IASD M2 at Paris Dauphine

Deep Reinforcement Learning

16: Offline Reinforcement Learning

Eric Benhamou Thérése Des Escotais

PSL* Pauphine & &

. - UNIVERSITEPARIs LWINS MINES 5
UNIVERSITE PARIS ‘

Acknowledgement

These materials are based on the seminal course of Sergey Levine CS285

Advances in
Reinforcement Learning

https://rail.eecs.berkeley.edu/deeprlcourse/

The generalization gap

Mnih et al. ‘13

. this is done
many times

> 4
VE

Schulman et al. ’14 & ‘15

Levine*, Finn*, et al. ‘16

enormous gulf

What makes modern machine learning work?

—
-
f ; /

v/

55

Stride

96

256

27
— —/ﬂ'
g 27
Max
pooling

13 13 13
s, 3 - 3
=8 3 13 3 * 13 dense | |dens
3
384 384 256 100
Max]
Max pooling 409¢ 4096
pooling

Can we develop data-driven RL met

on-policy RL off-policy RL

I [R -
rollout data {(si. ai.8;,ri)} rollout data {(s;.a;.s!, 1)}

' [

¥ 5T buffer
Q- |@-
... k+1

t_a |
roliout(s) . rollout(s) big dataSEtS
’ . ' 2] € from past
interaction

train for

offline reinforcement learning many epochs

occasionally
get more data

{(si.a, 8}, r)}
| i

[5,7]

I
I
i | [P g
X ==
|
|

t a |

rollout(s)

data collected ONCE w= == == == -
with any policy training phase

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20

What does offline RL mean?

on-policy RL off-policy RL Formally:
rollout data {(s;.a;.s;,r;)} rollout data {(si.a;. 8!,)
X ! N |oll . | D = {(S’iva’ias;vr’i)}
[5,7 | G [B | E buffer T
D s ~ d"(s)
T update T - Y generally not known
Tk+1 e an~ mg(als)
S = = s~ p(s']s, a)
\ roliout(s) / \ rollout(s) / ﬂ-k +1 p S S? a
f Mk t TEr1l] r < r(s,a)
offline reinforcement learning T
{I.;s,..a,.s:.r, [y et i RL objective: maxZEStNdw(s)’atNW(mS) [Yir(se, ay)]
: | i
P
@& T
|
@ "=
a : learn |
_ rollout(s)) | 7.‘- | _ deployment P,
data collected ONCE == == = = = !
with any policy training phase

Types of offline RL problems D = {(si 0,507}

off-policy evaluation (OPE): s~ d"(s)
a~ mg(als)
T / /
: : s’ ~ p(s'[s,a)
given D, estimate J(7) = E, ; r(s¢, at)] r e r(s,a)

offline reinforcement learning: (a.k.a. batch RL, sometimes fully off-policy RL)

given D, learn the best possible policy g

not necessarily obvious what this means

ow is this even possible?

1. Find the “good stuff” in a dataset full of good and bad behaviors
2. Generalization: good behavior in one place may suggest good behavior in another place

3. “Stitching”: parts of good behaviors can be recombined

hd

‘B B

=

What do we expect offline RL methods to do?

Bad intuition: it’s like imitation learning D
-
Though it can be shown to be provably better than imitation learning M ¢

even with optimal data, under some structural assumptions!

See: Kumar, Hong, Singh, Levine. Should | Run Offline Reinforcement Learning
or Behavioral Cloning?

Better intuition: get order from chaos D T
A ¢ A "€ “Macro-scale” stitching
7 N
B . If we have algorithms that properly perform
dynamic programming, we can take this idea

much further and get near-optimal policies
from highly suboptimal data

“Micro-scale” stitching: /\O/w

But this is just the clearest example!

Why should we care?

. this is done
many times

10

A vivid example

RL policies typically don’t generalize to initial
conditions that were not seen during training

Training time New initial condition at test time

Singh, Yu, Yang, Zhang, Kumar, Levine. COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning. ‘20

Why is offline RL hard?

