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What’s the problem?

this is easy (mostly) this is impossible

Why?




Montezuma’s revenge

* Getting key = reward
* Opening door = reward
» Getting killed by skull = bad




Montezuma’s revenge

— * We know what to do because we understand what
these sprites mean!

* Key: we know it opens doors!
* Ladders: we know we can climb them!

e Skull: we don’t know what it does, but we know it
can’t be good!

* Prior understanding of problem structure can help
us solve complex tasks quickly!



Can RL use the same prior knowledge as us?
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* If we've solved prior tasks, we might acquire useful knowledge for
solving a new task

* How is the knowledge stored?

* Q-function: tells us which actions or states are good

* Policy: tells us which actions are potentially useful
* some actions are never useful!
* Models: what are the laws of physics that govern the world?

* Features/hidden states: provide us with a good representation
* Don’t underestimate this!



Aside: the representation bottleneck
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To decouple reinforcement learning from representation learning, we decapitate an
agent by destroying its policy and value outputs and then re-train end-to-end.

The representation remains and the policy is swiftly recovered. The gap between
initial optimization and recovery shows a representation learning bottleneck.

slide adapted from E. Schelhamer, “Loss is its own reward”



Transfer learning terminology

transfer learning: using experience from for faster
learning and better performance on a new task

in RL, task = MIDP! “shot”: number of attempts in the target
domain

target domain 1shot: just run a policy trained in the source
domain

2 shot: try the task once

few shot: try the task a few times




How can we frame transfer learning problems?

No single solution! Survey of various recent research papers

1. Forward transfer: train on one task, transfer to a new task
a) Transferring visual representations & domain adaptation
b) Domain adaptation in reinforcement learning
c) Randomization

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Sharing representations and layers across tasks in multi-task learning
b) Contextual policies
c) Optimization challenges for multi-task learning
d) Algorithms

3. Transferring models and value functions
a) Model-based RL as a mechanism for transfer
b) Successor features & representations



Forward Transfer



Pretraining + Finetuning

The most popular transfer learning method in (supervised) deep learning!

. IMAGENET




What issues are we likely to face?

>Domain shift: representations learned in the source
domain might not work well in the target domain

> Difference in the MDP: some things that are possible
to do in the source domain are not possible to do in
the target domain

> Finetuning issues: if pretraining & finetuning, the
finetuning process may still need to explore, but
optimal policy during finetuning may be deterministic!



Domain adaptation in computer vision
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Is this true?

Invariance assumption: everything that is different between domains is irrelevant

formally:

p(x) is different

exists some z = f(x) such that p(y|z) = p(y|z), but p(z) is same



How do we apply this idea in RL?

lllll taSk
loss

real-syn

weak : : : pairwise
pairs loss
lllll taSK
loss
] real-syn : 2 : t i
real ima ges non-aligned s co?cfaizlon
& - — palrS

..... taSK
loss

pose regression convnet
(shared weights)

adversarial loss causes
internal CNN features to be
indistinguishable for sim and real

Tzeng™*, Devin*, et al., “Adapting Visuomotor Representations with Weak Pairwise Constraints”



Domain adaptation in RL for dynamics?

Why is invariance not enough when the dynamics don’t match?

Simulator Simulator with Learned

Real World
(or Learned Model) Reward Offset

7(s,a) =r(s,a) + Ar(s,a)

Learn real vs I

sim classifier

Ar(sy, a4, 8:41) = lﬂgptargct[st-l-l | 8¢, a¢)—10g Psource(Se+1 | 515 ar).

When might this not work?

Ar(se, at, 8¢41) = —log p(target | s¢, at)
Eysenbach et al., “Off-Dynamics Reéinforcement Learhifg? TFAHing 8 Transfer with Domain Classifiers”



What if we can also finetune?

1. RL tasks are generally much less diverse
e Features are less general
 Policies & value functions become overly specialized

2. Optimal policies in fully observed MDPs are
deterministic
* Loss of exploration at convergence
* Low-entropy policies adapt very slowly to new settings




Finetuning with maximum-entropy policies

How can we increase diversity and entropy?

m(als) = exp(Qg¢(s,a)—V (s)) optimizes ), Fr(s, a,)[7(St, ar)|+Ers) [H(m(ar]s))]

policy entropy

Act as randomly as possible while collecting high rewards!



Example: pre-training for robustness

Learning to solve a task in all possible ways provides for more robust
transfer!



