IASD M2 at Paris Dauphine

Deep Reinforcement Learning

6: Actor-Critic Algorithms

Eric Benhamou - Thérèse des Escotais

Homework 1: Imitation learning

Due Wed 31 January. 3 outputs to

- 1. Report (pdf)
- 2. (code) Submit.zip
- 3. COO notebook

Any homework submitted late will not be graded

Ask your questions on Moodle and answer to others

Oral presentation of the best homework group in 5-10 minutes (Wed 14 February)

Homework 2: Policy gradients

Was due Wed 14 February. 3 outputs to

- 1. Report (pdf)
- 2. (code) Submit.zip
- 3. COO otebook

Any homework submitted late will not be graded

Ask your questions on Moodle and answer to others

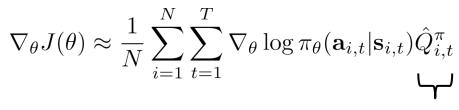
Oral presentation of the best homework group in 5-10 minutes (Wed

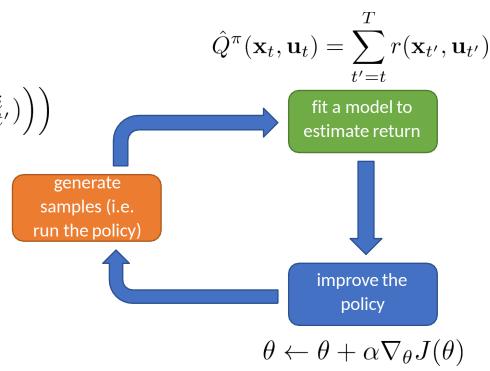
28 February)

Acknowledgement

The materials of this course are based on the seminal course of Sergey Levine CS285

Recap: policy gradients


REINFORCE algorithm:

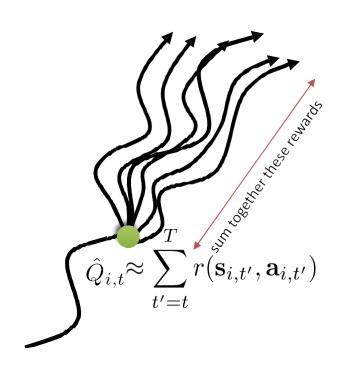

1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i}) \right) \right)$$

3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

"reward to go"

Improving the policy gradient

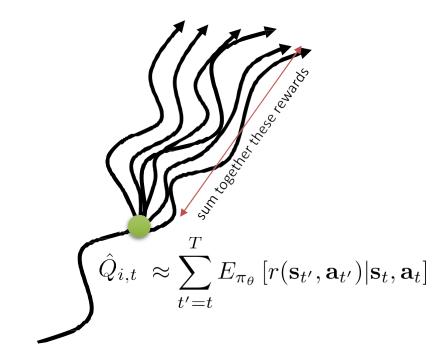

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
"reward to go"

 $\hat{Q}_{i,t}$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$ can we get a better estimate?

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$


What about the baseline?

 $V(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q(\mathbf{s}_t, \mathbf{a}_t)]$

$$Q(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right] : \text{ true } expected \text{ reward-to-go}$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - V(\mathbf{s}_{i,t}) \right)$$

$$b_{t} = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \quad \text{average what?}$$

State & state-action value functions

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: total reward from taking \mathbf{a}_t in \mathbf{s}_t

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$
: total reward from \mathbf{s}_t

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$$
: how much better \mathbf{a}_t is