Kumar, Fu, Tucker, Levine.

log scale (massive overestimation)

amount of data

s Half(‘lu‘(‘tah—\\ AverageReturn /}lnlf(‘lwvmh\ﬁ log(Q)
Ol 30

= n=1000 — n=1000
750 1
0 n=10000 95 n=10000
500 — n=100000 —— n=100000
—— n=1000000 op 4 —— n=1000000
250 =
0 15 4
—250 1 ;
il v < 10 4 /
—500
5]
—750 4
—1000 - - T v 0+ — = — =)
0.0K 02K 04K 06K 08K 10K 00K 02K 04K 06K 08K 10K

TrainSteps TrainSteps

how well it thinks
it does (Q-values)

how well it does

Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlPS ‘19

13

Why is offline RL hard?

Fundamental problem: counterfactual queries

Training data What the policy wants to do
Is this good? Bad?
."". ."'. How do we know if
- o we didn’t see it in
the data?

Online RL algorithms don’t have to handle this, because they can
simply try this action and see what happens

Offline RL methods must somehow account for these unseen
(“out-of-distribution”) actions, ideally in a safe way
...While still making use of generalization to come up with behaviors
that are better than the best thing seen in the datal

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20

Distribution shift in a nutshell

Example empirical risk minimization (ERM) problem: usually we are not worried — neural nets generalize well!
- 2 : :

0 < arg in Erxnop(x),y~p(y|x) [(f@ (x) —y) } what if we pick x* < arg maxy fy(x)?

given some x*, is fp(x*) correct? Y1

Eixnop(x) y~p(ylx) [(fc? (x) — y)z} is low

Erxop(x) ymp(ulx) | (fo(x) —y)?] is not, for general p(x) # p(x)

v

what if x* ~ p(x)? not necessarily...

14
Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlPS ‘19

Where do we suffer from distribution shift?

, , Lal what is the objective?
Q(S? a) % 689 a) + Ea”\'ﬂ-new [Q(S’7 a,)]’ mén E(S,a)N'ﬂ'ﬁ (Sﬂa) [(Q(S7 a) T y(S? a))2i|

B /‘ \

_ _ target value
behavior policy

expect good accuracy when mg(als) = mpew(als) how often does that happen?

i HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q)
00 30

eVeN WoTse: Myew = arg MaXy Far(als)[@(S,)] ———n
n=1000000

—= 1=l

— = \ 250 1

— (what if we pick x* +— arg maxy fy(x)?) &Mﬁ /

how well it does how well it thinks
it does (Q-values)
Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlPS ‘19

15

Issues with generalization are not corrected

online RL setting offline RL setting
R R
N TN
/7 Na . - N
/ . /) N
a

Existing challenges with sampling error and
function approximation error in standard RL
become much more severe in offline RL

Batch RL via Importance Sampling

Offline RL with policy gradients

RL objective: m;?xz Eg,~dr(s),a,~7(als) [’}/t“f‘(st, ay)|
t=0

T
VQJ(Q) = E'TNTFQ('T) Z VQ’)/t log Wg(at’St)Q(St, at)
t=0

N T

1 .
~ = Y Voy'logm(asilst)Q(sti,arq)

1=1 t=0

2

\ requires sampling from my! what if we only have samples from g7

importance sampling:

N T

1 o (T A

ﬁ ; - ; Vo' log my(ay il8t,i)Q(Stisay,i)
‘—r—-’

importance weight

Offline RL with policy gradients

N
1 A
ﬁ E E \VI log T (a¢,i|se,:)Q(St,i, ari)

i—1 s(T t—0

— Eﬂ'@

>1

9

T T
t'—t _~ t'—t
E T e | & E YT

t'=t

3

To(T) F&Jm (ag|s¢) this is exponential in 7'
m3(T) p'fs.k).“t PSTrTsams(as|st) weights likely to be degenerate as T becomes large

can we fix this?

T
1 mo(ay ilsei) \ A
t t’, t
VoJ(0) =~ — Vo log mg(as,i|st,q) Q(st.i,at,:)
N T (atf)
t'=t
L]
Al
accounts for difference in probability of landing in s; ; accounts for having the incorrect Q(st’i, ag ;)

we have s; ~ d™(s;), but want s; ~ d™(s;)

why is this a reasonable approximation?

Estimating the returns

T T
] — ol ilse) — By | D7 trt,] ~ D 0 e,
7o 4) A T P
Vg J (0 _ZZVG’Y log mg(ay,i|st,) H R Q(Sti,a1,) t'=t t'=t
N i=1 t=0 bt ma(ay ilse i)
L J
-
r st
7T9(at”,'i|st”,i) t,—t
Z H 7i (a 11 '|S 7,) v Tt,’i
' —t 1 —t :8 " [Pt

but this is still exponential

To avoid exponentially exploding importance

' : : : imagine we knew ()™ (s, a
weights, we must use value function estimation! S Q™ (s, a)

We'll see how to do this shortly, but first let’s conclude our discussion of importance sampling

The doubly robust estimator

T t’
- N Wg(atn,i|st~,i) + ¢ . c o Al
VT(s) ~ Y (H o o i)) Ay this is exponential!

