IASD M2 at Paris Dauphine

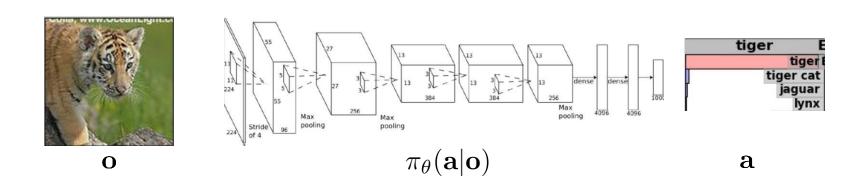
Deep Reinforcement Learning

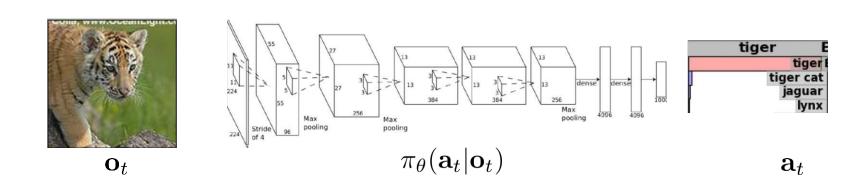
2: Supervised Learning for behaviors

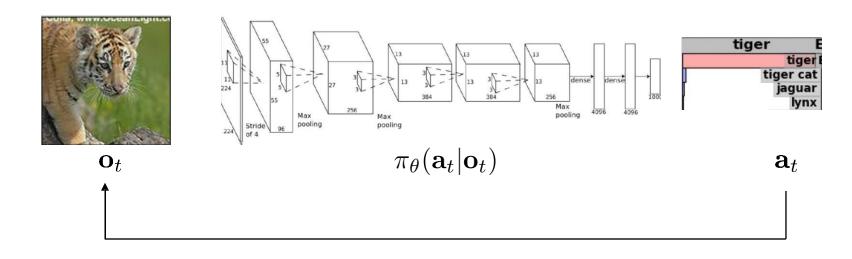
Eric Benhamou Thérèse Des Escotais

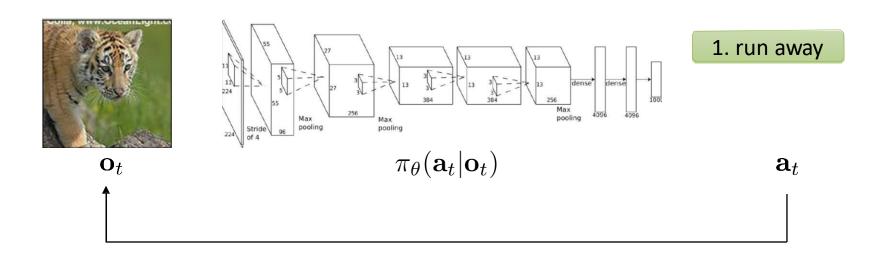
Acknowledgement

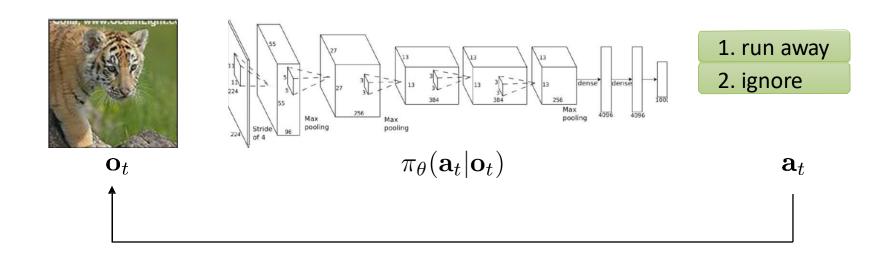
The materials of this course is entirely based on the seminal course of Sergey Levine CS285

