IASD M2 at Paris Dauphine

Deep Reinforcement Learning

5: Policy Gradients

Eric Benhamou Thérèse Des Escotais

Acknowledgement

The materials of this course are based on the seminal course of Sergey Levine CS285

The goal of reinforcement learning

$$
\begin{gathered}
\underbrace{p_{\theta}\left(\mathbf{s}_{1}, \mathbf{a}_{1}, \ldots, \mathbf{s}_{T}, \mathbf{a}_{T}\right)}_{p_{\theta}(\tau)}=p\left(\mathbf{s}_{1}\right) \prod_{t=1}^{T} \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right) p\left(\mathbf{s}_{t+1} \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right) \\
\theta^{\star}=\arg \max _{\theta} E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right]
\end{gathered}
$$

The goal of reinforcement learning

$$
\theta^{\star}=\arg \max _{\theta} E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right]
$$

Evaluating the objective

$$
\theta^{\star}=\arg \max _{\theta} \underbrace{E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right]}_{J(\theta)}
$$

$$
J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right] \approx \frac{1}{N} \sum_{i} \sum_{t} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)
$$

sum over samples from π_{θ}

Direct policy differentiation

$$
\theta^{\star}=\arg \max _{\theta} \underbrace{E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right]}_{J(\theta)}
$$

$$
\begin{aligned}
& \text { a convenient identity } \\
& \qquad p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)=p_{\theta}(\tau) \frac{\nabla_{\theta} p_{\theta}(\tau)}{p_{\theta}(\tau)}=\nabla_{\theta} p_{\theta}(\tau)
\end{aligned}
$$

$$
J(\theta)=E_{\tau \sim p_{\theta}(\tau)}[\underbrace{r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)}_{\left.\sum_{t=1}^{T} r(\tau)\right]}
$$

$$
\nabla_{\theta} J(\theta)=\int \underline{\nabla_{\theta} p_{\theta}(\tau) r(\tau) d \tau=\int \underline{p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) r}(\tau) d \tau=E_{\tau \sim p_{\theta}(\tau)}\left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)\right]}
$$

Direct policy differentiation

$$
\begin{aligned}
& \theta^{\star}=\arg \max _{\theta} J(\theta) \\
& J(\theta)=E_{\tau \sim p_{\theta}(\tau)}[r(\tau)] \\
& \nabla_{\theta} J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)\right] \\
& \underbrace{p_{\theta}\left(\mathbf{s}_{1}, \mathbf{a}_{1}, \ldots, \mathbf{s}_{T}, \mathbf{a}_{T}\right)}_{p_{\theta}(\tau)}=p\left(\mathbf{s}_{1}\right) \prod_{t=1}^{T} \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right) p\left(\mathbf{s}_{t+1} \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right) \\
& \log \text { of both sides } \quad p_{\theta}(\tau) \\
& \log p_{\theta}(\tau)=\log p\left(\mathbf{s}_{1}\right)+\sum_{t=1}^{T} \log \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)+\log p\left(\mathbf{s}_{t+1} \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right) \\
& \nabla_{\theta}\left[\log p\left(\mathbf{s}_{1}\right)+\sum_{t=1}^{T} \log \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)+\log p\left(\mathbf{s} 1 \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right)\right] \\
& \nabla_{\theta} J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right)\right]
\end{aligned}
$$

Evaluating the policy gradient
 $\nabla_{\theta} J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right)\right]$

recall: $J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right] \approx \frac{1}{N} \sum_{i} \sum_{t} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)$
$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)\right)$
$\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)$

REINFORCE algorithm:

1. sample $\left\{\tau^{i}\right\}$ from $\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)$ (run the policy)
2. $\nabla_{\theta} J(\theta) \approx \sum_{i}\left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t}^{i} \mid \mathbf{s}_{t}^{i}\right)\right)\left(\sum_{t} r\left(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}\right)\right)$
3. $\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)$

Understanding Policy Gradients

Evaluating the policy gradient

$\nabla_{\theta} J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right)\right]$
recall: $J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right] \approx \frac{1}{N} \sum_{i} \sum_{t} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)$
$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)\right)$
what is this?

