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What’s the problem?

this is easy (mostly) this is impossible

e | i




Montezuma’s revenge

* Getting key = reward
* Opening door = reward
» Getting killed by skull = nothing (is it good? bad?)

* Finishing the game only weakly correlates with
rewarding events

 We know what to do because we understand what
these sprites mean!



Put yourself in the algorithm’s shoes

e “the only rule you may be told is this one”
* Incur a penalty when you break a rule

e Can only discover rules through trial and
error

* Rules don’t always make sense to you

* Temporally extended tasks like Montezuma'’s
revenge become increasingly difficult based
on

 How extended the task is

* How little you know about the rules
* Imagine if your goal in life was to win 50
games of Mao...

* (and you didn’t know this in advance)




Another example

Learned Policies




Exploration and exploitation

* Two potential definitions of exploration problem

 How can an agent discover high-reward strategies that require a temporally
extended sequence of complex behaviors that, individually, are not rewarding?

 How can an agent decide whether to attempt new behaviors (to discover ones
with higher reward) or continue to do the best thing it knows so far?

e Actually the same problem:

* Exploitation: doing what you know will yield highest reward

* Exploration: doing things you haven’t done before, in the hopes of getting even
higher reward



Exploration and exploitation examples

e Restaurant selection
go to your favorite restaurant
Exploration: try a new restaurant

* Online ad placement
show the most successful advertisement
Exploration: show a different random advertisement

* Oil drilling
drill at the best known location
Exploration: drill at a new location

Examples from D. Silver lecture notes: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching files/XX.pdf



http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/XX.pdf

Exploration is hard

Can we derive an optimal exploration strategy?

what does optimal even mean?
regret vs. Bayes-optimal strategy? more on this later...

multi-armed bandits contextual bandits small, finite MDPs large, infinite MIDPs,
(1-step stateless (1-step RL problems) (e.g., tractable planning, continuous spaces
RL problems) model-based RL setting)

theoretically tractable theoretically intractable



What makes an exploration problem tractable?

can formalize exploration
multi-arm bandits as POMDP identification

contextual bandits policy learning is trivial
even with POMDP

oo can frame as Bayesian model
Sma”' finite MDPs identification, reason explicitly

about value of information

optimal methods don’t work

...but can take inspiration from
optimal methods in smaller settings
use hacks

SR |arge or infinite MDPs




Bandits

What’s a bandit anyway?

A = {pull arm} A = {pully, pull,, ..., pull_}

r(pull arm) =? r(an,) =7

assume 7(a,) ~ p(rlay)

unknown per-action reward distribution!



How can we define the bandit?

assume r(a;) ~ pg, (1;)
* solving the POMDP yields the optimal
exploration strategy
* but that’s overkill: belief state is huge!
this defines a POMDP with s = [0, ...,6,] * we can do very well with much
simpler strategies

e.g., p(r; =1)=0; and p(r; =0) =1 —6;

0; ~ p(0), but otherwise unknown

belief state is p(#1,...,0,)

how do we measure goodness of exploration algorithm?

regret: difference from optimal policy at time step 7:  Reg(T) = TE[r(a”)] — Z r(a)

t=1
expected reward of best action / \

(the best we can hope for in expectation) actual reward of action
actually taken



Three Classes of Exploration Methods



How can we beat the bandit?

Reg(T) = TE[r(a")] = 3 r(ay)

t=1
expected reward of best action / \
(the best we can hope for in expectation) actual reward of action
actually taken

* \ariety of relatively simple strategies

Often can provide theoretical guarantees on regret

e \Variety of optimal algorithms (up to a constant factor)
* But empirical performance may vary...

* Exploration strategies for more complex MDP domains
will be inspired by these strategies



Optimistic exploration

keep track of average reward fi, for each action a

exploitation: pick a = arg max [i,

optimistic estimate: a = argmax ji, + Co,

some sort of variance estimate

intuition: try each arm until you are sure it’s not great

example (Auer et al. Finite-time analysis of the multiarmed bandit problem):

2InT number of times we

a = argmaxX g + N(CL) «— Ppicked this action

Reg(T) is O(logT'), provably as good as any algorithm



Probability matching/posterior sampling

assume r(a;) ~ py, (7;)
this defines a POMDP with s = [01,...,6,,]

belief state is p(#1,...,6,)

this is a model of our bandit

idea: sample 6¢,...,0,, ~p(61,...,0, . : :
P Pl ). This is called posterior sampling or Thompson

pretend the model 64, ...,80, is correct sampling
take the optimal action * Harder to analyze theoretically
update the model  Can work very well empirically

See: Chapelle & Li, “An Empirical Evaluation of Thompson Sampling.”’