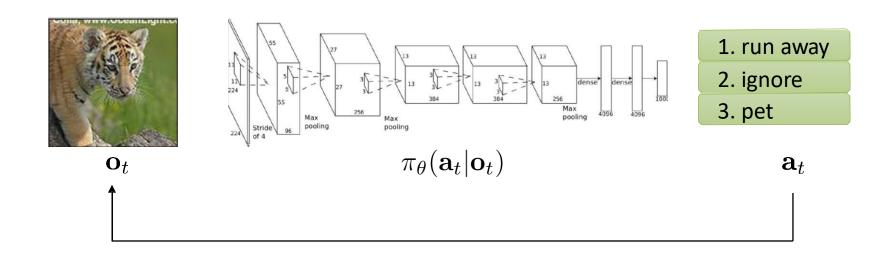


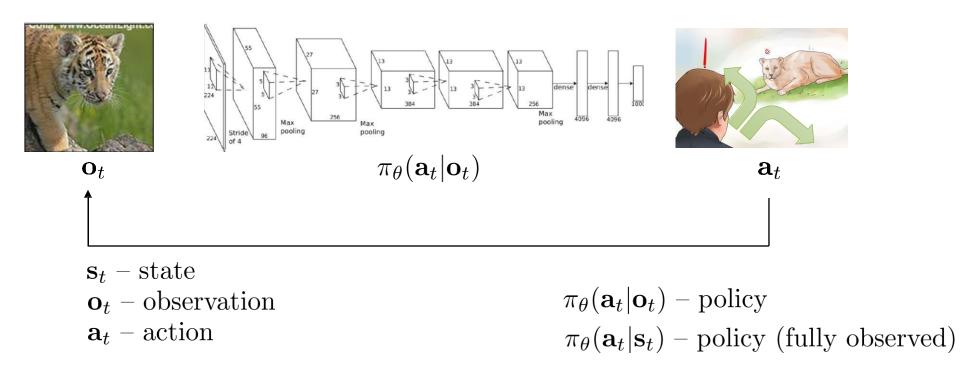




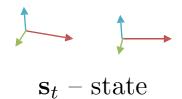


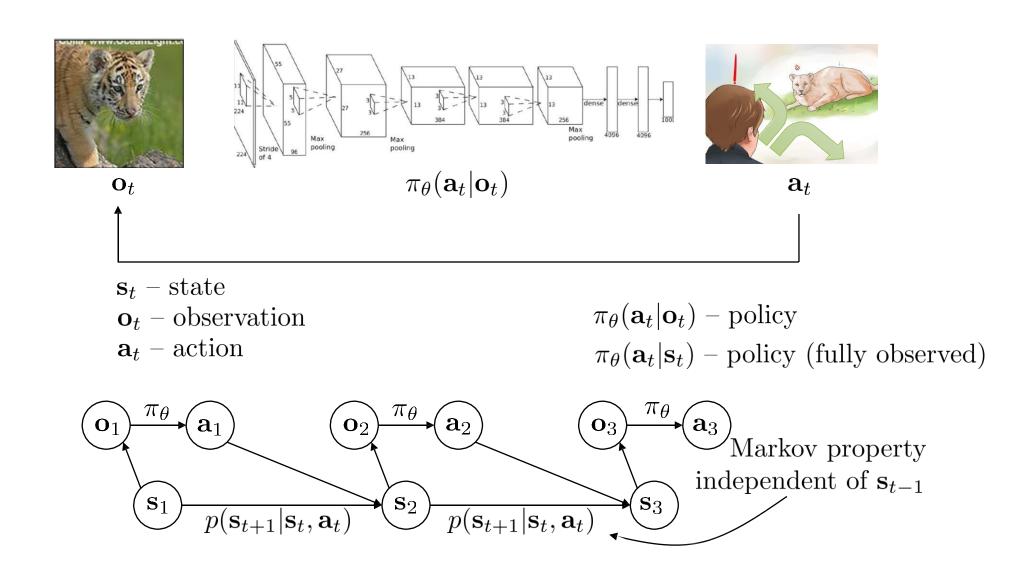






 \mathbf{o}_t – observation





Aside: notation

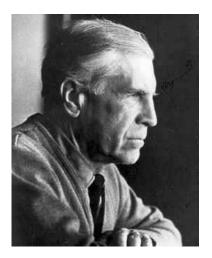
 \mathbf{s}_t – state

 \mathbf{a}_t – action

Richard Bellman

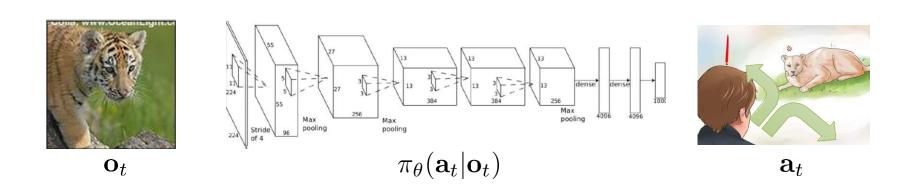
 \mathbf{x}_t – state

 $\mathbf{u}_t - \mathrm{action}$ управление

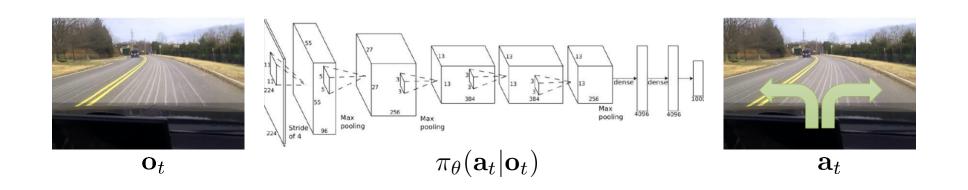


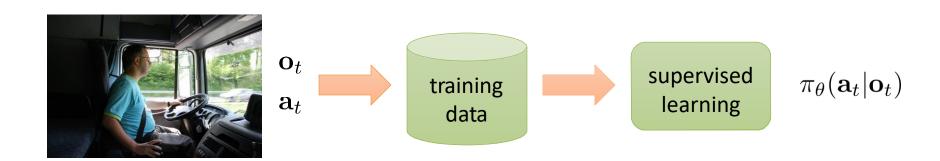
Lev Pontryagin

Imitation Learning



Imitation Learning



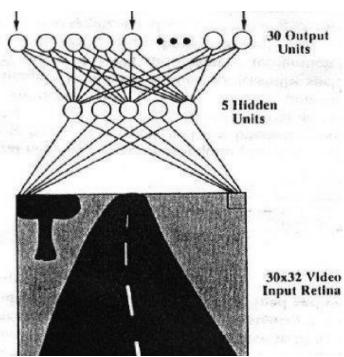


behavioral cloning

Images: Bojarski et al. '16, NVIDIA

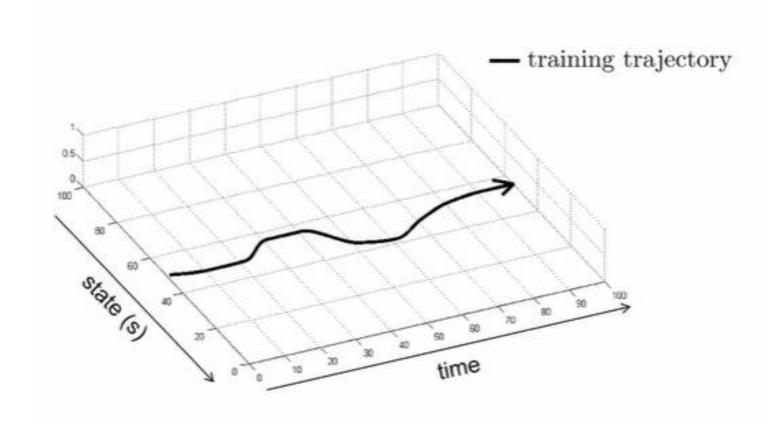
The original deep imitation learning system

