IASD M2 at Paris Dauphine

Deep Reinforcement Learning

21: Inverse Reinforcement Learning

Eric Benhamou Thérése Des Escotais

PSL* Pauphine & &

. - UNIVERSITEPARIs LWINS MINES 5
UNIVERSITE PARIS ‘

Acknowledgement

These materials are based on the seminal course of Sergey Levine CS285

Advances in
Reinforcement Learning

https://rail.eecs.berkeley.edu/deeprlcourse/

Today’s Lecture

1. So far: manually design reward function to define a task

2. What if we want to learn the reward function from observing an
expert, and then use reinforcement learning?

3. Apply approximate optimality model from last time, but now learn
the reward!

e Goals:

* Understand the inverse reinforcement learning problem definition
* Understand how probabilistic models of behavior can be used to derive
inverse reinforcement learning algorithms

* Understand a few practical inverse reinforcement learning algorithms we
can use

Optimal Control as a Model of Human Behavior

(a) setup

‘3 l‘??\ g _'..\ T\ ﬂ

TRRRPLTTH
R R T | A
Muybridge (c. 1870) Mombaur et al. ‘09 Li & Todorov ‘06 Ziebart ‘08

o
i

T
ai,...,ar = arg max E r(s¢, ay)
t=1

al,.... AT

sir1 = f(s¢, ay) optimize this to explain the data

T = artglnax Es, 1 ~op(sis|se,an),ac~m(arls,) [T (Sts at)]

ap ~~ 7T(at|St)

Why should we worry about learning rewards?

The imitation learning perspective

Standard imitation learning: Human imitation learning:
* copy the actions performed by the expert * copy the intent of the expert
* no reasoning about outcomes of actions * might take very different actions!

:

0 Warneken & Tomasello

Why should we worry about learning rewards?

The reinforcement learning perspective

reward

what is the reward?

Inverse reinforcement learning

Infer reward functions from demonstrations

by itself, this is an underspecified problem

many reward functions can explain the same behavior

A bit more formally

“forward” reinforcement learning inverse reinforcement learning

given: given:

states s € S, actions a € A states s € S, actions a € A

(sometimes) transitions p(s’|s, a) (sometimes) transitions p(s’|s, a)

reward function (s, a) samples {7;} sampled from 7*(7)

learn 7*(als) learn 7, (s, a)

L—— reward parameters

...and then use it to learn 7*(a|s)

neural net reward function:

.; — =) :r_’"" T

linear reward function:

ry(s,a) = X, i fi(s,a) = TE(s,a)

~ ¢ parameters 9

Feature matching IRL

linear reward function:

ry(s,a) =32 ¥ifi(s,a) = ¢ "f(s, a)

if features f are important, what if we match their expectations?

let 7" be the optimal policy for ry

pick ¢ such that E.r [f(s,a)] = Eq[f(s, a)] still ambiguous!
7 \

state-action marginal under 7" _ 1nown optimal policy

approximate using expert samples

maximum margin principle:

max m such that ¢! . [f(s,a)] > max V' EL[f(s,a)] +m
,MM TE
— — J

need to somehow “weight” by similarity between 7* and =

Feature matching IRL & maximum margin

remember the “SVM trick”:

max m such that ! E . [f(s,a)] > max V! EL[f(s,a)] + m
TEC

P, m
1

min = [[¢||* such that y! E.«[f(s,a)] > meaﬁcszEw [f(s,a)] + D(w, ")

v 2 ™
\

e.g., difference in feature expectations!

Issues:

* Maximizing the margin is a bit arbitrary

* No clear model of expert suboptimality (can add slack variables...)

« Messy constrained optimization problem — not great for deep learning!

Further reading:
« Abbeel & Ng: Apprenticeship learning via inverse reinforcement learning

» Ratliff et al: Maximum margin planning

Optimal Control as a Model of Human Behavior

(a) setup

e
e \\==
S AN
N
X

(]1\“& ‘% 2P /i\i

Za

D

“\%%l’i@b‘\u
SR b

19017114323 e
| b R y | -.z) 4 3 3

mamzansRiMNBARARAVALELS)
Muybridge (c. 1870) Mombaur et al. ‘09 Li & Todorov ‘06 Ziebart ‘08

p(Otlse, ar) = exp(r(se, ar))

A probabilistic graphical model of decision making

p(sur,arr) =77 no assumption of optimal behavior!

