IASD M2 at Paris Dauphine

Deep Reinforcement Learning

24: Challenges and Open Problems

Eric Benhamou Thérèse Des Escotais

Acknowledgement

These materials are based on the seminal course of Sergey Levine CS285

Challenges in Deep Reinforcement Learning

What's the problem?

Challenges with core algorithms:

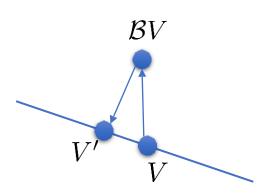
- Stability: does your algorithm converge?
- Efficiency: how long does it take to converge? (how many samples)
- Generalization: after it converges, does it generalize?

Challenges with **assumptions**:

- Is this even the right problem formulation?
- What is the source of *supervision*?

Stability and hyperparameter tuning

- Devising stable RL algorithms is very hard
- Q-learning/value function estimation
 - Fitted Q/fitted value methods with deep network function estimators are typically not contractions, hence no guarantee of convergence
 - Lots of parameters for stability: target network delay, replay buffer size, clipping, sensitivity to learning rates, etc.
- Policy gradient/likelihood ratio/REINFORCE
 - Very high variance gradient estimator
 - Lots of samples, complex baselines, etc.
 - Parameters: batch size, learning rate, design of baseline
- Model-based RL algorithms
 - Model class and fitting method
 - Optimizing policy w.r.t. model non-trivial due to backpropagation through time
 - More subtle issue: policy tends to exploit the model



The challenge with hyperparameters

- Can't run hyperparameter sweeps in the real world
 - How representative is your simulator? Usually the answer is "not very"
- Actual sample complexity = time to run algorithm x number of runs to sweep
 - In effect stochastic search + gradient-based optimization
- Can we develop more stable algorithms that are less sensitive to hyperparameters?

What can we do?

- Algorithms with favorable improvement and convergence properties
 - Trust region policy optimization [Schulman et al. '16]
 - Safe reinforcement learning, High-confidence policy improvement [Thomas '15]
- Algorithms that adaptively adjust parameters
 - Q-Prop [Gu et al. '17]: adaptively adjust strength of control variate/baseline

- More research needed here!
- Not great for beating benchmarks, but absolutely essential to make RL a viable tool for real-world problems

Sample Complexity

gradient-free methods (e.g. NES, CMA, etc.)

10x

fully online methods (e.g. A3C)

10x

policy gradient methods (e.g. TRPO)

10x

replay buffer value estimation methods (Q-learning, DDPG, NAF, SAC, etc.)

model-based deep RL (e.g. PETS, guided policy search)

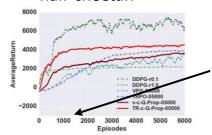
model-based "shallow" RL (e.g. PILCO)

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

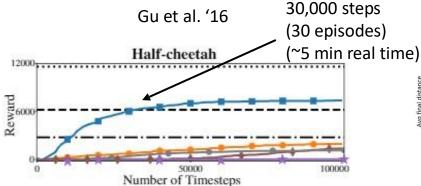
Tim Salimans 1 Jonathan Ho 1 Xi Chen 1 Ilya Sutskever 1

half-cheetah (slightly different version)

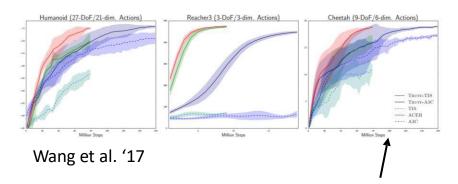
half-cheetah



Gu et al. '16



Chua et a. '18: Deep Reinforcement Learning in a Handful of Trials



10,000,000 steps (10,000 episodes) (~ 1.5 days real time)

1,000,000 steps (1,000 episodes) [~3 hours real time]

10x gap

about 20 minutes of experience on a real robot

100,000,000 steps

(100,000 episodes)

(~ 15 days real time)

Chebotar et al. '17 (note log scale)

The challenge with sample complexity

- Need to wait for a long time for your homework to finish running
- Real-world learning becomes difficult or impractical
- Precludes the use of expensive, high-fidelity simulators
- Limits applicability to real-world problems

What can we do?