Information gain

Bayesian experimental design:

say we want to determine some latent variable z (e.g., z might be the optimal action, or its value)

which action do we take?

let H(p(z)) be the current entropy of our z estimate
let H(p(z)|y) be the entropy of our z estimate after observation y (e.g., y might be r(a))

the lower the entropy, the more precisely we know z
1G(z,y) = Ey[H(p(2)) — H(p(2)|y)]

typically depends on action, so we have 1G(z, y|a)



Information gain example

IG(z,yla) = Ey[H(p(2)) — H(D(2)|y)lal

how much we learn about z from action a, given current beliefs

Example bandit algorithm:
Russo & Van Roy “Learning to Optimize via Information-Directed Sampling”

Yy =rq, 2 =0, (parameters of model p(r,))

g(a) =1G(0,,74|a) — information gain of a

A(a) = E[r(a*) — r(a)] — expected suboptimality of a

2
A ((l) ) don’t take actions that you’re
sure are suboptimal

choose a according to argmin

a g(a) N

don’t bother taking actions if
you won’t learn anything



General themes

UCB: Thompson sampling: Info gain:

9 7"'79nN ) 9 7"'7977,
2nT | p(61 ) 1G(=. yla)

a = arg max fi, +
N(a) a = argmax Fy_[r(a)]

 Most exploration strategies require some kind of uncertainty
estimation (even if it’s naive)

* Usually assumes some value to new information
 Assume unknown = good (optimism)

e Assume sample = truth
 Assume information gain = good



Why should we care?

 Bandits are easier to analyze and understand
* (Can derive foundations for exploration methods
 Then apply these methods to more complex MDPs

* Not covered here:
e Contextual bandits (bandits with state, essentially 1-step MDPs)
 Optimal exploration in small MDPs
 Bayesian model-based reinforcement learning (similar to
information gain)
 Probably approximately correct (PAC) exploration



Exploration in Deep RL



Recap: classes of exploration methods in deep RL

* Optimistic exploration:
* new state = good state
* requires estimating state visitation frequencies or novelty
e typically realized by means of exploration bonuses
e Thompson sampling style algorithms:
* |earn distribution over Q-functions or policies
* sample and act according to sample
* Information gain style algorithms
* reason about information gain from visiting new states



Optimistic exploration in RL

2InT
N(a)

UCB: a = arg max [, +

“exploration bonus”
lots of functions work, so long as they decrease with N(a)

can we use this idea with MDPs?

count-based exploration: use N(s,a) or N(s) to add exploration bonus

use v (s,a) = r(s,a) + B(N(s))
\

bonus that decreases with N(s)

use 77 (s,a) instead of r(s,a) with any model-free algorithm

- need to tune bonus weight



The trouble with counts

use 1 (s,a) = r(s,a) + B(N(s))

But wait... what’s a count?

.u.ﬁ

Uh oh... we never see the same thing twice!

But some states are more similar than others



Fitting generative models

¥

probability /density

idea: fit a density model py(s) (or py(s,a))

pe(s) might be high even for a new s

if s is similar to previously seen states

can we use py(s) to get a “pseudo-count”?

if we have small MDPs after we see s, we have:

the true probability is:
N(s)+1
n+1

count "(s) =
P(s) = NT(LS) - o

/ N

total states visited

‘ _ can we get py(s) and pgr(s) to obey these equations?



Exploring with pseudo-counts

¥

fit model py(s) to all states D seen so far
take a step ¢ and observe s;

fit new model py(s) to D U's;

use po(s;) and per(s;) to estimate N(s)
set 7 =r; + B(N(s)) ~— .

pseudo-count”

how to get N(s)? use the equations

N(s;) _ N(si)+1
po(si) = > por(si) = P
two equations and two unknowns!
. . 1 — por(s;)
N S;) = n S; n — pQ(S@')
(81) = fipo (8:) por(s1) — po(si)

Bellemare et al. “Unifying Count-Based Exploration...”



What kind of bonus to use?

Lots of functions in the literature, inspired by optimal methods for
bandits or small MDPs

2Inn
UCB: B(N(s)) = N(s)
B(N = L
MBIE-EB (Strehl & Littman, 2008): BV =1/ 575 “
1 this is the one used by Bellemare et al. ‘16

BEB (Kolter & Ng, 2009): B(N(s)) =



Does it work?

MONTEZUMA'S REVENGE FREEWAY VENTURE H.E.R.O.
: 7000 30, S
z — Do
E = O optimistic 25
; g 5000 1/vn 20
E s 4000
g 15}
S 3000}
¥ 2000 10
1000 | o
% 20 40 60 8 100 o 20 40 60 8 100 0 20 40 60 8 100 0 20 40 60 80 10
Training frames (millions)
No bonus With bonus

Bellemare et al. “Unifying Count-Based Exploration...”