\mathbf{S}_{t}

Comparison to maximum likelihood

policy gradient: $\quad \nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)\right)$
maximum likelihood: $\quad \nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\right)$


```
supervised
learning
\(\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\)
```


Example: Gaussian policies

$$
\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)\right)
$$

example: $\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)=\mathcal{N}\left(f_{\text {neural network }}\left(\mathbf{s}_{t}\right) ; \Sigma\right)$
$\log \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)=-\frac{1}{2}\left\|f\left(\mathbf{s}_{t}\right)-\mathbf{a}_{t}\right\|_{\Sigma}^{2}+$ const
$\nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)=-\frac{1}{2} \Sigma^{-1}\left(f\left(\mathbf{s}_{t}\right)-\mathbf{a}_{t}\right) \frac{d f}{d \theta}$

REINFORCE algorithm:

1. sample $\left\{\tau^{i}\right\}$ from $\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)$ (run it on the robot)
2. $\nabla_{\theta} J(\theta) \approx \sum_{i}\left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t}^{i} \mid \mathbf{s}_{t}^{i}\right)\right)\left(\sum_{t} r\left(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}\right)\right)$
3. $\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)$

In practice

What did we just do?

$$
\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)\right)
$$

$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \underbrace{\nabla_{\theta} \log \pi_{\theta}\left(\tau_{i}\right)}_{T} r\left(\tau_{i}\right)$
maximum likelihood: $\quad \nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}\left(\tau_{i}\right)$

$$
\sum_{t=1}^{T} \nabla_{\theta} \log _{\theta} \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)
$$

good stuff is made more likely
bad stuff is made less likely
simply formalizes the notion of "trial and error"!
REINFORCE algorithm:

1. sample $\left\{\tau^{i}\right\}$ from $\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)$ (run it on the robot)
2. $\nabla_{\theta} J(\theta) \approx \sum_{i}\left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t}^{i} \mid \mathbf{s}_{t}^{i}\right)\right)\left(\sum_{t} r\left(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}\right)\right)$
3. $\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)$

Partial observability

Markov property is not actually used!
Can use policy gradient in partially observed MDPs without modification

What is wrong with the policy gradient?

$$
\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)
$$

even worse: what if the two "good" samples have $r(\tau)=0$?
high variance

Review

- Evaluating the RL objective
- Generate samples
- Evaluating the policy gradient
- Log-gradient trick
- Generate samples
- Understanding the policy gradient
- Formalization of trial-and-error
- Partial observability

- Works just fine
- What is wrong with policy gradient?

Reducing Variance

Reducing variance

$$
\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)\right)
$$

Causality: policy at time t^{\prime} cannot affect reward at time t when $t<t^{\prime}$
$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\left(\sum_{t \in-1}^{T} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)\right)$

Reducing variance

$$
\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)\right)
$$

Causality: policy at time t^{\prime} cannot affect reward at time t when $t<t^{\prime}$

$$
\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right) \underbrace{\sum_{t^{\prime} \nsubseteq}^{T} r\left(\mathbf{s}_{i, t^{\prime}}, \mathbf{a}_{i, t^{\prime}}\right)})
$$

"reward to go"

$$
\hat{Q}_{i, t}
$$

Baselines

a convenient identity
$p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)=\nabla_{\theta} p_{\theta}(\tau)$
$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\tau)[r(\tau)-b]$
$b=\frac{1}{N} \sum_{i=1}^{N} r(\tau) \quad$ but... are we allowed to do that??

$E\left[\nabla_{\theta} \log p_{\theta}(\tau) b\right]=\int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) b d \tau=\int \nabla_{\theta} p_{\theta}(\tau) b d \tau=b \nabla_{\theta} \int p_{\theta}(\tau) d \tau=b \nabla_{\theta} 1=0$
subtracting a baseline is unbiased in expectation!
average reward is not the best baseline, but it's pretty good!

Baseline numerical example

We want to evaluate $E_{\tau \sim p_{\theta}(\tau)}\left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)\right]$
Let us assume that we have 3 trajectories

- $[0.5,0.2,0.3]$ for $\nabla_{\theta} \log p_{\theta}(\tau)$
- $[1000,1001,1002]$ for $r(\tau)$

```
E}(0.5\times1000,0.2\times10001,0.3\times1002)=[500+200.2+300.6]/3=333.6
V}(0.5\times1000,0.2\times10001,0.3\times1002)=[(500-333.6) 2 +(200.2-300.6) 2 + (300.6-333.6) 2]/2
    = 23286.76
```