~
T

p(T|OlzT) p(Ot|St, at) = exp(’r(st, at))
L P(T, Ol:T)
TS

o p(7) | [exp(r(si,ar)) = p(7) exp (Z r (s, at))

Learning the Reward Function

Learning the optimality variable

P(O¢|st, as) ¥ explonl (s ($w)d:)) given:
k_’ samples {7;} sampled from 7*(7)
reward parameters

p(7]O1.1,0) x %exp (Z Tw(st,at)) \

can ignore (independent of)

1 N

1
maximum likelihood learning: max — log p(7;|O1.7, 1Y) = max — ro(T;) — log Z
g max = > logp(ri|Ovr,) = max = > ry(ri) - log

1=1 N 1=1 \

partition function
03 (the hard part)

‘__

The IRL partition function

N

mgx% Z ry (i) — log Z 7 = /p('r) exp(ry(7))dT
1 & 1
Vol =5 3 Vur(r) - [p(r) expr(r) Vuro(r)ar

Al

p(’T|Ol:T77/))

VL = Erone () [Vyry (1)) — Erop(r|0nm,0) [Vpry (T)]

7 \

estimate with expert samples soft optimal policy under current reward

Estimating the expectation

VL = Erone () [Vyry (1)) — Erop(r|0nm,0) [Vpry (T)]

L J

V¢ Z T3y (St, at)]

t=1

ETNP(T|01:T7¢)

T
- Z E(St,at)wp(st,at|(91:T,1p) [V%DTTP (Stv at)]

t=1 v]
—

p(atlse, O1.7,¥)p(se|Or.1, ¥) where have we seen this before?

/ N
_ B(se, ar) ox a(sy)B(st)

p(at|St, 01:T7¢)p(5t|01:T, w) X 5(81:; at)Oé(St)
/ N

backward message forward message

Estimating the expectation

VLl = Erne () [Vory (7)) = Erp(r|0.0,0) [VoTy (T)] let pi(se, at) o< B(st, ar)a(st)

L J

state-action visitation probability for each (s;, a;)

The MaxEnt IRL algorithm

1. Given v, compute backward message 5(s¢, a;) (see previous lecture)
2. Given 1, compute forward message a(s¢) (see previous lecture)
3. Compute p¢(st, ar) oc B(st, ar)a(st)

4. Evaluate VL = % Zfll Zthl Vory(Sit, ai,t)—zz;l [| pe(se,ar)Vry(se, ar)dsiday
5. Y Y +nVyL

Why MaxEnt?

in the case where 74 (s¢,a;) = ¢! f(s;,a;), we can show that it optimizes

max H(7"*) such that E_r, [f] = E«[f] as random as possible
v 7 X while matching features
optimal max-ent policy under ¥ unknown expert policy

estimated with samples
Ziebart et al. 2008: Maximum Entropy Inverse Reinforcement Learning

Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, JAndrew Bagnell, and Anind K. Dey

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

bziebart@cs.cmu.edu, amaas@ andrew.cmu.edu, dbagnell @ri.cmu.edu, anind @cs.cmu.edu

-eatutt reatttre
Uy.ra - A td @ S NTHIRTE Y
)t vBIWE 20UitL Svfl kfl lulu
A4 Sli« b 1) 111 . M-I niLHm
A g Ul mitls r:ri'thlinTl
a'sitd’ = Hdice Nno1n
n Jolrgh Lrd, U-usn
Bdowl:h b 0 liles
oo lalls (@,
Dest. 1 i ST
IL:ne LSu:i-s
Dost. 5
Nest. 2
.
\/\v\iin.so far
Dest. 3

Approximations in High Dimensions

What’s missing so far?

