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Homework 3 : Q-Learning and Actor-Critic Algorithms

Due on Wed 27 March.

Pauphine | PSL* Moodle

3 outputs to submit:
1. Report (pdf)
2. (code) Submit.zip

Google
3. notebook

Any homework submitted late will not be graded

Ask your questions on Moodle and answer to others
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every N steps

Last time: model-based RL with MPC

model-based reinforcement learning version 1.5:
1. run base policy mg(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
learn dynamics model f(s,a) to minimize >_. || f(s;,a;) — s||?

plan through f(s,a) to choose actions

execute the first planned action, observe resulting state s’ (MPC)

A

append (s,a,s’) to dataset D



The stochastic open-loop case

ar,..., ar = arg max
Al yeen, aT

why is this suboptimal?



The stochastic closed-loop case

7™ = arg max I
T

T~p(T)
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Backpropagate directly into the policy?

backprop

<

backprop

»
>

easy for deterministic policies, but also possible for stochastic policy

model-based reinforcement learning version 1.5:
1. run base policy mg(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y. || f(s;,a;) — si||?
3. backpropagate through f(s,a) into the policy to optimize my(as|s;)

4. run 7o (as|s¢), appending the visited tuples (s,a,s’) to D



What'’s the problem with backprop into policy?

backprop

backprop

bilg gradients here small gradients here




What'’s the problem with backprop into policy?

backprop

<

backprop

 Similar parameter sensitivity problems as shooting methods

« But no longer have convenient second order LQR-like method,
because policy parameters couple all the time steps, so no dynamic
programming

 Similar problems to training long RNNs with BPTT

« Vanishing and exploding gradients
o Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics
are chosen by nature



What's the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model

used to generate synthetic samples
o Seems weirdly backwards

o Actually works very well
o Essentially “model-based acceleration” for model-free RL



Model-Free Learning With a Model



Model-free optimization with a model

Policy gradient: Vo J(0 VG log mg (@ ¢|s;, t) it
1 =1 t=1

T
. . . dat dSt_|_1 d’l“t St” dat”—l dSt//
Backprop (pathwise) gradient:  Vy.J (6 E 0 . ( E ( | | dam L dsi + dstul))

t’ t—+—1 "' =t+2

e Policy gradient might be more stable (if enough samples are used)
because it does not require multiplying many Jacobians

« See a recent analysis here:

o Parmas et al. “18: PIPP: Flexible Model-Based Policy Search Robust to the
Curse of Chaos



Model-based RL via policy gradient

model-based reinforcement learning version 2.5:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s, a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s

use f(s,a) to generate trajectories {7;} with policy my(als)

s~ W N

. use {7;} to improve my(als) via policy gradient

ot

. run my(as|st), appending the visited tuples (s, a,s’) to D

What's a potential problem with this approach?



The curse of long model-based rollouts

- = training-trajeetory—  run my with true dynamics
. - — mpexpeeted-trajeetory run mg with learned model

How quickly does error accumulate?

O(eT?)




How to get away with short rollouts?




Model-based RL with short rollouts

model-based reinforcement learning version 3.0:
1. run base policy mo(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s
. pick states s; from D, use f(s,a) to make short rollouts from them

2
3
4. use both real and model data to improve 7y (als) with off-policy RI
5

. run 7p(a;|s;), appending the visited tuples (s, a,s’) to D



Dyna -Style Algorithms



Model-based RL with short rollouts

model-based reinforcement learning version 3.0:
1. run base policy mo(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s
. pick states s; from D, use f(s,a) to make short rollouts from them

2
3
4. use both real and model data to improve 7y (als) with off-policy RI
5

. run 7p(a;|s;), appending the visited tuples (s, a,s’) to D



Model-free optimization with a model

Dyna

online Q-learning algorithm that performs model-free RL with a model

given state s, pick action a using exploration policy

observe s’ and r, to get transition (s, a,s’,r)

update model p(s’|s,a) and 7(s,a) using (s, a, s’)

Q-update: Q(s,a) + Q(s,a) + aFEy  [r +maxy, Q(s',a") — Q(s,a)]

repeat K times:

A

6. sample (s,a) ~ B from buffer of past states and actions

7. Q-update: Q(s,a) « Q(s,a) + aFEy .[r+ max, Q(s',a") — Q(s,a)]

Richard S. Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming.