ALVINN: **A**utonomous **L**and **V**ehicle **I**n a **N**eural **N**etwork 1989



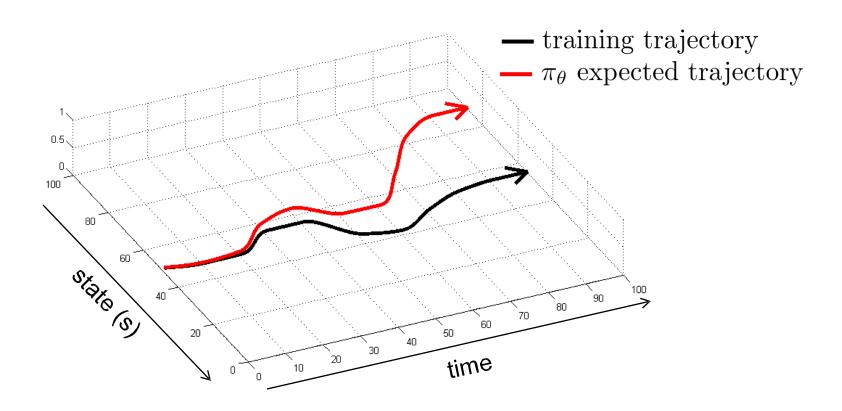
Does it work?

No!



Does it work?

No!

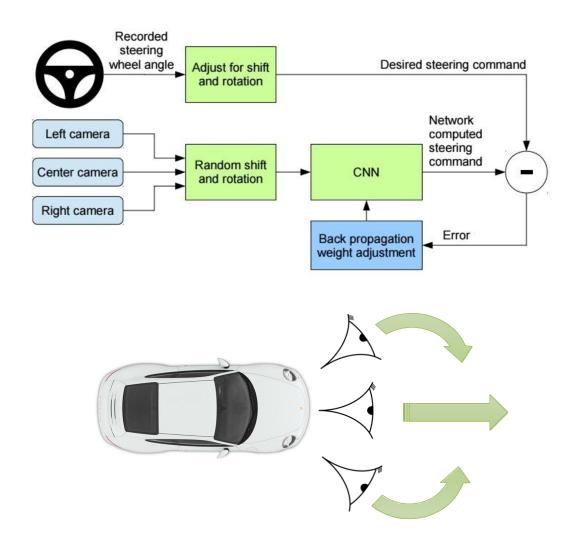


Does it work?

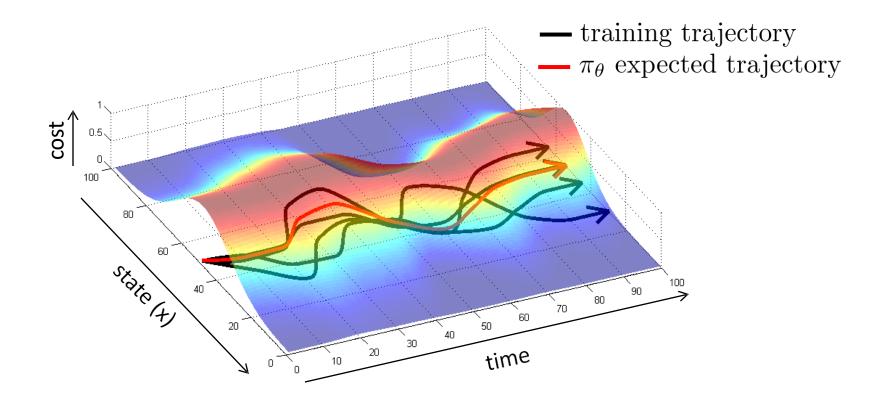
Yes!

Video: Bojarski et al. '16, NVIDIA

Why did that work?



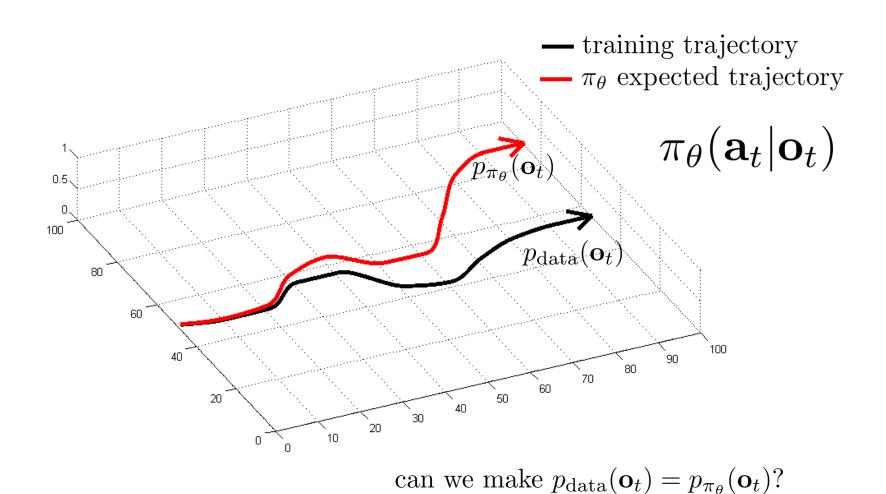
Can we make it work more often?



stability

(more on this later)

Can we make it work more often?



Can we make it work more often?

```
can we make p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)?
idea: instead of being clever about p_{\pi_{\theta}}(\mathbf{o}_t), be clever about p_{\text{data}}(\mathbf{o}_t)!
```

DAgger: **D**ataset **A**ggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

but need labels \mathbf{a}_t !