What kind of model to use?

¥

po(s)

need to be able to output densities, but doesn’t
necessarily need to produce great samples

opposite considerations from many popular
generative models in the literature (e.g., GANSs)

Bellemare et al.: “CTS” model:
condition each pixel on its top- o
left neighborhood

Other models: stochastic neural
networks, compression length, EX2



More Novelty-Seeking Exploration



Counting with hashes

What if we still count states, but in a different space?

idea: compress s into a k-bit code via ¢(s), then count N (¢(s))

RPO-AE-SimHash

TRPO-BASS-SimHash

(b) Frostbite

(c¢) Gravitar

shorter codes = more hash collisions wse ——
T L
similar states get the same hash?” maybe » ;’ P SN
. . . (a) Freeway
improve the odds by learning a compression: - 7
: ey
r-‘ (d) Montezuma’s Revenge
6'x16 linear softmax
\ X5 %5 \\ 5
N gex 11 x 11 i i ‘? o 96x10x10 ‘
U 96x 24 x 24 1024 3100 96 x 24 x 24 \__|
1x52%x52 1 x52x52 64x52x52

Tang et al. “#Exploration: A Study of Count-Based Exploration”

(e) Solaris

(f) Venture



Implicit density modeling with exemplar models

(S) need to be able to output densities, but doesn’t
Po ,
necessarily need to produce great samples

Can we explicitly compare the new state to past states?

Intuition: the state is novel if it is easy to distinguish from all
previous seen states by a classifier

for each observed state s, fit a classifier to classify that state against all past
states D, use classifier error to obtain density

probability that classifier assigns that s is “positive”

_ 1 — DS(S) - positives: {s}
Ds (S) negatives: D

po(s)

Fu et al. “EX2: Exploration with Exemplar Models...”



Implicit density modeling with exemplar models

hang on... aren’t we just checking if s = s?

if s € D, then the optimal Dg(s) # 1
1

in fact: DJ(s) = T (8
p(s

in reality, each state is unique, so we reqularize the classifier
isn’t one classifier per state a bit much?

train one amortized model: single network that takes in exemplar as input!

%%%%% Yl

\ X } .Encoder} H

Figure 9: DoomMyWayHome+

Fu et al. “EX2: Exploration with Exemplar Models...”



Heuristic estimation of counts via errors

(S) need to be able to output densities, but doesn’t
Po ,
necessarily need to produce great samples

...and doesn’t even need to output great densities

...just need to tell if state is novel or not!

let’s say we have some target function f*(s,a)
low novelty

given our buffer D = {(s;,a;)}, fit fo(s,a) \ I
|
use £(s,a) = || fo(s,a) — f*(s,a)||? as bonus \

high novelty




Heuristic estimation of counts via errors

let’s say we have some target function f*(s,a)
given our buffer D = {(s;,a;)}, fit fo(s,a)

use £(s,a) = || fo(s,a) — f*(s,a)||? as bonus

what should we use for f*(s,a)?

one common choice: set f*(s,a) =s’ — i.e., next state prediction

- also related to information gain, which we’ll discuss next time!

4

A

low novelty

N

=

\

high novelty

even simpler: f*(s,a) = fs(s,a), where ¢ is a random parameter vector

Burda et al. Exploration by random network distillation. 2018.

v

/ this will be in HW5!



Posterior Sampling in Deep RL



Posterior sampling in deep RL

Thompson sampling:

. What do we sample?
O, 0~ P01, .., 00) P
a = argmax Ey_[r(a)] How do we represent the distribution?

bandit setting: p(#4,...,0,) is distribution over rewards

MDP analog is the ()-function!

1. sample Q-function @ from p(Q) since Q-learning is off-policy, we don’t care

2. act according to Q for one episode which Q-function was used to collect data

3. update p(Q) /

how can we represent a distribution over functions?

Osband et al. “Deep Exploration via Bootstrapped DQN”



Bootstrap

given a dataset D, resample with replacement /N times to get Dy,...,Dn
train each model fp, on D;

to sample from p(#), sample ¢ € [1,..., N| and use fp,

(b) Gaussian process posterior (c) Bootstrapped neural nets

training N big neural nets is expensive, can we avoid it?

Shared network

Osband et al. “Deep Exploration via Bootstrapped DQN”



Why does this work?