Now, with a baseline $=1001$ (the average)
$\mathrm{E}(0.5 \mathrm{x}-1,0.2 \mathrm{x} 0,0.3 \mathrm{x} 1)=[-0.5+0+0.3] / 3=-0.06667$
$\mathrm{V}(0.5 \mathrm{x}-1,0.2 \mathrm{x} 0,0.3 \mathrm{x} 1)=\left[(-0.5+0.06667)^{2}+(0.06667)^{2}+(0.3+0.066667)^{2}\right] / 2$
$=0.16333$

Analyzing variance

can we write down the variance?
$\operatorname{Var}[x]=E\left[x^{2}\right]-E[x]^{2}$
$\nabla_{\theta} J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau)-b)\right]$
$\operatorname{Var}=E_{\tau \sim p_{\theta}(\tau)}\left[\left(\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau)-b)\right)^{2}\right]-E_{\tau \sim p_{\theta}(\tau)}\left[\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau)-b)\right]^{2}$ this bit is just $E_{\tau \sim p_{\theta}(\tau)}\left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)\right]$ (baselines are unbiased in expectation)

$$
\begin{aligned}
\frac{d \operatorname{Var}}{d b}=\frac{d}{d b} E\left[g(\tau)^{2}(r(\tau)-b)^{2}\right] & =\frac{d}{d b}\left(E\left[q(\tau)^{2} r(\tau)^{2}\right]-2 E\left[g(\tau)^{2} r(\tau) b\right]+b^{2} E\left[g(\tau)^{2}\right]\right) \\
& =-2 E\left[g(\tau)^{2} r(\tau)\right]+2 b E\left[g(\tau)^{2}\right]=0
\end{aligned}
$$

$$
b=\frac{E\left[g(\tau)^{2} r(\tau)\right]}{E\left[g(\tau)^{2}\right]}
$$

This is just expected reward, but weighted by gradient magnitudes!

Review

- The high variance of policy gradient
- Exploiting causality
- Future doesn't affect the past
- Baselines
- Unbiased!
- Analyzing variance
- Can derive optimal baselines

Off-Policy Policy Gradients

Policy gradient is on-policy

$$
\begin{aligned}
& \theta^{\star}=\arg \max _{\theta} J(\theta) \\
& J(\theta)=E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]
\end{aligned}
$$

- Neural networks change only a little bit with each gradient step
- On-policy learning can be extremely inefficient!
this is trouble...

REINFORCE algorithm:

1. sample $\left\{\tau^{i}\right\}$ from $\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)$ (run it on the robot)
2. $\nabla_{\theta} J(\theta) \approx \sum_{i}\left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t}^{i} \mid \mathbf{s}_{t}^{i}\right)\right)\left(\sum_{t} r\left(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}\right)\right)$
3. $\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)$

Off-policy learning \& importance sampling

$\theta^{\star}=\arg \max _{\theta} J(\theta)$
$J(\theta)=E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$
what if we don't have samples from $p_{\theta}(\tau)$? (we have samples from some $\bar{p}(\tau)$ instead)

$$
\begin{aligned}
& \left.J(\theta)=E_{\tau \sim \bar{p}(\tau)}\left[\frac{p_{\bar{p}(\tau)}}{\bar{p}(\tau)}\right)(\tau)\right] \\
& p_{\theta}(\tau)=p\left(\mathbf{s}_{1}\right) \prod_{t=1}^{T} \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right) p\left(\mathbf{s}_{t+1} \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right)
\end{aligned}
$$

Deriving the policy gradient with IS

$\theta^{\star}=\arg \max _{\theta} J(\theta)$

$$
J(\theta)=E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]
$$

$$
p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)=\nabla_{\theta} p_{\theta}(\tau)
$$

can we estimate the value of some new parameters θ^{\prime} ?
$J\left(\theta^{\prime}\right)=E_{\tau \sim p_{\theta}(\tau)}\left[\frac{p_{\theta^{\prime}}(\tau)}{p_{\theta}(\tau)} r(\tau)\right] \quad$ the only bit that depends on θ^{\prime}
$\nabla_{\theta^{\prime}} J\left(\theta^{\prime}\right)=E_{\tau \sim p_{\theta}(\tau)}\left[\frac{\nabla_{\theta^{\prime}} p_{\theta^{\prime}}(\tau)}{p_{\theta}(\tau)} r(\tau)\right]=E_{\tau \sim p_{\theta}(\tau)}\left[\frac{p_{\theta}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta^{\prime}} \log p_{\theta^{\prime}}(\tau) r(\tau)\right]$
now estimate locally, at $\theta=\theta^{\prime}: \quad \nabla_{\theta} J(\theta)=E_{\tau \sim p_{\theta}(\tau)}\left[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)\right]$