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

generate samples (i.e. run the policy) $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

fit Q^{π} , V^{π} , or A^{π}

the better this estimate, the lower the variance

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) - b \right)$$

unbiased, but high variance single-sample estimate

Value function fitting

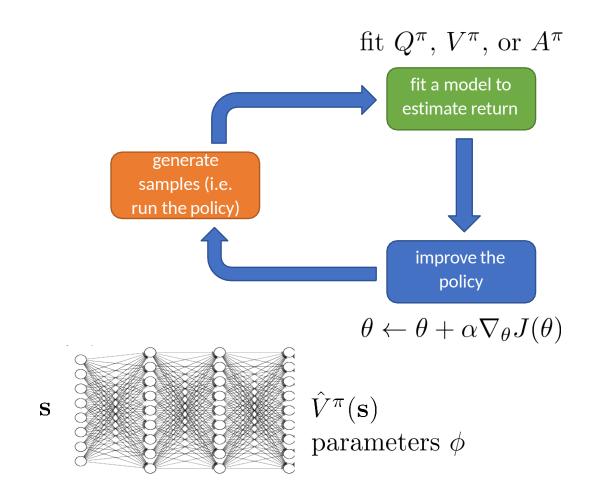
$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$$

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t},\mathbf{a}_{i,t})$$

fit what to what?


$$Q^{\pi}, V^{\pi}, A^{\pi}$$
?

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \sum_{t'=t+1}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$$

$$V^{\pi}(\mathbf{s}_{t+1})$$

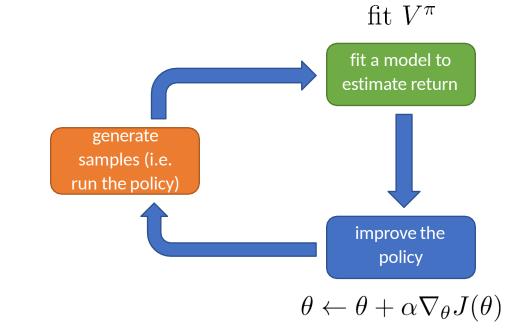
$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \approx r(\mathbf{s}_t, \mathbf{a}_t) + V^{\pi}(\mathbf{s}_{t+1}) - V^{\pi}(\mathbf{s}_t)$$

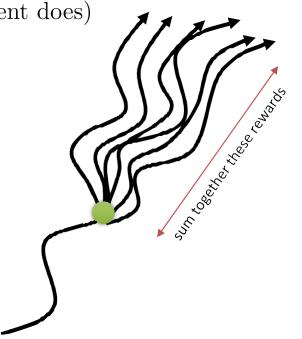
let's just fit $V^{\pi}(\mathbf{s})!$

Policy evaluation

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

$$J(\theta) = E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}[V^{\pi}(\mathbf{s}_1)]$$


how can we perform policy evaluation?


Monte Carlo policy evaluation (this is what policy gradient does)

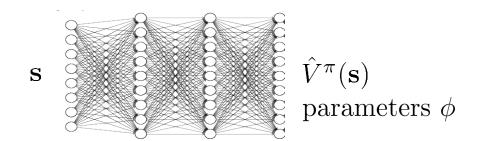
$$V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

$$V^{\pi}(\mathbf{s}_t) pprox \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

(requires us to reset the simulator)

Monte Carlo evaluation with function approximation

$$V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$


not as good as this: $V^{\pi}(\mathbf{s}_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$

but still pretty good!

training data:
$$\left\{ \left(\mathbf{s}_{i,t}, \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) \right\}$$

$$y_{i,t}$$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

Can we do better?

ideal target:
$$y_{i,t} = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{i,t} \right] \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + V^{\pi}(\mathbf{s}_{i,t+1}) \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}^{\pi}_{\phi}(\mathbf{s}_{i,t+1})$$

Monte Carlo target: $y_{i,t} = \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$

directly use previous fitted value function!

training data:
$$\left\{ \left(\mathbf{s}_{i,t}, r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) \right) \right\}$$

$$y_{i,t}$$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

sometimes referred to as a "bootstrapped" estimate

Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992

AlphaGo, Silver et al. 2016

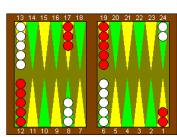


Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.