=t \tr=t 'O

The doubly robust estimator

™o (d t To(ag[sy) ¢
v =3 (11
t—=

—o "B (ay[sy)

£

= poTo + PoYP1T1 + PoYP1YP2T2 T+ ...

— po(”]"o —|— ’Y(p]_(frl _'_ ’Y(p2((r2 —i_ ’Y)))))
— T where VTt = pi(re + ’Y‘_/T_t)

A A

Vor = =V(se) + pe(re + Vot — Q(se, ar))

N\ /

model or function approximator

this is exponential!

doubly robust estimation (bandit case)

A

VDR(S) — V(S) + p(S, a)(rs,a — Q(S,OL))

\ /

model or function approximator

Jiang, N. and Li, L. (2015). Doubly robust off-policy value evaluation for reinforcement learning.

Marginalized importance sampling

o (ac|se) estimate w(s,a) = 32222?3

ma(ag|st)’

Main idea: instead of using ||,
if we can do this, we can estimate J(6) =~ & >, w(s;, a;)r;
typically this is done for off-policy evaluation, rather than policy learning

how to determine w(s,a)? typically solve some kind of consistency condition

example (Zhang et al., GenDICE):

L |
1 9 1

d™(s',a")w(s’,a’) = (1—7)po(s’)me(a’ |S’J)+’Y > mo(@'[s")p(s'|s,a)d"™ (s, a)uw(s, a)

probability of starting in (s’,a’) probability of transitioning into (s’,a’)

solving for w(s,a) typically involves some fixed point problem

Additional readings: importance sampling

Classic work on importance sampled policy gradients and return estimation:
Precup, D. (2000). Eligibility traces for off-policy policy evaluation.
Peshkin, L. and Shelton, C. R. (2002). Learning from scarce experience.

Doubly robust estimators and other improved importance-sampling estimators:
Jiang, N. and Li, L. (2015). Doubly robust off-policy value evaluation for reinforcement learning.
Thomas, P and Brunskill, E. (2016). Data-efficient off-policy policy evaluation for reinforcement learning.

Analysis and theory:
Thomas, P S., Theocharous, G., and Ghavamzadeh, M. (2015). High-confidence off-policy evaluation.

Marginalized importance sampling:

Hallak, A. and Mannor, S. (2017). Consistent on-line off-policy evaluation.

Liu, Y, Swaminathan, A., Agarwal, A., and Brunskill, E. (2019). Off-policy policy gradient with state distribution
correction.

Additional readings in our offline RL survey: Section 3.1, 3.2, 3.3, 3.4: https://arxiv.org/abs/2005.01643

https://arxiv.org/abs/2005.01643

Batch RL via Linear Fitted Value Functions

Offline value function estimation

How have people thought about it before?
Extend existing ideas for approximate dynamic programming and Q-learning to offline setting

Derive tractable solutions with simple (e.g., linear) function approximators

How are people thinking about it now?

Derive approximate solutions with highly expressive function approximators (e.g., deep nets)

The primary challenge turns out to be distributional shift generally not concerned with
distributional shift before

(maybe it was not such a big
: : bl ith li del
We’'ll discuss some older offline/batch RL methods problem with linear models)
next for completeness

Warmup: linear models

P
¢ — feature matrix, |S| x K
could also think of as a vector-valued function ®(s) 5|
Can we do (offline) model-based RL in feature space? Z‘t’atf;f of
1. Estimate the reward
2. Estimate the transitions K

total # of features

3. Recover the value function
vector of rewards for all state-action tuples

4. Improve the policy but we’ll talk about sample-based setting soon!

1. Reward model: ®w, ~ r least squares: w, = (®1®)"1pT¥

2. Transition model: ®Pg ~ P™® least squares: Py = (®1®) 1o P™P

/" N

estimated feature-space real transition matrix
transition matrix (on states) all of this is for a ﬁg;ed policy T
K x K S| x |S]

material adapted from Ron Parr

Recovering the value function

o W P7
1. Reward model: dw, ~ r
least squares: w, = (&1 ®)~1or
2. Transition model: ®Pg ~ P™® .S
least squares: Py = (&1 ®)"10P™® oes
3. Estimate V™ =~ V] = dwy, I

can apply the same equation in feature space:

total # of features

AN e
wy = (I —vPg) tw,

Aside: solving for V™ in terms of P™ and r:
substitute

but wait — do we even need the model? Vi =r+~P™VT™

I—AP)V" =
wy = (I—4(®7®) 16T P d)~ (8T d) 1 ¢TF L=AP)V7 =r 1
Vi=0-~P") 'r
after a bit of algebra...

