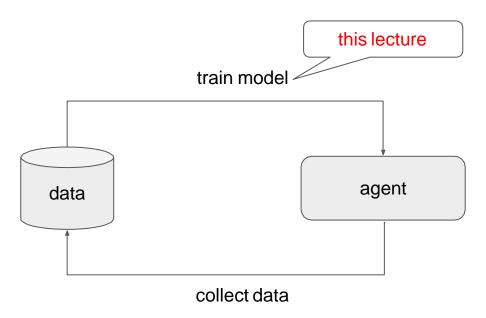
IASD M2 at Paris Dauphine

Deep Reinforcement Learning

3: PyTorch and Neural Nets Review Session

Eric Benhamou Thérèse Des Escotais

Acknowledgement


The materials of this course is entirely based on the seminal course of Sergey Levine CS285

Goal of this course

Train an agent to perform useful tasks

common training paradigm

$$\theta^* = \arg\min_{\theta} \sum_{(x,y)\in\mathcal{D}} ||f_{\theta}(x) - y||_2^2$$

$$\theta^* = \arg\min_{\theta} \sum_{(x,y)\in\mathcal{D}} ||\underline{f_{\theta}(x)} - y||_2^2$$

neural network

$$\theta^* = \underline{\arg\min_{\theta}} \sum_{(x,y)\in\mathcal{D}} ||f_{\theta}(x) - y||_2^2$$

gradient descent neural network

$$\theta^* = \underline{\arg\min_{\theta}} \sum_{(x,y)\in\mathcal{D}} ||f_{\theta}(x) - y||_2^2$$

gradient descent neural network

What is PyTorch?

Python library for...

- Defining neural networks
- Automatically computing gradients

$$\theta^* = \underline{\arg\min_{\theta}} \sum_{(x,y)\in\mathcal{D}} ||f_{\theta}(x) - y||_2^2$$

gradient descent

neural network

What is PyTorch?

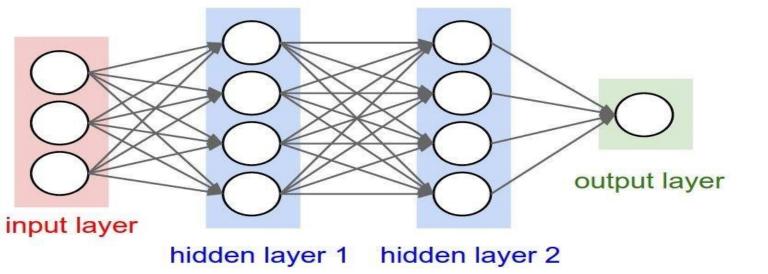
Python library for...

- Defining neural networks
- Automatically computing gradients
- And more (GPU, optimizers, etc.)

$$\theta^* = \underline{\arg\min_{\theta}} \sum_{(x,y)\in\mathcal{D}} ||f_{\theta}(x) - y||_2^2$$

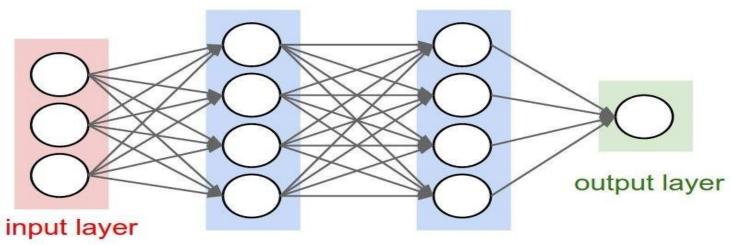
gradient descent

neural network


PyTorch Alternatives

TensorFlow, JAX, Chainer, ...

Basically all do the same


How does Pytorch work?

PyTorch: forward pass

 $h_1 = \sigma(W_1 x)$ $h_2 = \sigma(W_2 h_1)$ $y = \sigma(W_3 h_2)$

PyTorch: backward pass

hidden layer 1 hidden layer 2

You define	$h_1 = \sigma(W_1 x)$	$h_2 = \sigma(W_2 h_1)$	$y = \sigma(W_3 h_2)$
PT computes	$\frac{\partial y}{\partial W_1} = \frac{\partial y}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}$	$\frac{\partial y}{\partial W_2} = \frac{\partial y}{\partial h_2} \frac{\partial h_2}{\partial W_2}$	$\frac{\partial y}{\partial W_3}$

PyTorch Tutorial (Colab)

Google collab link:

https://colab.research.google.com/drive/135fzWzVf4IULsr68RUoShV-ZDTzXKvbp?usp=sharing