 MaxEnt IRL so far requires...
 Solving for (soft) optimal policy in the inner loop
* Enumerating all state-action tuples for visitation frequency and gradient

* To apply this in practical problem settings, we need to handle...
e Large and continuous state and action spaces
 States obtained via sampling only
* Unknown dynamics

Unknown dynamics & large state/action spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VL = Erone () [Vyry (1)) — Erop(r|0nm,0) [Vpry (T)]

7 \

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s;, O1.7,%) using any max-ent RL algorithm

then run this policy to sample {7}
! J(0) =D Er(sp a0 (s, a)] + Ergs,) [H(m(als)))
t

1 & 1 <
Vol ~ > Vyry(m) — i > Vyry(T)
i=1 j=1

/ \

sum over expert samples sum over policy samples

More efficient sample-based updates

M
VL~ N Z;Vd,m,) Z T (T5)
1 :
sum over expert samples sum over policy samples

improve leesw p(a;|s;, O1.7, 1) using any max-ent RL algorithm

littl
@9 then run this policy to sample {7;}

looks expensive! what if we use “lazy” policy optimization?
problem: estimator is now biased! wrong distribution!

solution 1: use importance sampling

VoL~ 5 D Vre(n) - 2 " S V(o) w; = P Py (7))

j=1 m(75)

Importance sampling

VL A~ %;Wm(n) - ijj ijv oo (1) w; = p(7) e;qig;b('fj))

J=1 \
Ptsy) Htm exp (74 (St, ar))

Dts) [[, Plsrreisca)m(ays:)

_ en(X, (s an)

11, m(atlst)

each policy update w.r.t. ry brings us closer to the target distribution!

[

slides adapted from C. Finn

guided cost learning algorithm
(Finn et al. ICML "16)

initial
policy Tt

generate policy
samples from 1t

!

policy Tt

VLl &~

' Upc
S

Ul

update 1t w.r.t. reward

1

N

N

D Vyry(Ti) -

1=1

Zj W

M

human
- demonstrations

=

[}

®

®

—/

ate reward using
ples & demos

reward r

> wVyry (7))

j=1

’UJj:

exp(ry (7))

m(75)

IRL and GANSs

't looks a bit like a game...

initial human
policy Tt demonstrations
samples from 7o (7) samples from 7*(7)

M Vol =~ VT (Ti) Vo (T;
VoLl ~ % ng log mg (7)1 (7)) < —— Ve Z #ol #T73)
J=1 demos are made more hkely, samples less likely
policy changed to make it harder to
distinguish from demos

Generative Adversarial Networks

Zhu et al. "17 Arjovsky et al. "17 Isola et al. “17

data (“demonstrations”) g. e
po(xlz) gamga

D(x) = pw(rea image|x)

samples from 7y (7)

samples from py(x) ~a

1
Y = arg mgx N Z log Dy (x) + i Z log(1 — Dy (x))

(x~p* X~Ppeo

f < arg max Exrop, 10g Dy, (%)

Goodfellow et al. ‘14

Inverse RL as a GAN

D(x) = py(real image|x) which discriminator is best?

p*(x
po(x) + p*(x)

D*(x) =

for IRL, optimal policy approaches mg(7) o< p(7) exp(ry (7))

choose this parameterization for discriminator: optimize Z w.r.t. same objective as /!

p(7) % exp(r(7)) PeR) 2 exp(r(7)) \%expwn

D) = o) S exn(r(r)) - DU mo(arlse) 1P L oxp(r(7) I molarlse) + & exp(r(n)

”

optimize this w.r.t. ¥

¥ = argmax By [l0g Dy (7)) + Brvy log(1 = Dy (7))

we don’t need importance weights anymore — they are subsumed into 2

Finn*, Christiano* et al. ‘A Connection Between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models’

Inverse RL as a GAN

generator /policy data/demonstrations

mo(7)
i V
samples from p*(7)

samples from 7y (7) *

\ ¥ ¢ argmax By log Dy (T)] + Erary[log(1l — Dy(7))]