The off-policy policy gradient

$$
\begin{aligned}
& \theta^{\star}=\arg \max _{\theta} J(\theta) \quad J(\theta)=E_{\tau \sim p_{\theta}(\tau)}[r(\tau)] \\
& \begin{aligned}
& \nabla_{\theta^{\prime}} J\left(\theta^{\prime}\right)=E_{\tau \sim p_{\theta}(\tau)}\left[\frac{p_{\theta^{\prime}}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta^{\prime}} \log \pi_{\theta^{\prime}}(\tau) r(\tau)\right] \quad \text { when } \theta \neq \theta^{\prime} \\
&= E_{\tau \sim p_{\theta}(\tau)}\left[(\prod _ { t = 1 } ^ { T } \frac { \pi _ { \theta ^ { \prime } } (\tau) } { p _ { \theta } (\tau) } = \frac { \mathbf { a } _ { t } | \mathbf { s } _ { t }) } { \pi _ { \theta } (\mathbf { a } _ { t } | \mathbf { s } _ { t }) }) \left(\sum_{t=1}^{T} \nabla_{\theta^{\prime}}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\right.\right. \\
& \prod_{t=1}^{T} \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right) \\
&=\left.E_{\tau \sim p_{\theta}(\tau)}\left[\left(\prod_{t=1}^{T} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)}{\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)}\right)\left(\sum_{t=1}^{T} \nabla_{\theta^{\prime}} \mid \mathbf{s}_{t}\right)\right)\left(\sum_{t=1}^{T} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right)\right]
\end{aligned} \\
&
\end{aligned}
$$

The off-policy policy gradient

$$
=E_{\tau \sim p_{\theta}(\tau)}\left[\left(\prod_{t=1}^{T} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)}{\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)}\right)\left(\sum_{t=1}^{T} \nabla_{\theta^{\prime}} \log \pi_{\theta^{\prime}}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\right)\left(\sum_{t^{\prime}=t}^{T} r\left(\mathbf{s}_{t^{\prime}}, \mathbf{a}_{t^{\prime}}\right)\right)\right] \text { reward to go }
$$

what about causality?

$$
=E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t=1}^{T} \nabla_{\theta^{\prime}} \log \pi_{\theta^{\prime}}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\left(\prod_{t^{\prime}=1}^{t} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t^{\prime}}\right)}{\pi_{\theta}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t^{\prime}}\right)}\right)\left(\sum_{t^{\prime}=t}^{T} r\left(\mathbf{s}_{t^{\prime}}, \mathbf{a}_{t^{\prime}}\right)\left(\prod_{t^{\prime \prime}=t}^{t^{\prime}} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{t^{\prime \prime}} \mid \mathbf{s}_{t^{\prime \prime}}\right)}{\pi_{\theta}\left(\mathbf{a}_{t^{\prime \prime}} \mid \mathbf{s}_{t^{\prime \prime}}\right)}\right)\left(\prod_{t=t^{\prime}}^{\mathbb{T}} \frac{\pi_{\theta}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t} t^{\prime}\right)}{\left.\mathbf{a}_{t} \mid \mathbf{s}_{t^{\prime}}\right)}\right)\right]\right.
$$

future actions don't affect current weight
J

$$
=E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t=1}^{T} \nabla_{\theta^{\prime}} \log \pi_{\theta^{\prime}}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\left(\prod_{t^{\prime}=1}^{t} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t^{\prime}}\right)}{\pi_{\theta}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t^{\prime}}\right)}\right)\left(\sum_{t^{\prime}=t}^{T} r\left(\mathbf{s}_{t^{\prime}}, \mathbf{a}_{t^{\prime}}\right)\left(\prod_{t^{\prime \prime}=t}^{t^{\prime}} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{t^{\prime \prime}} \mid \mathbf{s}_{t^{\prime \prime}}\right)}{\pi_{\theta}\left(\mathbf{a}_{t^{\prime \prime}} \mid \mathbf{s}_{t^{\prime \prime}}\right)}\right)\right)\right]
$$

Afirst-order approximation for IS(preview)