- Better model-based RL algorithms
- Design faster algorithms
 - Addressing Function Approximation Error in Actor-Critic Algorithms (Fujimoto et al. '18): simple and effective tricks to accelerate DDPG-style algorithms
 - Soft Actor-Critic (Haarnoja et al. '18): very efficient maximum entropy RL algorithm
- Reuse prior knowledge to accelerate reinforcement learning
 - RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. '17)
 - Learning to reinforcement learning (Wang et al. '17)
 - Model-agnostic meta-learning (Finn et al. '17)

Scaling & Generalization

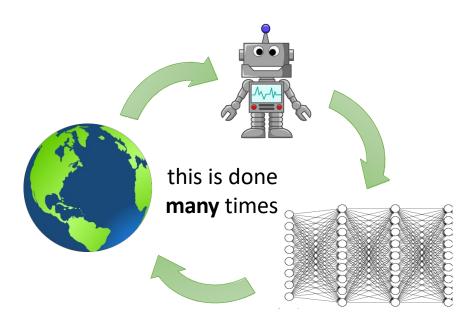
Scaling up deep RL & generalization

- Large-scale
- Emphasizes diversity
- Evaluated on generalization

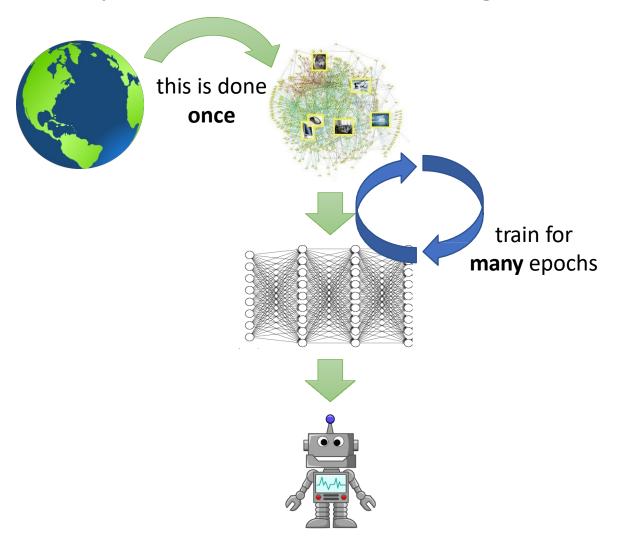
- Small-scale
- Emphasizes mastery
- Evaluated on performance
- Where is the generalization?

RL has a big problem

reinforcement learning

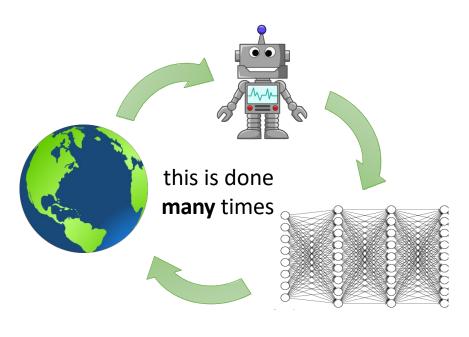


supervised machine learning

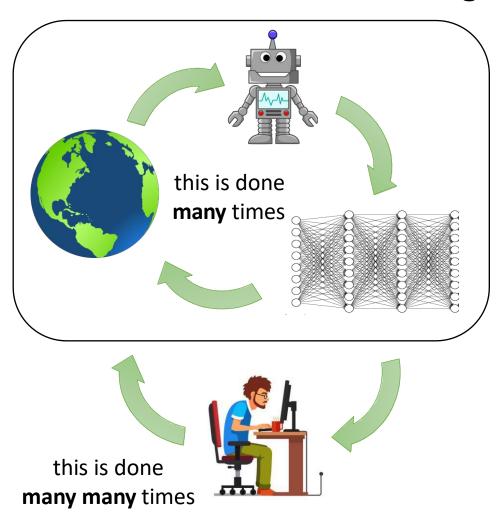


RL has a big problem

reinforcement learning

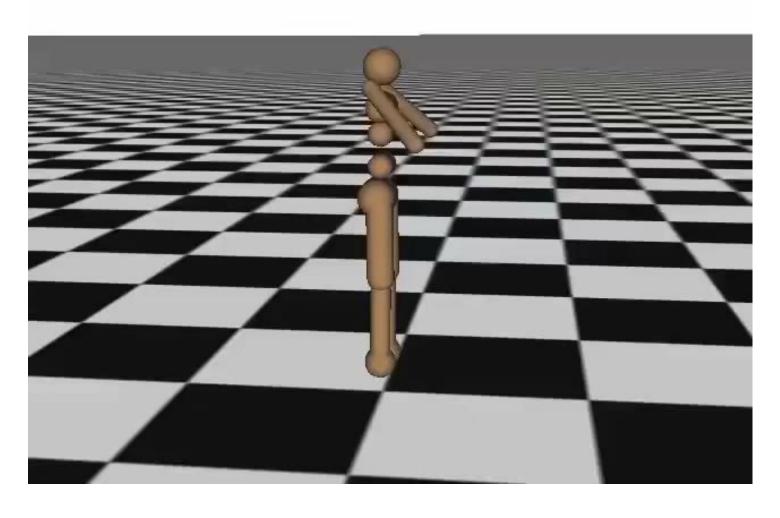


actual reinforcement learning

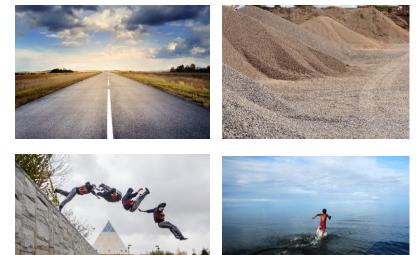


How bad is it?