VoL~ 1> Valogm(ry)ry () «— D, 3 exp(r(r))

L o(als:) + = exp(r(r))

=1
policy changed to make it harder to
distinguish from demos

Finn*, Christiano* et al. ‘A Connection Between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models’

Generalization via inverse RL

what can we
learn from the
demonstration
to enable better
transfer?

need to
decouple the
goal from the
dynamics!

policy =
_ reward +
demonstration dynamics

reproduce behavior under different conditions

Fu et al. Learning Robust Rewards with Adversarial Inverse Reinforcement Learning

Can we just use a regular discriminator?

generator /policy data/demonstrations

mo(7)
i V
samples from p*(7)

samples from 7y (7) *

\ ¥ ¢ argmax By log Dy (T)] + Erary[log(1l — Dy(7))]

M
1 . .
Vol ~ i E Vo log 7T9(7-j) log D w(Tj) / Dy, ('r) — standard binary neural net classifier

J=1
policy changed to make it harder to Pros & cons:

distinguish from demos
- discriminator knows nothing at convergence

- generally cannot reoptimize the “reward”

Ho & Ermon. Generative adversarial imitation learning.

IRL as adversarial optimization

Guided Cost Learning
Finn et al., ICML 2016

Humanoid expert policies

Run forwards Run backwards Balance
Generative Adversarial Imitation Learning

Ho & Ermon, NIPS 2016

minimized maximized False True
T T T T Hausman, Chebotar, Schaal, Sukhatme, Lim
reward function classifier

Motion Imitation

—

human human 777 X 777 |
demonstrations demonstrations Reference Motion Learned Policy

(Mocap) (Simulation)

A A A A

robot attempt robot attempt
the goal is to train a simulated character to imitate the motion.

learns distribution p(7) such that D(7) = probability 7 is a demo

demos have max likelihood Peng, Kanazawa, Toyer, Abbeel, Levine

p(7) < exp(r(7)) (MaxEnt model) use log D(7) as “reward”
Lop(r(r)) N A~ |
D(r) = actually the D(7) = some classifier

1
= exp(r(7)) + (7T
4 p(()) () same thing!

Suggested Reading on Inverse RL

Classic Papers:
Abbeel & Ng ICML '04. Apprenticeship Learning via Inverse Reinforcement Learning.

Good introduction to inverse reinforcement learning
Ziebart et al. AAAI '08. Maximum Entropy Inverse Reinforcement Learning. Introduction
to probabilistic method for inverse reinforcement learning

Modern Papers:
Finn et al. ICML '16. Guided Cost Learning. Sampling based method for MaxEnt IRL that

handles unknown dynamics and deep reward functions

Wulfmeier et al. arXiv '16. Deep Maximum Entropy Inverse Reinforcement Learning.
MaxEnt inverse RL using deep reward functions

Ho & Ermon NIPS '16. Generative Adversarial Imitation Learning. Inverse RL method
using generative adversarial networks

Fu, Luo, Levine ICLR "18. Learning Robust Rewards with Adversarial Inverse
Reinforcement Learning

	Slide 1
	Slide 2: Acknowledgement
	Slide 3
	Slide 4: Optimal Control as a Model of Human Behavior
	Slide 5: Why should we worry about learning rewards?
	Slide 6: Why should we worry about learning rewards?
	Slide 7: Inverse reinforcement learning
	Slide 8: A bit more formally
	Slide 9: Feature matching IRL
	Slide 10: Feature matching IRL & maximum margin
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: The IRL partition function
	Slide 16: Estimating the expectation
	Slide 17: Estimating the expectation
	Slide 18: The MaxEnt IRL algorithm
	Slide 19
	Slide 20
	Slide 21: What’s missing so far?
	Slide 22
	Slide 23: More efficient sample-based updates
	Slide 24: Importance sampling
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Generative Adversarial Networks
	Slide 29: Inverse RL as a GAN
	Slide 30: Inverse RL as a GAN
	Slide 31: Generalization via inverse RL
	Slide 32: Can we just use a regular discriminator?
	Slide 33
	Slide 34