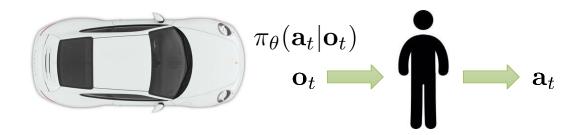
- ⇒ 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
 - 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

What's the problem?

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = {\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t

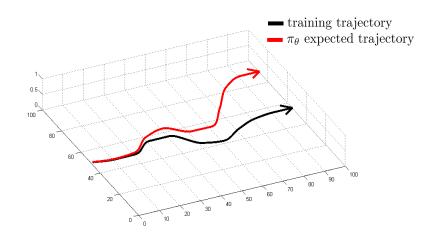
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$



Deep imitation learning in practice

Can we make it work without more data?

- DAgger addresses the problem of distributional "drift"
- What if our model is so good that it doesn't drift?
- Need to mimic expert behavior very accurately
- But don't overfit!



- 1. Non-Markovian behavior
- 2. Multimodal behavior

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$

behavior depends only on current observation

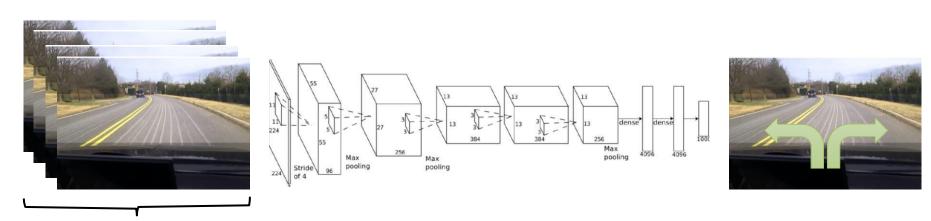
$$\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_1,...,\mathbf{o}_t)$$

behavior depends on all past observations

If we see the same thing twice, we do the same thing twice, regardless of what happened before

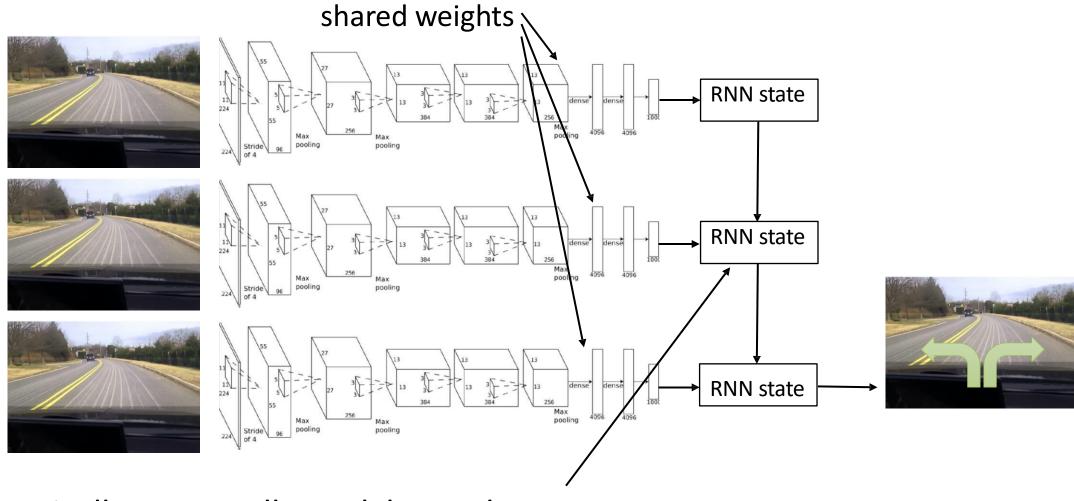
Often very unnatural for human demonstrators

How can we use the whole history?



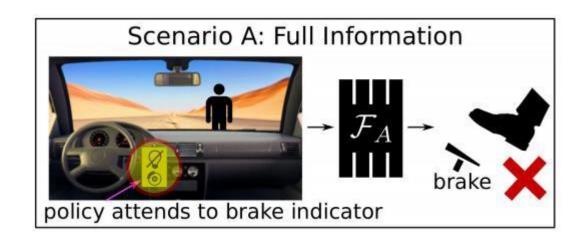
variable number of frames, too many weights

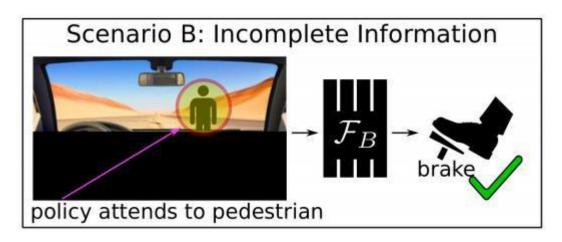
How can we use the whole history?



Typically, LSTM cells work better here

Aside: why might this work poorly?





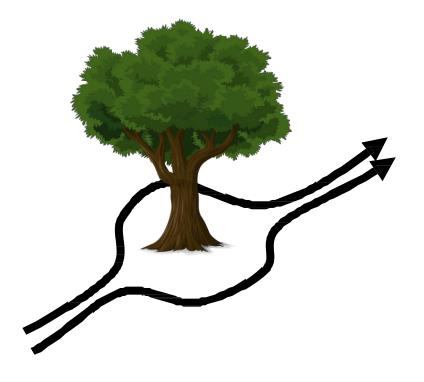
"causal confusion"

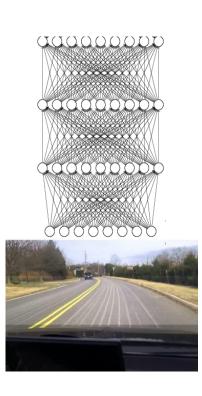
see: de Haan et al., "Causal Confusion in Imitation Learning"

Question 1: Does including history mitigate causal confusion?