General “Dyna-style” model-based RL recipe

1. collect some data, consisting of transitions (s, a, s’,r)
2. learn model p(s’|s,a) (and optionally, 7(s,a))
3. repeat K times:
4. sample s ~ B from buffer
choose action a (from B, from 7, or random)
. simulate s’ ~ p(s’[s,a) (and r = 7(s,a))

train on (s, a,s’,r) with model-free RL

o N o

(optional) take N more model-based steps



Model-accelerated off -policy RL

evict each time

process 4 process 5: model data collection PN § § model changes

—
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. rollout start
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m(als) (e.g., e-greedy)




Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)

Model-Based Policy Optimization (MBPO)

take some action a; and observe (s;,a;,s.,r;), add it to B
sample mini-batch {s;,a;,s’,r;} from B uniformly

use {s;,a;,s’} to update model p(s’[s, a)

. sample {s;} from B

for each s;, perform model-based rollout with a = 7(s)

S

use all transitions (s, a, s’,r) along rollout to update Q-function

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16
Feinberg et al. Model-based value expansion. 18
Janner et al. When to trust your model: model-based policy optimization. ‘19



Multi-Step Models & Successor Representations



What kind of model do we need to evaluate a
policy?

The job of the model is to evaluate the policy (if you can evaluate it, you can make it better)
fit model f(s,a)

fit a model to
ﬁ estimate return

generate

‘](ﬂ-) - Eswp(s1) [V7r (51 )]

5o -
Vﬂ(st) — Z 7t _tEMNW(at/ EW, [T(St’a at’)]
-

let’s keep it simple samples i.e.
run the policy)

oo
_ t'—t
- Z 7 Ep(st’ |st) r(se)] (easy to re-derive for
t=t’ action-dependent rewards) improve the
00 policy
= Z v ZP(St' = s|s¢)r(s)
S

t=t’

=) (Z v (s = S|St)> r(s)

S t=t’




What kind of model do we need to evaluate a
policy?

(if you can evaluate it, you can make it better)

VT (st) = Y 2" "' Ep(s, jsn) [r(ser)]

= fit model f(s,a)
% ' fit a model to
- yj yj 7t —tp(st' = sls¢) | r(s) ﬁ estimate return
S t=t’
\ ) generate
! samples (i.e.
pﬂ' (Sfuture p— S|St) run the policy)
; improve the
- policy

pw(sfuture — S|St) . (]- — ’7) Z’yt,_tp(st’ — S|St)

\_Y_} t—t

just to ensure it sums to 1



What kind of model do we need to evaluate a
policy?

(if you can evaluate it, you can make it better)

fit model f(s,a)

1 fit a model to
V(1) = 72 3 pr(Stutue = sls0)r (o) e

( J generate
! samples (i.e.
,U'ﬂ- (St ) T,’:* run the policy)

‘ improve the

00
pﬂ'(sfuture — S|St) = (1 - ’7) Z 7t _tp(st’ . S|St)
t'=t

policy

,lLZ;r(St) — pw(sfuture — Z.|St)

This is called a successor representation

Dayan. Improving Generalisation for Temporal Difference Learning: The Successor Representation . 1993.



Successor representations

2% ( Z’Yt - St’ — Z‘St>

t'=t

= <]‘ o 7)5(81; - 7’) _I_ ’YEath(at\st),st+1~p(st+1|st,at)[N?(St—i—l)]

\ J
1

like a Bellman backup with “reward” r(s;) = (1 — v)d(s; = 1)

in practice, we can use vectorized backups for all 7 at once

A few issues...

> Not clear if learning successor representation is easier than model - free RL
> How to scale to large state spaces?
> How to extend to continuous state spaces ?



Successor features

15 ( Z p(sy = i[s)

so what?

f the number of features is much
ess than the number of states,
earning them is much easier!