$\nabla_{\theta^{\prime}} J\left(\theta^{\prime}\right)=E_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t=1}^{T} \nabla_{\theta^{\prime}} \log \pi_{\theta^{\prime}}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\left(\underline{\left.\prod_{t^{\prime}=1}^{t} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t^{\prime}}\right)}{\pi_{\theta}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t^{\prime}}\right)}\right)}\left(\sum_{t^{\prime}=t}^{T} r\left(\mathbf{s}_{t^{\prime}}, \mathbf{a}_{t^{\prime}}\right)\right)\right]\right.$
let's write the objective a bit differently... exponential in T...
on-policy policy gradient: $\quad \nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right) \hat{Q}_{i, t}$

$$
\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right) \sim \pi_{\theta}\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)
$$

off-policy policy gradient: $\quad \nabla_{\theta^{\prime}} J\left(\theta^{\prime}\right) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta^{\prime}}\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)}{\pi_{\theta}\left(\mathbf{s}_{i, t}, \mathbf{a}_{i, t}\right)} \nabla_{\theta^{\prime}} \log \pi_{\theta^{\prime}}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right) \hat{Q}_{i, t}$
We'll see why this is reasonable later in the course!

$$
=\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta^{\prime}}(\mathbf{s} / t)}{\left.\pi_{g} \mid \mathbf{s}_{i, t}\right)} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)}{\pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)} \nabla_{\theta^{\prime}} \log \pi_{\theta^{\prime}}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right) \hat{Q}_{i, t}
$$

ignore this part

Implementing Policy Gradients

Policy gradient with automatic differentiation

$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)}{\hat{Q}_{i, t}}$ pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?
We need a graph such that its gradient is the policy gradient!
maximum likelihood: $\quad \nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right) \quad J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)$
Just implement "pseudo-loss" as a weighted maximum likelihood:
$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right) \hat{Q}_{i, t}$

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

```
Maximum likelihood:
# Given:
# actions - (N*T) x Datensor of actions #
states - (N*T) x Dstensor of states
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Datensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative_likelihoods)
gradients = loss.gradients(loss, variables)
```


Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

```
# Given:
# actions - (N*T) x Datensor of actions #
states - (N*T) x Dstensor of states
# q_values - (N*T) x 1 tensor of estimated state-action values
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Datensor of action logits
negative_likelihoods =tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods =tf.multiply(negative_likelihoods, q_values)
loss =tf.reduce_mean(weighted_negative_likelihoods)
gradients =loss.gradients(loss, variables)
```

$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t} \widehat{Q_{i, t}} \mathbf{q}_{\text {q_values }}\right.$

Policy gradient in practice

- Remember that the gradient has high variance
- This isn't the same as supervised learning!
- Gradients will be really noisy!
- Consider using much larger batches
- Tweaking learning rates is very hard
- Adaptive step size rules like ADAM can be OK-ish
- We'll learn about policy gradient-specific learning rate adjustment methods later!

Review

- Policy gradient is on-policy

$$
\hat{Q}^{\pi}\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)=\sum_{t^{\prime}=t}^{T} r\left(\mathbf{x}_{t^{\prime}}, \mathbf{u}_{t^{\prime}}\right)
$$

- Can derive off-policy variant
- Use importance sampling
- Exponential scaling in T
- Can ignore state portion (approximation)
- Can implement with automatic differentiation - need to know what to backpropagate
- Practical considerations: batch size, learning rates, optimizers

Advanced Policy Gradients

What else is wrong with the policy gradient?

$$
\begin{aligned}
& r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)=-\mathbf{s}_{t}^{2}-\mathbf{a}_{t}^{2} \\
& \log \pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)=-\frac{1}{2 \sigma^{2}}\left(k \mathbf{s}_{t}-\mathbf{a}_{t}\right)^{2}+\mathrm{const} \quad \theta=(k, \sigma)
\end{aligned}
$$

(a)'Vanilla' policy gradients

(image from Peters \& Schaal 2008)

Essentially the same problem as this:

Covariant/natural policy gradient

$$
\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)
$$

$$
\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)
$$

some parameters change probabilities a lot more than others!

$$
\theta^{\prime} \leftarrow \arg \max _{\theta^{\prime}}\left(\theta^{\prime}-\theta\right)^{T} \nabla_{\theta} J(\theta) \text { s.t. }\left\|\theta^{\prime}-\theta\right\|^{2} \leq \epsilon
$$

controls how far we go
(a)'Vanilla' policy gradients

can we rescale the gradient so this doesn't happen?