Question 2: Can DAgger mitigate causal confusion?

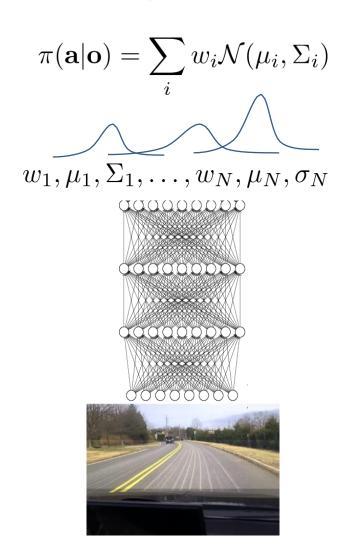
- 1. Non-Markovian behavior
- 2. Multimodal behavior





- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

- Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

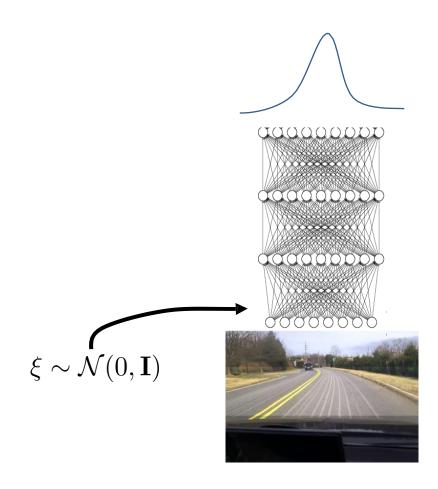


1. Output mixture of Gaussians

- 2. Latent variable models
- 3. Autoregressive discretization

Look up some of these:

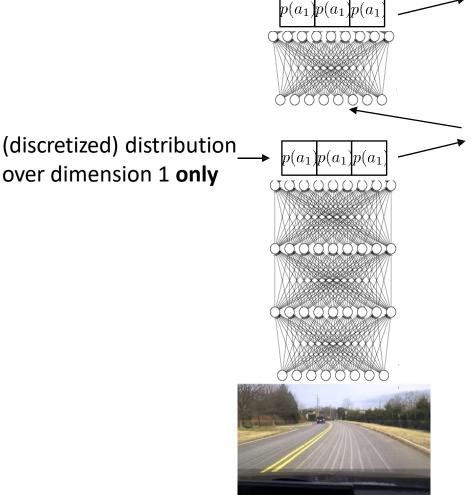
- Conditional variational autoencoder
- Normalizing flow/realNVP
- Stein variational gradient descent

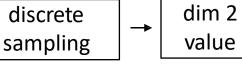


 Output mixture of Gaussians

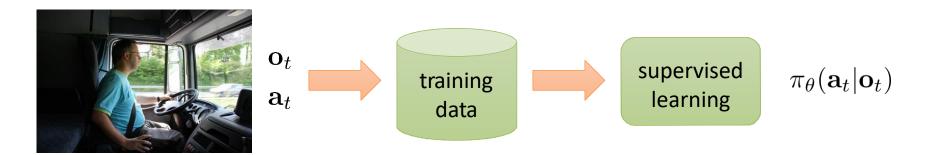
2. Latent variable models

Autoregressive discretization

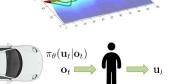




Imitation learning: recap



- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more on-policy data, e.g. using Dagger
 - Better models that fit more accurately

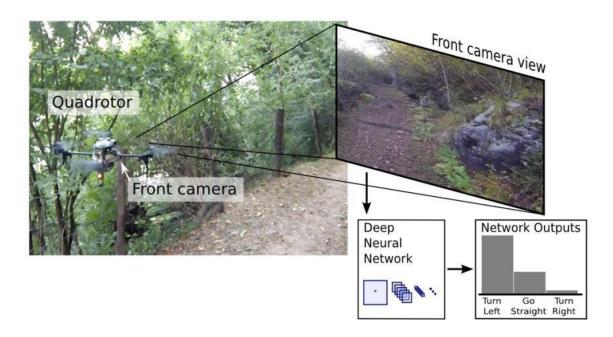


A case study: trail following from human demonstration data

Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

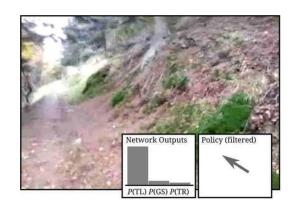
Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

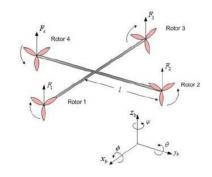


Cost functions, reward functions, and a bit of theory

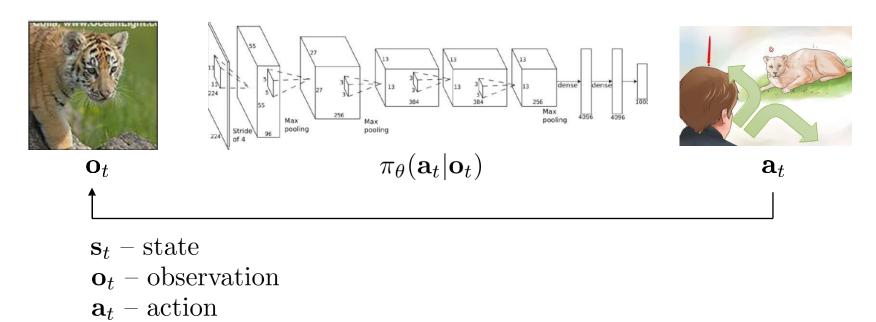
Imitation learning: what's the problem?