Example: pre-training for diversity

Pretraining: reward = speed (any direction)

(one robot per trajectory)
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Haarnoja*, Tang*, et al. “Reinforcement Learning with Deep Energy-Based Policies”



Domain adaptation: suggested readings

Tzeng, Hoffman, Zhang, Saenko, Darrell. Deep Domain Confusion: Maximizing for Domain
Invariance. 2014.

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky. Domain-
Adversarial Training of Neural Networks. 2015.

Tzeng*, Devin*, et al., Adapting Visuomotor Representations with Weak Pairwise Constraints.
2016.

Eysenbach et al., Off-Dynamics Reinforcement Learning: Training for Transfer with
Domain Classifiers. 2020.

...and many many others!



Finetuning: suggested readings

Finetuning via MaxEnt RL: Haarnoja*, Tang*, et al. (2017). Reinforcement Learning with Deep
Energy-Based Policies.

Andreas et al. Modular multitask reinforcement learning with policy sketches. 2017.

Florensa et al. Stochastic neural networks for hierarchical reinforcement learning. 2017.

Kumar et al. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt
RL. 2020

...and many many others!



Forward Transfer with Randomization



What it we can manipulate the source domain?

 So far: source domain (e.g., empty room) and target domain (e.g.,
corridor) are fixed

* What if we can design the source domain, and we have a difficult
target domain?
e Often the case for simulation to real world transfer



EPOpt: randomizing physical parameters

training on single torso mass

training on model ensemble
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Rajeswaran et al., “EPOpt: Learning robust neural network policies...”

Torso Mass



Preparing for the unknown: explicit system ID

/ system identification RNN
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Yu et al., “Preparing for the Unknown: Learning a Universal Policy with Online System ldentification”



Another example

Xue Bin Peng et al., “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”



CAD2RL: randomization for real-world control

also called domain randomization

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



CAD2RL: randomization for real-world control

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



Randomization for manipulation

Tobin, Fong, Ray, Schneider, Zaremba, Abbeel

James, Davison, Johns




Source domain randomization and domain
adaptation suggested readings

Rajeswaran, et al. (2017). EPOpt: Learning Robust Neural Network Policies Using Model Ensembles.
Yu et al. (2017). Preparing for the Unknown: Learning a Universal Policy with Online System Identification.
Sadeghi & Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin et al. (2017). Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real
World.

James et al. (2017). Transferring End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage
Task.

Methods that also incorporate domain adaptation together with randomization:
Bousmalis et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping.

Rao et al. (2017). RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real.

... and many many others!



Multi-Task Transfer



Can we learn faster by learning multiple tasks?

Multi-task learning can:

- Accelerate learning of all tasks
that are learned together

- Provide better pre-training for

down-stream tasks



Can we solve multiple tasks at once?

Multi-task RL corresponds to single-task RL in a joint MDP
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What is difficult about this?

* Gradient interference: becoming better on one task can make you
worse on another

* Winner-take-all problem: imagine one task starts getting good —
algorithm is likely to prioritize that task (to increase average expected
reward) at the expensive of others

> |n practice, this kind of multi-task RL is very challening



Actor-mimic and policy distillation

Goal: learn a single policy that can play all Atari games

POLICY DISTILLATION

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Giilcehre; Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu & Raia Hadsel

Google DeepMind
ACTOR-MIMIC
DEEP MULTITASK AND TRANSFER REINFORCEMENT
LEARNING

Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov
Department of Computer Science
University of Toronto



Distillation for Multi-Task Transfer
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(just supervised learning/distillation)

analogous to guided policy search, but
for transfer learning

g, (als)

some other details
(e.g., feature regression objective)

— see paper
Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”



Combining weak policies into a strong policy

8\ e (OBt 8 Divide and Conquer
%Ew% Reinforcement
Ionaljeewwﬁbfémmdiﬁles supervised learning Lea n | N g

Divide and conquer reinforcement learning algorithm sketch:

1. optimize each local policy my, (a¢|s;) on initial state sg; w.r.t. 7 ;(s¢, as)
2. use samples from step (1) to train mg(u|x;) to mimic each 7y, (us|xy)

3. update reward function 751 ;(X¢, Ur) = 7(X¢, W) + Ag41,5 log o (ue|xy)

For details, see: “Divide and Conquer Reinforcement Learning”



Distillation Transfer Results
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How does the model know what to do?

 So far: what to do is apparent from the input (e.g., which game is
being played)

* What if the policy can do multiple things in the same environment?