wy = (7% — v @TP™®)1oTF

this is called least-squares temporal difference (LSTD)

material adapted from Ron Parr

Doing it all with samples

wy = (70 — 4T PTP) 1o F

D = {(Si,az—,ri,s')} I

)

B

F@ = T‘(S,,;, a,,;) z‘;;‘:;::f
replace with &’
®; = ¢(s;) K
total # of features
®; = ¢(s;)

Everything else works exactly the same way, only now we have some sampling error

material adapted from Ron Parr

Improving the policy

1. Estimate the reward]
2. Estimate the transitions tr or just do these together with LSTD!
3. Recover the value function B

. Improve the polic
4. Improve the policy Wy = ((I)T(I) — f)/(I)TP@)_l(I)TI_"

D = {(si,a;,1i,s;)} = I

r; = r(s;,a;)

replace with ®’
P} = ¢(s;)

this requires samples from 7!

That’s not going to work for offline RL!

material adapted from Ron Parr

Least-squares policy iteration (LSPI)

d d
Main idea: replace LSTD with LSTDQ — LSTD but for Q-functions

W = ((I)T(I) — ’y(I)T(I),)_l(I)Tf Ei

I total # of
/ states
D = {(Siaaiariasi)} —
r;, = T(Siaai) |S||A|
total # of
/o / / .
(I)?: o qb(s’i’ W(Si)) total # of features states-action
LSPI: X tuples
encode the action m would take
1. compute wq for not the action in the data

2. mp+1(8) = argmax, ¢(s,a)wg
3. Set @) = (s, mpr1(s)))

K’
total # of features typically
replicated for each action

material adapted from Ron Parr

What’s the issue?

1 HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q)
000 30 -

n=1000

n=10000 25]
»»»»»»» n=100000 ~—— n=100000
n=1000000

] — om0 In general, all approximate dynamic programming

) %i f / (e.g., fitted value/Q iteration) methods will suffer

|

from action distributional shift, and we must fix it!

how well it does how well it thinks
it does (Q-values)

Q(Sa a) — TL(S’ a) + Ea’wﬁnew [Q(Sla a,)]’ mén E(S,a)N'ﬂ'ﬁ (s,a) [(Q(Sa a) — y(s, a))ﬂ

B /‘ \

. target value
y(s,a) behavior policy

expect good accuracy when mg(als) = mhew(als) how often does that happen?

even worse: Mpew = arg MaXy Far(als)[@(S,)]

	Slide 1
	Slide 2: Acknowledgement
	Slide 3: The generalization gap
	Slide 4: What makes modern machine learning work?
	Slide 5: Can we develop data-driven RL methods?
	Slide 6: What does offline RL mean?
	Slide 7: Types of offline RL problems
	Slide 8: How is this even possible?
	Slide 9: What do we expect offline RL methods to do?
	Slide 10: Why should we care?
	Slide 11: A vivid example
	Slide 12: Why is offline RL hard?
	Slide 13: Why is offline RL hard?
	Slide 14: Distribution shift in a nutshell
	Slide 15: Where do we suffer from distribution shift?
	Slide 16: Issues with generalization are not corrected
	Slide 17
	Slide 18: Offline RL with policy gradients
	Slide 19: Offline RL with policy gradients
	Slide 20: Estimating the returns
	Slide 21: The doubly robust estimator
	Slide 22: The doubly robust estimator
	Slide 23: Marginalized importance sampling
	Slide 24: Additional readings: importance sampling
	Slide 25
	Slide 26: Offline value function estimation
	Slide 27: Warmup: linear models
	Slide 28: Recovering the value function
	Slide 29: Doing it all with samples
	Slide 30: Improving the policy
	Slide 31: Least-squares policy iteration (LSPI)
	Slide 32: What’s the issue?