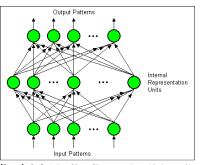
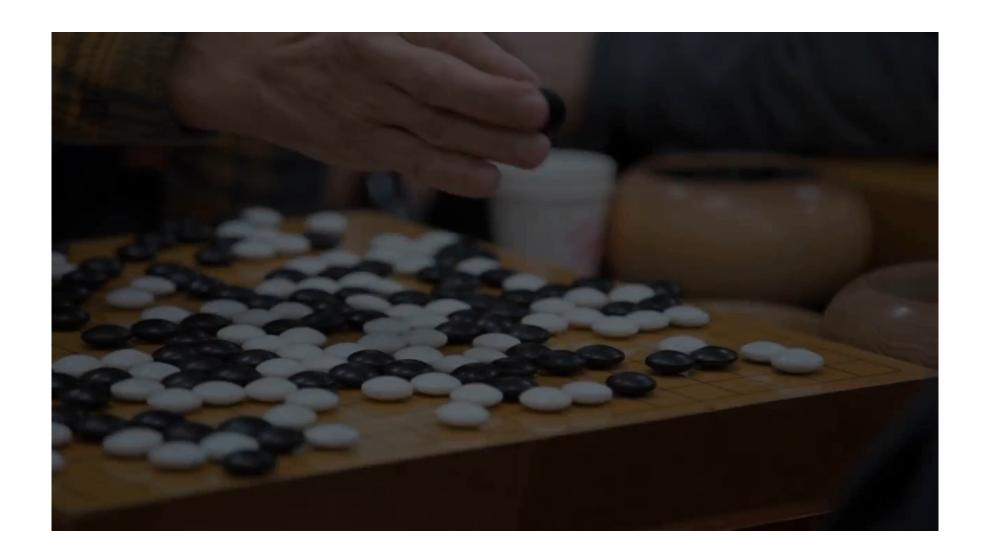


Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation learning procedure. Figure reproduced from [9].

reward: game outcome

value function $\hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$:

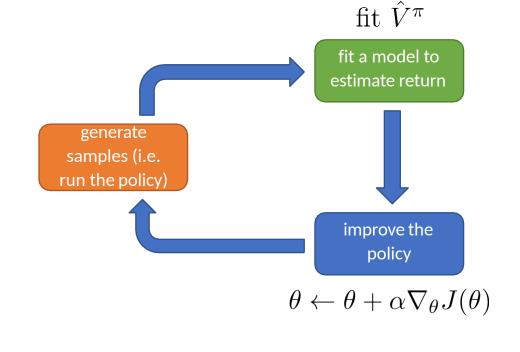

expected outcome given board state

reward: game outcome

value function $\hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$:

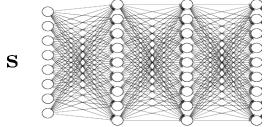
expected outcome given board state

Alphago a real challenge


From Evaluation to Actor Critic

An actor-critic algorithm

batch actor-critic algorithm:



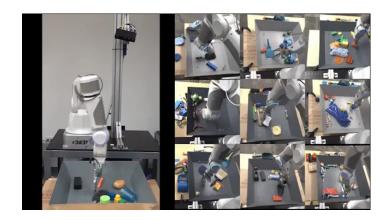
- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. $\overline{\text{evaluate } \hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)}$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

$$y_{i,t} \approx \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$$

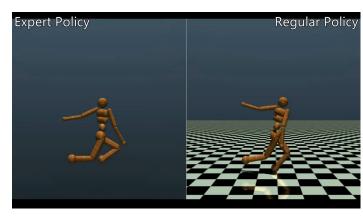
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

$$\hat{V}^{\pi}(\mathbf{s})$$
 parameters ϕ

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$


Aside: discount factors

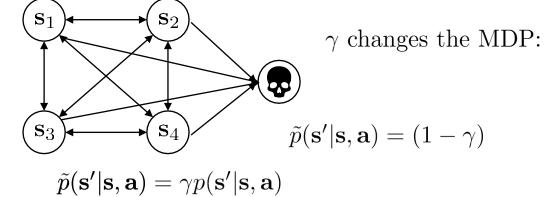
$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$


$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

what if T (episode length) is ∞ ?