Iteration 0



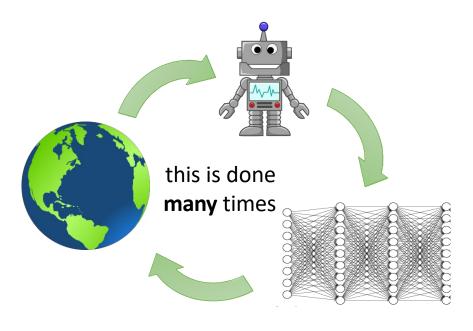
- This is quite cool
- It takes 6 days of real time (if it was real time)
- ...to run on an infinite flat plane



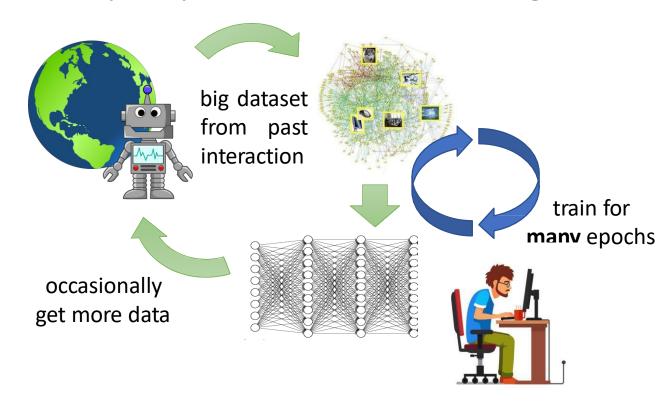
The real world is not so simple!

Off-policy RL?

reinforcement learning

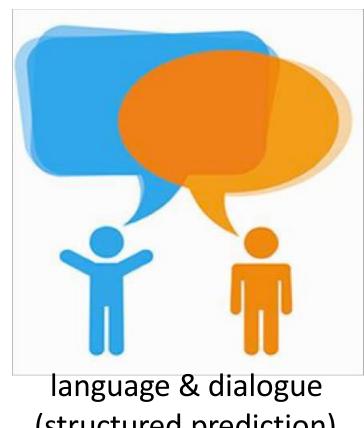


off-policy reinforcement learning



Not just robots!

autonomous driving



(structured prediction)

finance

What's the problem?

Challenges with core algorithms:

- Stability: does your algorithm converge?
- Efficiency: how long does it take to converge? (how many samples)
- Generalization: after it converges, does it generalize?

Challenges with **assumptions**:

- Is this even the right problem formulation?
- What is the source of *supervision*?

Problem Formulation

Single task or multi-task?



The real world is not so simple!

this is where generalization can come from...

maybe doesn't require any new assumption, but might merit additional treatment

pick MDP randomly
$$s_0 \xrightarrow{\pi(\mathbf{a}_0|\mathbf{s}_0)} s_1 \longrightarrow \text{etc.}$$
 MDP 0 in first state $p(\mathbf{s}_0) \xrightarrow{sample} s_0 \xrightarrow{\pi(\mathbf{a}_0|\mathbf{s}_0)} s_1 \longrightarrow \text{etc.}$ MDP 1 $s_0 \xrightarrow{sample} s_0 \xrightarrow{\pi(\mathbf{a}_0|\mathbf{s}_0)} s_1 \longrightarrow \text{etc.}$ MDP 2

Generalizing from multi-task learning

- Train on multiple tasks, then try to generalize or finetune
 - Policy distillation (Rusu et al. '15)
 - Actor-mimic (Parisotto et al. '15)
 - Model-agnostic meta-learning (Finn et al. '17)
 - many others...
- Unsupervised or weakly supervised learning of diverse behaviors
 - Stochastic neural networks (Florensa et al. '17)
 - Reinforcement learning with deep energy-based policies (Haarnoja et al. '17)
 - See lecture on unsupervised information-theoretic exploration
 - many others...

Where does the supervision come from?