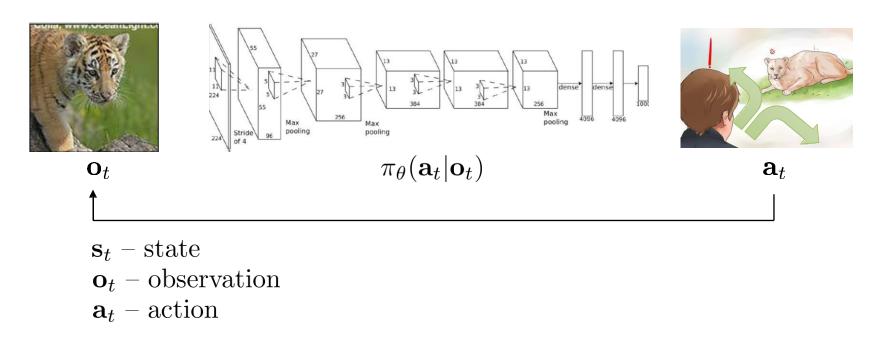
- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions



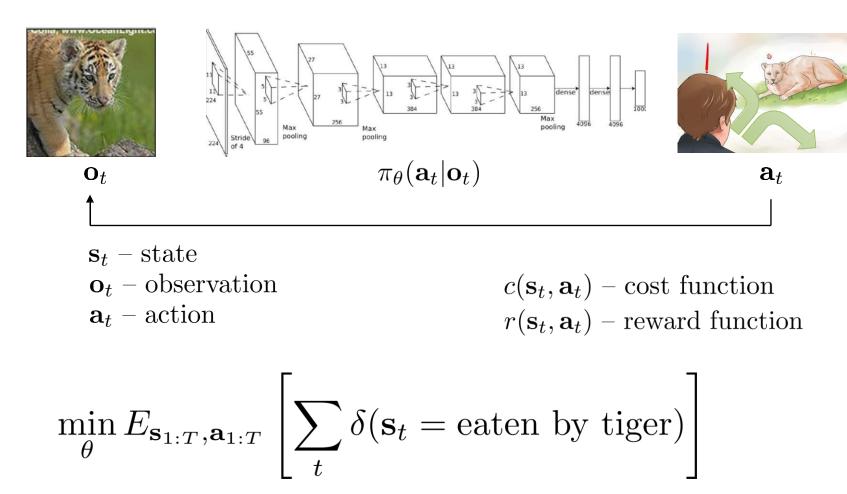


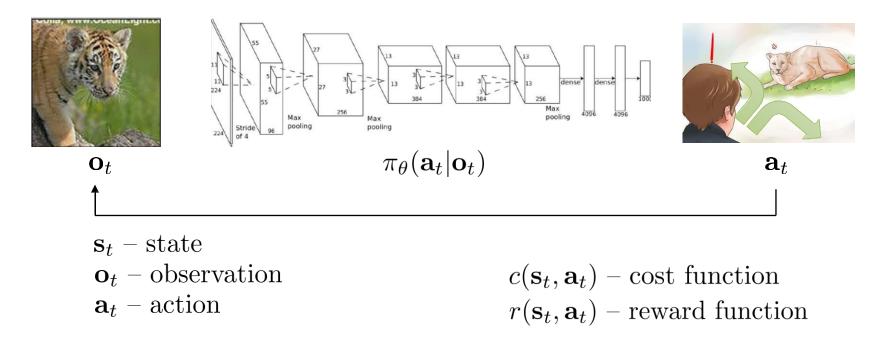
- Humans can learn autonomously; can our machines do the same?
 - Unlimited data from own experience
 - Continuous self-improvement





$$\min_{\theta} E_{\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}), \mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})} [\delta(\mathbf{s}' = \text{eaten by tiger})]$$





$$\min_{\theta} E_{\mathbf{s}_{1:T}, \mathbf{a}_{1:T}} \left[\sum_{t} c(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

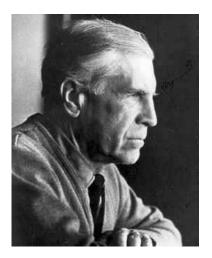
Aside: notation

 \mathbf{s}_t - state \mathbf{a}_t - action $r(\mathbf{s}, \mathbf{a})$ - reward function

Richard Bellman

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$

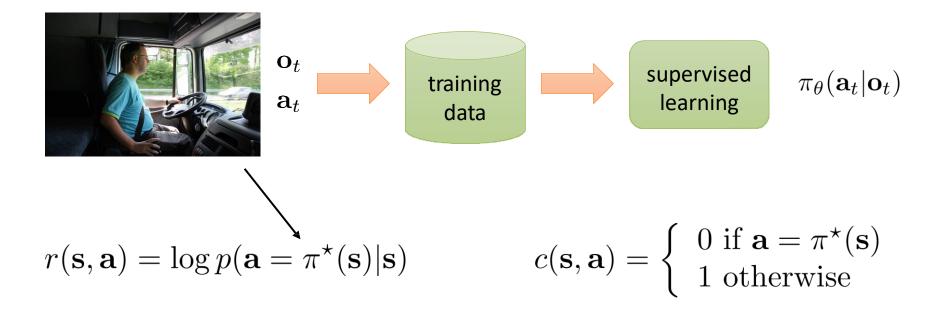
 \mathbf{x}_t - state \mathbf{u}_t - action $c(\mathbf{x}, \mathbf{u})$ - cost function



Lev Pontryagin

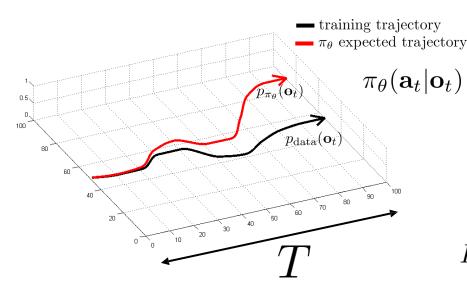
Cost functions, reward functions, and a bit of theory

A cost function for imitation?



- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

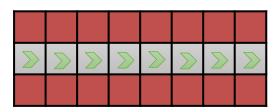
Some analysis



$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$

assume: $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$

for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$



$$E\left[\sum_{t} c(\mathbf{s}_{t}, \mathbf{a}_{t})\right] \leq \epsilon T + \epsilon T + (1 - \epsilon)(\epsilon (T - 1) + (1 - \epsilon)(\dots))$$

T terms, each $O(\epsilon T)$

More general analysis

assume:
$$\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$$

for all
$$\mathbf{s} \in \mathcal{D}_{\text{train}}$$
 for $\mathbf{s} \sim p_{\text{train}}(\mathbf{s})$

actually enough for
$$E_{p_{\text{train}}(\mathbf{s})}[\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s})] \leq \epsilon$$

if
$$p_{\text{train}}(\mathbf{s}) \neq p_{\theta}(\mathbf{s})$$
:

$$p_{\theta}(\mathbf{s}_t) = (1 - \epsilon)^t p_{\text{train}}(\mathbf{s}_t) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}(\mathbf{s}_t)$$

probability we made no mistakes

$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$

with DAgger, $p_{\text{train}}(\mathbf{s}) \to p_{\theta}(\mathbf{s})$

$$E\left[\sum_{t} c(\mathbf{s}_{t}, \mathbf{a}_{t})\right] \leq \epsilon T$$

For more analysis, see Ross et al. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning"

some other distribution

More general analysis

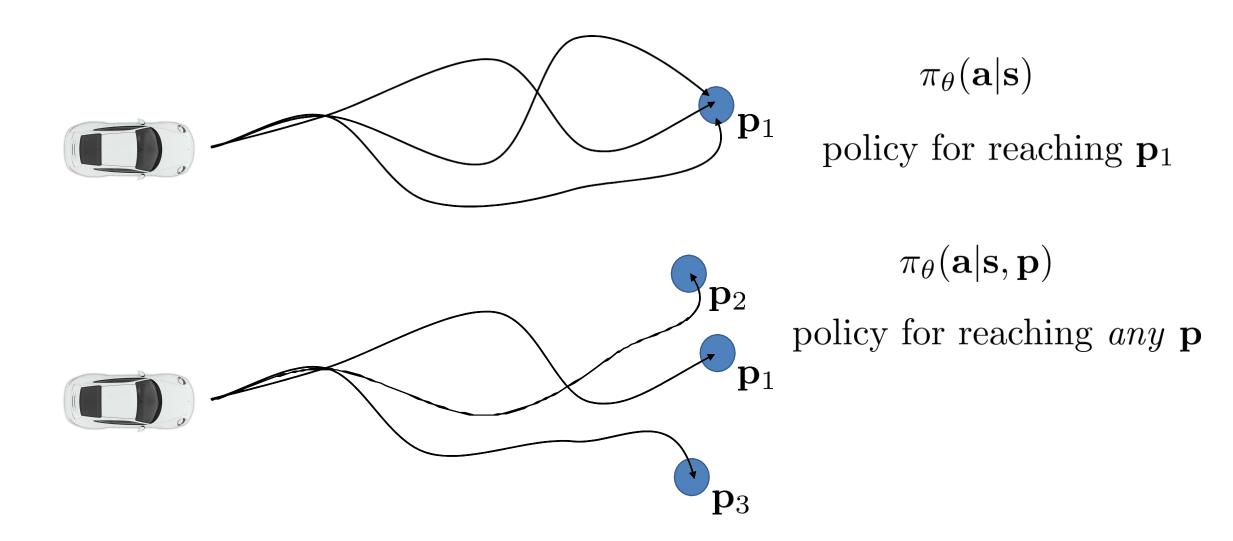
assume: $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$ for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$ for $\mathbf{s} \sim p_{\text{train}}(\mathbf{s})$ $p_{\theta}(\mathbf{s}_t) = (1 - \epsilon)^t p_{\text{train}}(\mathbf{s}_t) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}(\mathbf{s}_t)$ probability we made no mistakes some other distribution $|p_{\theta}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\text{train}}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$ useful identity: $(1 - \epsilon)^t \ge 1 - \epsilon t$ for $\epsilon \in [0, 1]$ $< 2\epsilon t$ $\sum_{t} E_{p_{\theta}(\mathbf{s}_{t})}[c_{t}] = \sum_{t} \sum_{\mathbf{s}_{t}} p_{\theta}(\mathbf{s}_{t}) c_{t}(\mathbf{s}_{t}) \leq \sum_{t} \sum_{\mathbf{s}_{t}} p_{\text{train}}(\mathbf{s}_{t}) c_{t}(\mathbf{s}_{t}) + |p_{\theta}(\mathbf{s}_{t}) - p_{\text{train}}(\mathbf{s}_{t})| c_{\text{max}}$ $\leq \sum_{t} \epsilon + 2\epsilon t \leq \epsilon T + 2\epsilon T^{2}$

 $O(\epsilon T^2)$

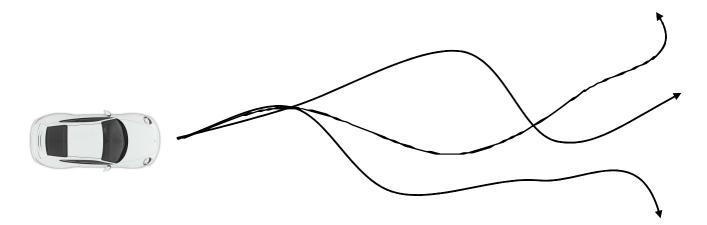
For more analysis, see Ross et al. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning"