$$
\theta^{\prime} \leftarrow \arg \max _{\theta^{\prime}}\left(\theta^{\prime}-\theta\right)^{T} \nabla_{\theta} J(\theta) \text { s.t. } D\left(\pi_{\theta^{\prime}}, \pi_{\theta}\right) \leq \epsilon
$$

parameterization-independent divergence measure
usually KL-divergence: $D_{\mathrm{KL}}\left(\pi_{\theta^{\prime}} \| \pi_{\theta}\right)=E_{\pi_{\theta^{\prime}}}\left[\log \pi_{\theta}-\log \pi_{\theta^{\prime}}\right]$
$D_{\mathrm{KL}}\left(\pi_{\theta^{\prime}} \| \pi_{\theta}\right) \approx\left(\theta^{\prime}-\theta\right)^{T} \mathbf{F}\left(\theta^{\prime}-\theta\right)$
Fisher-information matrix
$\mathbf{F}=E_{\pi_{\theta}}\left[\nabla_{\theta} \log \pi_{\theta}(\mathbf{a} \mid \mathbf{s}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a} \mid \mathbf{s})^{T}\right]$ can estimate with samples

Covariant/natural policy gradient

$D_{\mathrm{KL}}\left(\pi_{\theta^{\prime}} \| \theta_{\pi}\right) \approx\left(\theta^{\prime}-\theta\right)^{T} \mathbf{F}\left(\theta^{\prime}-\theta\right)$

$$
\mathbf{F}=E_{\pi_{\theta}}\left[\nabla_{\theta} \log \pi_{\theta}(\mathbf{a} \mid \mathbf{s}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a} \mid \mathbf{s})^{T}\right]
$$

$\theta^{\prime} \leftarrow \arg \max _{\theta^{\prime}}\left(\theta^{\prime}-\theta\right)^{T} \nabla_{\theta} J(\theta)$ s.t. $D\left(\pi_{\theta^{\prime}}, \pi_{\theta}\right) \leq \epsilon$
$\theta \leftarrow \theta+\alpha \mathbf{F}^{-1} \nabla_{\theta} J(\theta)$
natural gradient: pick α
(a)'Vanilla' policy gradients

(b) Natural policy gradients

(figure from Peters \& Schaal 2008)
trust region policy optimization: pick ϵ
can solve for optimal α while solving $\mathbf{F}^{-1} \nabla_{\theta} J(\theta)$
conjugate gradient works well for this
see Schulman, L., Moritz, Jordan, Abbeel (2015) Trust region policy optimization

Advanced policy gradient topics

- What more is there?
- Next time: introduce value functions and Q-functions
- Later in the class: more on natural gradient and automatic step size adjustment

Example: policy gradient with importance sampling

$$
\nabla_{\theta^{\prime}} J\left(\theta^{\prime}\right)=E_{\tau \sim \pi_{\theta}(\tau)}\left[\sum_{t=1}^{T} \nabla_{\theta^{\prime}} \log \pi_{\theta^{\prime}}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\left(\prod_{t^{\prime}=1}^{t} \frac{\pi_{\theta^{\prime}}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t^{\prime}}\right)}{\pi_{\theta}\left(\mathbf{a}_{t^{\prime}} \mid \mathbf{s}_{t^{\prime}}\right)}\right)\left(\sum_{t^{\prime}=t}^{T} r\left(\mathbf{s}_{t^{\prime}}, \mathbf{a}_{t^{\prime}}\right)\right)\right]
$$

- Incorporate example demonstrations using importance sampling
- Neural network policies

test terrain 1 learned policy

Example: trust region policy optimization

- Natural gradient with automatic step adjustment
- Discrete and continuous actions
- Code available (see Duan et al. '16)

Trust Region Policy Optimization

Policy gradients suggested readings

- Classic papers
- Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning: introduces REINFORCE algorithm
- Baxter \& Bartlett (2001). Infinite-horizon policy-gradient estimation: temporally decomposed policy gradient (not the first paper on this! see actor-critic section later)
- Peters \& Schaal (2008). Reinforcement learning of motor skills with policy gradients: very accessible overview of optimal baselines and natural gradient
- Deep reinforcement learning policy gradient papers
- Levine \& Koltun (2013). Guided policy search: deep RL with importance sampled policy gradient (unrelated to later discussion of guided policy search)
- Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: deep RL with natural policy gradient and adaptive step size
- Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization algorithms: deep RL with importance sampled policy gradient

