~p(st+1|st,at) W;r (St—i—l)]

special case with
¢i(st) = (1 —7)o(se = 1)

can also construct a “Q-function-like” version:

w;r (St7 at) = ¢] (St) —I_ 7E5t+1~p(st+1|st,at),at+1~7r(at+1 |St+1) [¢;(St+la at-l—l)]

Q7 (s¢,a) & @b”(st,at)TW when 7(s;) ~ ¢(s;)Tw

Using successor features

Idea 1: recover a Q -function very quickly

1. Train ¥™ (s, a¢) (via Bellman backups)
2. Get some reward samples {s;,r; } Is this the optimal Q -function?
3. Get w « argming >, [|6(s;)!w — r|?

4. Recover Q7 (sy,a;) ~ ¥™ (s, a;)T'w

7'(s) = argmax " (s,a)’ w
a

Equivalent to one step of policy iteration

Better than nothing, but not optimal

Using successor features

Idea 2: recover many Q -functions

1. Train 9™ (s;, a;) for many policies 7 (via Bellman backups)

2. Get some reward samples {s;,;}
3. Get w < arg miny, Z@ H¢(Sz‘)TW — 7“@\’2
4. Recover Q7" (s;,a;) ~ ¢ (sy,a;)Tw for every
7'(s) = arg max max Y™ (s, a)lw
a

Finds the highest reward policy in each state

Barreto et al. Successor Features for Transfer in Reinforcement Learning . 2016.

Continuous successor representations

/’L?(St) = (1 o 7)5(St — 7’) + ,YEatNﬂ'(at|St)ast+1Np(St+1|Staat)[/'L:Lf'r(st‘*‘l)]

\

always zero for any sampled state if states are continuous

Framing successor representation as classification:

pﬂ-(sfuture |St7 at)
p7r (Sfuture ‘St: at) + pTr (Sfuture)

pﬂ—(F — 1|St: ag, Sfuture) —

binary classifier

F' =1 means Sputure 1S a future state from s;, a; under =«

D+ i pw(sfuturelsta at) D_ ~ pﬂ(s>

Continuous successor representations

D+ o~ pﬂ-<sfuturelstv at) D_ ~ pﬂ(s)

p7r (Sfuture |St: at)
p7r (Sfuture ’Sta at) + p7r (Sfuture)

pW(F — 1|St: ag, Sfuture) —

pﬂ (Sfuture)
p7r (Sfuture ISt7 at) + pTr (Sfuturc)

pW(F — O|St: ag, Sfuture) —

pW(F =1 St, At, Sfuture) _ pﬂ-(sfuture|sta at)
pW(F =0 St, At, Sfuturc) p’”(sfuturc)

pW(F =1 St, at, Sfuture) T .
S = S S¢, A
pw(F — 0 S;, Ay, Sfuture)p (futurc) p (future| ts t)

\constant independent of a;, s;

The C-Learning algorithm

D+ ~ pﬂ-<sf1.1turelsta at) D_ ~ p7r<s)

pW(F — 1|Sta ai, Sfuture)
pW(F = 1|Sta ag, Sfut.urc) + p7r (Sfuturc)

pW(F = 1|St, i, Sfuturc) =

To train:
1. Sample s ~ p™(s) (e.g., run policy, sample from trajectories)
2. Sample s ~ p™ (Stuture|St, @z) (€.g., pick sy wheret’ = t+A, A ~ Geom(7))
3. Update p™(F' = 1|s¢, as,s) using SGD with cross entropy loss

This is an on policy algorithm

Could also derive an off policy algorithm

Eysenbach , Salakhutdinov, Levine. C- Learning: Learning to Achieve Goals via Recursive Classification . 2020.

Kaggle competition: Connect X

Pauphine | PSL* Moodle

UNIVERSITE PARIS

Submit your code on Moodle on Sunday 10 March.
Presenting your solution on Wednesday 13 March.
Graded on the stabilized version of March 18.

20 points: 18 from your score and 2 from your oral presentation.

Good luck!

35