Exploring with random actions (e.g., epsilon-greedy): oscillate
back and forth, might not go to a coherent or interesting place

Exploring with random Q-functions: commit to a randomized
but internally consistent strategy for an entire episode

& 5

2¢+08 Algorithm
= Bootstrapped DQN
—DQN

- very good bonuses often do better

Average score per episode

1 1 1 1 1 1 - [ 1 '
0e+00 le+08 2e+08 0e+00 le+08 2e+08 0e+00 le+08 2e+08
Total training frames

Osband et al. “Deep Exploration via Bootstrapped DQN”



Information Gain in Deep RL



Reasoning about information gain (approximately)

Info gain:  1G(z,yla)

information gain about what?
information gain about reward r(s,a)? not very useful if reward is sparse
state density p(s)? a bit strange, but somewhat makes sense!

information gain about dynamics p(s’[s,a)?  good proxy for learning the MDP, though still heuristic

Generally intractable to use exactly, regardless of what is being estimated!



Reasoning about information gain (approximately)

Generally intractable to use exactly, regardless of what is being estimated

A few approximations:
prediction gain: log pg:(s) — log py(s) .
(Schmidhuber 91, Bellemare ‘16)
intuition: if density changed a lot, the state was novel
variational inference: y .,
fl—gmithooft et al. “VIME”)
)ip(2

IG can be equivalently written as Dgr,(p

learn about transitions pg(s¢i1|se,ar): z = 9 Dx1(p(0|h, s¢,aq, si41)||p(0]R))
Y= (St’ @t St"'l) model parameters for pg(s¢i1|st, at) / [ \

history of all prior transitions

newly observed transition

intuition: a transition is more informative if it causes belief over 6 to change
idea: use variational inference to estimate q(0|¢) ~ p(0|h)

given new transition (s, a,s’), update ¢ to get ¢’



Reasoning about information gain (approxmately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))
d [

history of all prior transitions

model parameters for pg(s;i1]ss, ay
newly observed transition

q(0)9) ~ p(0|h) specifically, optimize variational lower bound Dky,(q(0|®)||p(h|0)p(6))

represent q(6|¢) as product of independent Gaussian parameter distributions

with mean ¢ (see Blundell et al. “Weight uncertainty in neural networks” )

given new transition (s, a,s’), update ¢ to get ¢’ p(0|D) = Hp (0:|D)

i.e., update the network weight means and variances

p(0:i|D) = N(M,a@-)
use Dxkr,(q(0|9")||q(0]|¢)) as approximate bonus \/

Houthooft et al. “VIME”



Reasoning about information gain (approximately)

VIME implementation:
IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))
q(0|¢) =~ p(6|h) specifically, optimize variational lower bound Dkr,(q(0|®)||p(h|0)p(8))

) PV A e A

use Dk1,(q(0|¢")||q(0|0)) as approximate bonus

rrrrr

Approximate IG:

- models are more complex, generally
harder to use effectively

(a) CartPole (b) CartPoleSwingup (c) DoublePendulum (d) MountainCar

Houthooft et al. “VIME”



Exploration with model errors

Dx1.(q(0]¢")]|q(0]|¢)) can be seen as change in network (mean) parameters ¢

if we forget about IG, there are many other ways to measure this low novelty
Stadie et al. 2015: \I I
* encode image observations using auto-encoder \
* build predictive model on auto-encoder latent states high novelty
* use model error as exploration bonus

Schmidhuber et al. (see, e.g. “Formal Theory of Creativity, Fun, and Intrinsic Motivation):
» exploration bonus for model error

e exploration bonus for model gradient

* many other variations

Many others!



Recap: classes of exploration methods in deep RL

* Optimistic exploration:
 Exploration with counts and pseudo-counts
* Different models for estimating densities

* Thompson sampling style algorithms:
 Maintain a distribution over models via bootstrapping
* Distribution over Q-functions

* Information gain style algorithms

 Generally intractable
e (Can use variational approximation to information gain



Suggested readings

Schmidhuber. (1992). A Possibility for Implementing Curiosity and Boredom in
Model-Building Neural Controllers.

Stadie, Levine, Abbeel (2015). Incentivizing Exploration in Reinforcement Learning
with Deep Predictive Models.

Osband, Blundell, Pritzel, Van Roy. (2016). Deep Exploration via Bootstrapped DQN.

Houthooft, Chen, Duan, Schulman, De Turck, Abbeel. (2016). VIME: Variational
Information Maximizing Exploration.

Bellemare, Srinivasan, Ostroviski, Schaul, Saxton, Munos. (2016). Unifying Count-
Based Exploration and Intrinsic Motivation.

Tang, Houthooft, Foote, Stooke, Chen, Duan, Schulman, De Turck, Abbeel. (2016).
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning.

Fu, Co-Reyes, Levine. (2017). EX2: Exploration with Exemplar Models for Deep
Reinforcement Learning.
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