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Challenges in Deep Reinforcement Learning



What’s the problem?

Challenges with core algorithms:

e Stability: does your algorithm converge?

* Efficiency: how long does it take to converge? (how many samples)
* Generalization: after it converges, does it generalize?

Challenges with assumptions:
* |s this even the right problem formulation?
* What is the source of supervision?



Stability and hyperparameter tuning

» Devising stable RL algorithms is very hard

e Q-learning/value function estimation

 Fitted Q/fitted value methods with deep network function
estimators are typically not contractions, hence no guarantee of

convergence
* Lots of parameters for stability: target network delay, replay
buffer size, clipping, sensitivity to learning rates, etc.
* Policy gradient/likelihood ratio/REINFORCE
* \ery high variance gradient estimator
* Lots of samples, complex baselines, etc.
e Parameters: batch size, learning rate, design of baseline

* Model-based RL algorithms
* Model class and fitting method
* Optimizing policy w.rt. model non-trivial due to backpropagation

through time
* More subtle issue: policy tends to exploit the model




The challenge with hyperparameters

e Can’t run hyperparameter sweeps in the real

world
* How representative is your simulator? Usually the

answer is “not very”
e Actual sample complexity = time to run
algorithm x number of runs to sweep
* |In effect stochastic search + gradient-based
optimization
* Can we develop more stable algorithms that
are less sensitive to hyperparameters?




What can we do?

 Algorithms with favorable improvement and convergence properties
 Trust region policy optimization [Schulman et al. ‘16]
» Safe reinforcement learning, High-confidence policy improvement [Thomas ‘15]

* Algorithms that adaptively adjust parameters
* Q-Prop [Gu et al. “17]: adaptively adjust strength of control variate/baseline

 More research needed here!

* Not great for beating benchmarks, but absolutely essential to make RL a
viable tool for real-world problems



Sample Complexity
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The challenge with sample complexity

osE8s 3 1

* Need to wait for a long time for your
homework to finish running

* Real-world learning becomes difficult or
impractical

* Precludes the use of expensive, high-fidelity
simulators

* Limits applicability to real-world problems




What can we do?

* Better model-based RL algorithms

e Design faster algorithms

» Addressing Function Approximation Error in Actor-Critic Algorithms (Fujimoto et
al. ‘18): simple and effective tricks to accelerate DDPG-style algorithms

* Soft Actor-Critic (Haarnoja et al. ‘18): very efficient maximum entropy RL
algorithm

* Reuse prior knowledge to accelerate reinforcement learning
* RL2: Fast reinforcement learning via slow reinforcement learning (Duan et al. ‘17)

e Learning to reinforcement learning (Wang et al. “17)
 Model-agnostic meta-learning (Finn et al. ‘17)



Scaling & Generalization



Scaling up deep RL & generalization

Large-scale
Emphasizes diversity
Evaluated on generalization

Small-scale

Emphasizes mastery
Evaluated on performance
Where is the generalization?



RL has a big problem
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RL has a big problem

reinforcement learning actual reinforcement learning

. this is done
many times

this is done
many many times *



How bad is it?

teration O

* This is quite cool

* |t takes 6 days of real
time (if it was real time)

e ...to run on an infinite
flat plane

The real world is not so simple!
Schulman, Moritz, L., Jordan, Abbeel '16



Oft-policy RL?

off-policy reinforcement learning
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Not just robots!

autonomous driving - language & dialogue finance
(structured prediction)



What’s the problem?

Challenges with assumptions:
Is this even the right problem formulation?
What is the source of supervision?



Problem Formulation



Single task or multi-task?

this is where generalization can come from...

maybe doesn’t require any new
assumption, but might merit additional
treatment
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Generalizing from multi-task learning

* Train on multiple tasks, then try to generalize or finetune
 Policy distillation (Rusu et al. ‘15)
e Actor-mimic (Parisotto et al. ‘15)
* Model-agnostic meta-learning (Finn et al. ‘17)
* many others...

* Unsupervised or weakly supervised learning of diverse behaviors
e Stochastic neural networks (Florensa et al. ‘17)
* Reinforcement learning with deep energy-based policies (Haarnoja et al. ‘17)
* See lecture on unsupervised information-theoretic exploration
* many others...



Where does the supervision come from?

* If you want to learn from many reward
different tasks, you need to get those
tasks somewhere!

 Learn objectives/rewards from
demonstration (inverse
reinforcement learning)

Mnih etal.’15

* Generate objectives automatically? reinforcement learning agent what is the reward?



What is the role of the reward function?

r(s,a) = 1 if walker is running
’ 0 otherwise

r(s,a) =wiv(s)+
w25(|9torso(s)‘ < €)‘|‘
w35(htorso(s) 2 h)

1l Basal ganglia

Cerebral cortex (movement, reward)

M Thalamus
(sensory gateway)

B Hippocampus

Forebrain (memory)

[l Hypothalamus
(regulates body
function)

Il Amygdala
(emotion)




Unsupervised reinforcement learning?

1. Interact with the world,
without a reward function

2. Learn something about the
world (what?)

3. Use what you learned to
quickly solve new tasks

Unsupervised |~ i»

e Meta-learned Adan%Ei —
environment % - —p| Environment-specific|  p reward-maximizing

Unsupervised Meta-RL RL algorithm policy

reward
function
Eysenbach, Gupta, Ibarz, L. Diversity is All You Need.

Gupta, Eysenbach, Finn, L. Unsupervised Meta-Learning for Reinforcement Learning.



Other sources of supervision

e Demonstrations

* Muelling, K et al. (2013). Learning to Select and Generalize Striking
Movements in Robot Table Tennis

* Language

* Andreas et al. (2018). Learning with latent language i Thes S

Inferred description:
reach the star cell

* Human preferences

* Christiano et al. (2017). Deep reinforcement learning from human preferences

Should supervision tell
us what to do or how

todo it?




Rethinking the Problem Formulation

* How should we define a control problem?
* What is the data?
* What is the goal?

 What is the supervision?
* may not be the same as the goal...

* Think about the assumptions that fit your problem setting!
* Don’t assume that the basic RL problem is set in stone



Back to the Bigger Picture



Learning as the basis of intelligence

* Reinforcement learning = can reason about
decision making

* Deep models = allows RL algorithms to
learn and represent complex input-output
mappings

Deep models are what allow
reinforcement learning algorithms to
solve complex problems end to end!




What is missing?

& i
i

How Much Information Doesqthe Machine Need to'Predict?
<4 Y LeCun

# "Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

> A few bits for some samples

# Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

4 (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)




Where does the signal come from?

* Yann LeCun’s cake
* Unsupervised or self-supervised learning
* Model learning (predict the future)
* Generative modeling of the world
* Lots to do even before you accomplish your goall!

* Imitation & understanding other agents
e We are social animals, and we have culture — for a reason!

* The giant value backup
* All it takes is one +1

e All of the above



How should we answer these guestions?

* Pick the right problems!
* Pay attention to generative models, prediction, etc., not just RL algorithms

e Carefully understand the relationship between RL and other ML fields
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