Another way to imitate

Another imitation idea



Goal-conditioned behavioral cloning



training time:

demo 1: $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$ successful demo for reaching \mathbf{s}_T

demo 1: $\{s_1, a_t, \dots, s_{T-1}, a_{T-1}, s_T\}$

demo 1: $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$

for each demo $\{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_{T-1}^i, \mathbf{a}_{T-1}^i, \mathbf{s}_T^i\}$

maximize $\log \pi_{\theta}(\mathbf{a}_t^i|\mathbf{s}_t^i,\mathbf{g}=\mathbf{s}_T^i)$

Learning Latent Plans from Play

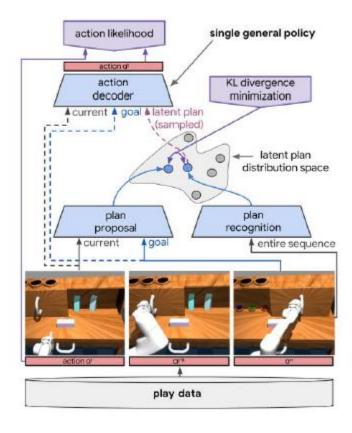
Google Brain Google X

Google Brain Google Brain

VIKASH KUMAR JONATHAN TOMPSON SERGEY LEVINE PIERRE SERMANET Google Brain

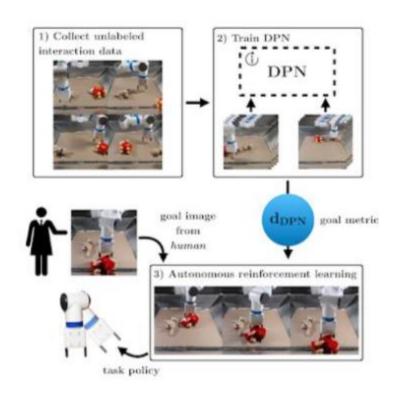
Google Brain

Google Brain



Unsupervised Visuomotor Control through Distributional Planning Networks

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, Chelsea Finn Stanford University



Learning Latent Plans from Play

Google Brain

Google X

VIKASH KUMAR Google Brain Google Brain

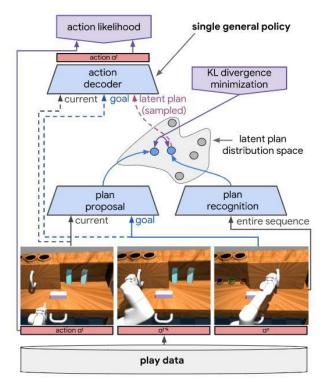
JONATHAN TOMPSON Google Brain

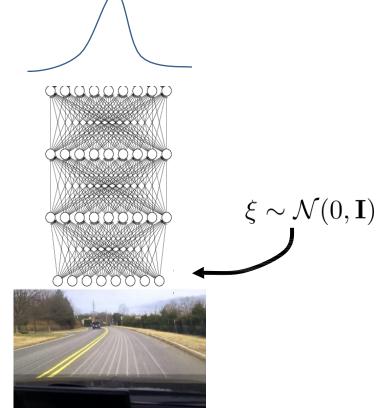
Google Brain

PIERRE SERMANET Google Brain

1. Collect data

2. Train **goal conditioned** policy





Learning Latent Plans from Play

Google Brain Google X

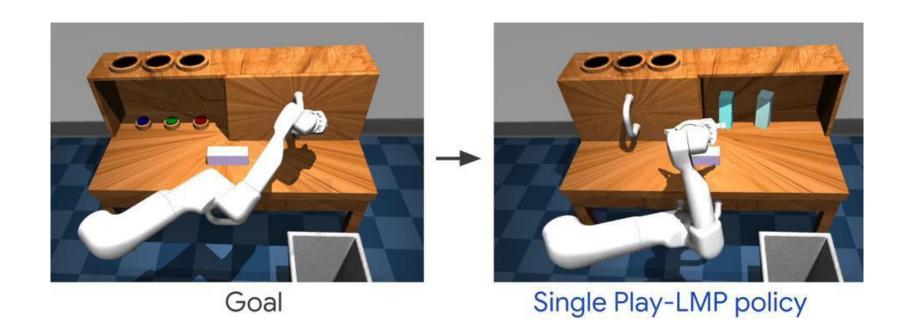
VIKASH KUMAR Google Brain Google Brain

JONATHAN TOMPSON Google Brain

Google Brain

Google Brain

3. Reach goals



Going beyond just imitation?

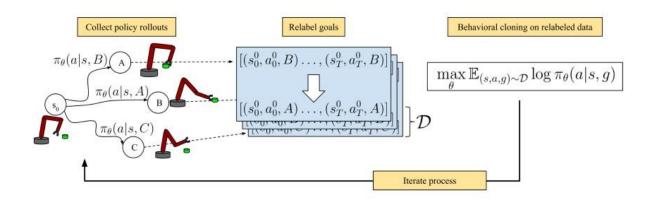
Learning to Reach Goals via Iterated Supervised Learning

 Dibya Ghosh*
 Abhishek Gupta*
 Ashwin Reddy
 Justin Fu

 UC Berkeley
 UC Berkeley
 UC Berkeley

 Coline Devin
 Benjamin Eysenbach
 Sergey Levine

 UC Berkeley
 UC Berkeley



- >> Start with a random policy
- ➤ Collect data with random goals
- >> Treat this data as "demonstrations" for the goals that were reached
- ➤ Use this to improve the policy
- ➤ Repeat