:zs:“

if r(s) =)_;

then V7 (s;)

D(st)pj(s) U7 (se) = p™(se)" &5

dj(s)w; = o(s)"'w
=7 (s)"' w

= Z ¢;(St)w3
= Zu ) hjw

= p" (st TZ¢jW = p"(se)' T
J



Successor features

/,L?(St) — (1 - 7)5(815 — Z) + ,YEatNﬂ'(at|St)ast+1’\’p(st+1|Styat)[/’L?(St‘*‘l)] >

?ﬂ;r (St) — ¢j (St) T ’YEatNﬂ(at|st),st+1~p(st+1|st,at) W;r (St—i—l)]

special case with
¢i(st) = (1 —7)o(se = 1)

can also construct a “Q-function-like” version:

w;r (St7 at) = ¢] (St) —I_ 7E5t+1~p(st+1|st,at),at+1~7r(at+1 |St+1) [¢;(St+la at-l—l)]

Q7 (s¢,a) & @b”(st,at)TW when 7(s;) ~ ¢(s;)Tw



Using successor features

Idea 1: recover a Q -function very quickly

1. Train ¥™ (s, a¢) (via Bellman backups)
2. Get some reward samples {s;,r; } Is this the optimal Q -function?
3. Get w « argming >, [|6(s;)!w — r|?

4. Recover Q7 (sy,a;) ~ ¥™ (s, a;)T'w

7'(s) = argmax " (s,a)’ w
a

Equivalent to one step of policy iteration

Better than nothing, but not optimal



Using successor features

Idea 2: recover many Q -functions

1. Train 9™ (s;, a;) for many policies 7 (via Bellman backups)

2. Get some reward samples {s;,;}
3. Get w < arg miny, Z@ H¢(Sz‘)TW — 7“@\’2
4. Recover Q7" (s;,a;) ~ ¢ (sy,a;)Tw for every
7'(s) = arg max max Y™ (s, a)lw
a

Finds the highest reward policy in each state

Barreto et al. Successor Features for Transfer in Reinforcement Learning . 2016.



Continuous successor representations

/’L?(St) = (1 o 7)5(St — 7’) + ,YEatNﬂ'(at|St)ast+1Np(St+1|Staat)[/'L:Lf'r(st‘*‘l)]

\

always zero for any sampled state if states are continuous

Framing successor representation as classification:

pﬂ-(sfuture |St7 at)
p7r (Sfuture ‘St: at) + pTr (Sfuture)

pﬂ—(F — 1|St: ag, Sfuture) —

binary classifier

F' =1 means Sputure 1S a future state from s;, a; under =«

D+ i pw(sfuturelsta at) D_ ~ pﬂ(s>



Continuous successor representations

D+ o~ pﬂ-<sfuturelstv at) D_ ~ pﬂ(s)

p7r (Sfuture |St: at)
p7r (Sfuture ’Sta at) + p7r (Sfuture)

pW(F — 1|St: ag, Sfuture) —

pﬂ (Sfuture)
p7r (Sfuture ISt7 at) + pTr (Sfuturc)

pW(F — O|St: ag, Sfuture) —

pW(F =1 St, At, Sfuture) _ pﬂ-(sfuture|sta at)
pW(F =0 St, At, Sfuturc) p’”(sfuturc)

pW(F =1 St, at, Sfuture) T .
S = S S¢, A
pw(F — 0 S;, Ay, Sfuture)p ( futurc) p ( future| ts t)

\constant independent of a;, s;



The C-Learning algorithm

D+ ~ pﬂ-<sf1.1turelsta at) D_ ~ p7r<s)

pW(F — 1|Sta ai, Sfuture)
pW(F = 1|Sta ag, Sfut.urc) + p7r (Sfuturc)

pW(F = 1|St, i, Sfuturc) =

To train:
1. Sample s ~ p™(s) (e.g., run policy, sample from trajectories)
2. Sample s ~ p™ (Stuture|St, @z ) (€.g., pick sy wheret’ = t+A, A ~ Geom(7))
3. Update p™(F' = 1|s¢, as,s) using SGD with cross entropy loss

This is an on policy algorithm

Could also derive an off policy algorithm

Eysenbach , Salakhutdinov, Levine. C- Learning: Learning to Achieve Goals via Recursive Classification . 2020.



Kaggle competition: Connect X

Pauphine | PSL* Moodle

UNIVERSITE PARIS

Submit your code on Moodle on Sunday 10 March.
Presenting your solution on Wednesday 13 March.
Graded on the stabilized version of March 18.

20 points: 18 from your score and 2 from your oral presentation.

Good luck!
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