Contextual policies

standard policy: mg(als) Y

contextual policy: mg(als,w) —

e.g., do dishes or laundry

formally, simply defines augmented state space: s = [ Z ] S=8x0

w: stack location w: walking direction w: where to hit puck

images: Peng, van de Panne, Peters



Contextual policies

standard policy: mg(als) == == Q
contextual policy: mp(als, w) =

will discuss more in the context
of meta-learning!

w: where to hit puck

w: stack location w: walking direction

images: Peng, van de Panne, Peters



Transferring Models and Value Functions



The problem setting

Assumption: the dynamics p(s;i1|s¢, a;) is the same in both domains

but the reward function is different

Common setting:

 Autonomous car learns how to drive to a few destinations,
and then has to navigate to a new one

* A kitchen robot learns to cook many different recipes, and
then has to cook a new one in the same kitchen



What is the best object to transfer?

Model: very simple to transfer, since the model is already (in principle)
independent of the reward

Value function: not straightforward to transfer by itself, since the value function
entangles the dynamics and reward, but possible with a decomposition
- what kind of “dynamics relevant” information does a value function contain?

Policy: possible to do with contextual policies, but otherwise tricky, because the
policy contains the least dynamics information



Transferring models

why might zero-shot transfer
not always work?

source domain target domain



Transferring value functions

Not so fast! Value functions couple , rewards, and policies!

Q™ (s,a) = 1(s,a) + YEg wp(s/|s,a).a/~r(a|s) (@7 (s',a")]

Is this really such a good idea? Yes, because of linearity

Key observation: the value function is linear in the reward function
let Pv denote a vector w of length |S||A| given by w(s,a) = Eg/ p(s/|s,a)[V(s')]

let P™v denote a vector w of length |S||A| given by w(s,a) = Eg/p(s'|s,a),a'~r(a’|s) [V(S;a")]

Q =r+APTQT QT = (1P

\

vectors with |S||A| entries



Successor reprESEHtatiOnS & successor features
QT =T —~P")"lr

let ¢ be a |S||A| X N feature matrix

let ¢ be a |S||A| x N matrix such that ¢ = (I — P™)"1¢

if r = ¢pw, then Q™ = Yw

\

1 x N row vector

Proof: Q™ = (I—~P™) 1y
\
QT =I-~P") " puw

Q" = vu

W; is a “successor feature” for ¢;



Successor representations & successor features

let ¢ be a |S||A| X N feature matrix
let ¢ be a |S||A| x N matrix such that ¢ = (I — P™)"1¢

if 7 = dw, then Q™ = Ypw

For any new reward function, if we can fit r = ¢ow, we get Q™ ~ Yw

Important: this holds for Q™, not Q*! why?

Q*(S’ a) p— T(S, a) + ’YES’NP(S’|S,3) [Irgalx QW (Sl’ a/)]

\

this is no longer linear!



Aside: successor representations

let ¢ be a |S||A| X N feature matrix

let ¢ be a |S||A| x N matrix such that ¢ = (I — P™)"1¢
if 7 = dw, then Q™ = Ypw

what if ¢ =17  for each (s, a), there is a ¢s o = (s, a)

then we can show that 1s a/(s,a) predicts

probability of landing in (s’,a’) from (s, a) under discount =

7 ™\ V"
@ @ @ v=0.9 s, (s1) = 0.9
"

Davan. Improving generalization for temporal difference learning: The successor representation. 1993.



Transfer with successor features

Simplest use: evaluation

1. get small amount of data (s;,a;,r;,s.) in new MDP
2. fit w such that ¢(s;,a;)w =~ r; (linear regression)
3. initialize Q7 (s,a) = ¥ (s, a)w

4. finetune m and Q™ with any RL method
More sophisticated use: train multiple ™ functions for different =;

choose initial policy 7 (s) = arg max, max; ¥ (s, a)w

this provides a better initial policy in general

For more details, see: Barreto et al., Successor Features for Transfer in Reinforcement Learning



Recap

No single solution! Survey of various recent research papers

1. Forward transfer: train on one task, transfer to a new task
a) Transferring visual representations & domain adaptation
b) Domain adaptation in reinforcement learning
c) Randomization

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Sharing representations and layers across tasks in multi-task learning
b) Contextual policies
c) Optimization challenges for multi-task learning
d) Algorithms

3. Transferring models and value functions
a) Model-based RL as a mechanism for transfer
b) Successor features & representations
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