- If you want to learn from many different tasks, you need to get those tasks somewhere!
- Learn objectives/rewards from demonstration (inverse reinforcement learning)
- Generate objectives automatically?

reinforcement learning agent

what is the reward?

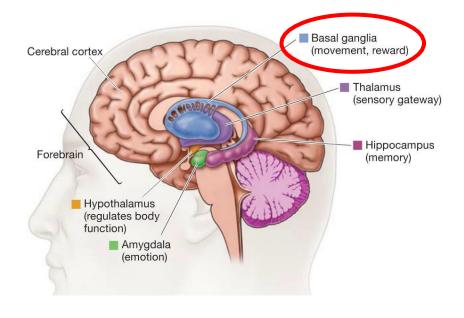
What is the role of the reward function?

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{s}, \mathbf{a}) = w_1 v(\mathbf{s}) +$$

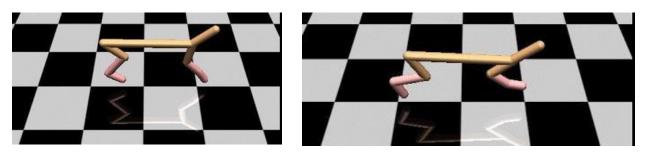
$$w_2 \delta(|\theta_{\text{torso}}(\mathbf{s})| < \epsilon) +$$

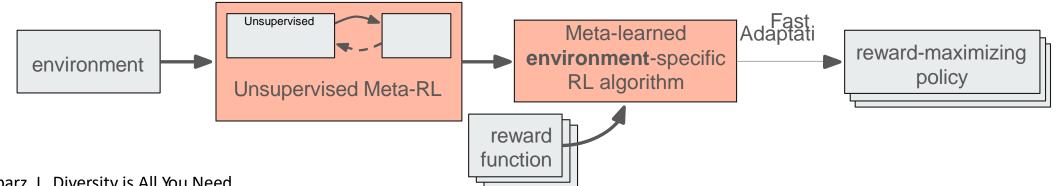
$$w_3 \delta(h_{\text{torso}}(\mathbf{s}) \ge h)$$



Unsupervised reinforcement learning?

- 1. Interact with the world, without a reward function
- 2. Learn *something* about the world (what?)
- 3. Use what you learned to quickly solve new tasks





Eysenbach, Gupta, Ibarz, L. Diversity is All You Need.

Gupta, Eysenbach, Finn, L. Unsupervised Meta-Learning for Reinforcement Learning.

Other sources of supervision

Demonstrations

 Muelling, K et al. (2013). Learning to Select and Generalize Striking Movements in Robot Table Tennis

Language

• Andreas et al. (2018). Learning with latent language

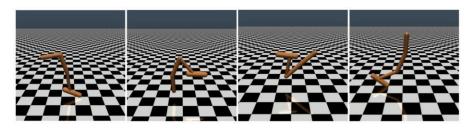
Human description: move to the star

Inferred description: reach the star cell

Human preferences

• Christiano et al. (2017). Deep reinforcement learning from human preferences

Should supervision tell us **what** to do or **how** to do it?

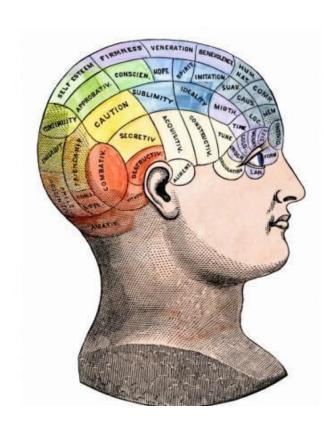


Rethinking the Problem Formulation

- How should we define a control problem?
 - What is the data?
 - What is the goal?
 - What is the supervision?
 - may not be the same as the goal...
- Think about the assumptions that fit your problem setting!
- Don't assume that the basic RL problem is set in stone

Back to the Bigger Picture

Learning as the basis of intelligence



- Reinforcement learning = can reason about decision making
- Deep models = allows RL algorithms to learn and represent complex input-output mappings

Deep models are what allow reinforcement learning algorithms to solve complex problems end to end!

What is missing?

How Much Information Does the Machine Need to Predict?

Y LeCun

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- ▶ The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample
- (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Where does the *signal* come from?

- Yann LeCun's cake
 - Unsupervised or self-supervised learning
 - Model learning (predict the future)
 - Generative modeling of the world
 - Lots to do even before you accomplish your goal!
- Imitation & understanding other agents
 - We are social animals, and we have culture for a reason!
- The giant value backup
 - All it takes is one +1
- All of the above

How should we answer these questions?

- Pick the right problems!
- Pay attention to generative models, prediction, etc., not just RL algorithms
- Carefully understand the relationship between RL and other ML fields