 \hat{V}_{ϕ}^{π} can get infinitely large in many cases

episodic tasks



continuous/cyclical tasks

simple trick: better to get rewards sooner than later

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\uparrow$$
discount factor $\gamma \in [0, 1]$ (0.99 works well)

Aside: discount factors for policy gradients

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

$$\forall \mathbf{v}_{\theta}^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

what about (Monte Carlo) policy gradients?

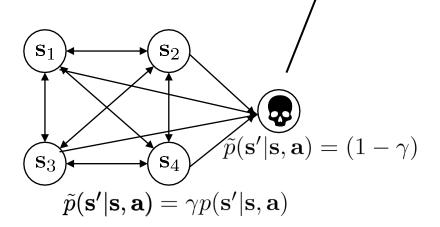
option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
option 2:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} \gamma^{t-1} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'} \mathbf{1} (\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
(later steps matter less)

18

Which version is the right one?


option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

this is what we actually use... why?

option 2:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

Expert Folicy Regular Folicy

later steps don't matter if you're dead!

Actor-critic algorithms (with discount)

batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

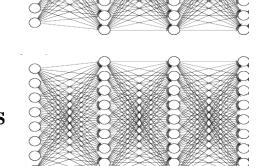
online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Actor-Critic Design Decisions

Architecture design

online actor-critic algorithm:

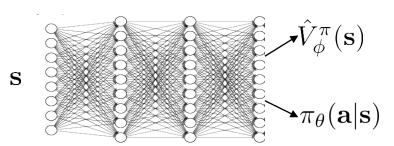


- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$ 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

two network design

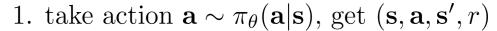
+ simple & stable

- no shared features between actor & critic



$\hat{V}_{\phi}^{\pi}(\mathbf{s})$

 $\pi_{\theta}(\mathbf{a}|\mathbf{s})$



shared network design

Online actor-critic in practice

online actor-critic algorithm:

2. update
$$\hat{V}_{\phi}^{\pi}$$
 using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$.

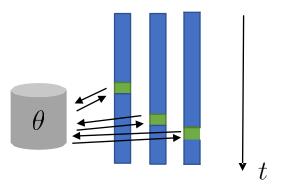
2. update
$$\hat{V}_{\phi}^{\pi}$$
 using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') - \hat{V}_{\phi}^{\pi}(\mathbf{s})$
4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$

4.
$$\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$$

5.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

synchronized parallel actor-critic

get
$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$$

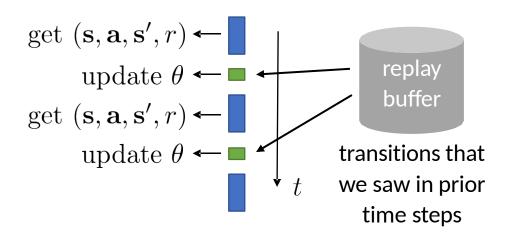

update $\theta \leftarrow$

get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$

update $\theta \leftarrow$

asynchronous parallel actor-critic

works best with a batch (e.g., parallel workers)


Can we remove the on-policy assumption entirely?

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$ form a **batch** by 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$ using old previously
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

seen transitions

off-policy actor-critic

Let's see what that looks like

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{V}_{ϕ}^{π} using targets $y_i \in r_i + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i')$ for each \mathbf{s}_i
- 4. evaluate $\hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}) = r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i})$ 5. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i})$ 6. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ not the right target

not the right target value

not the action π_{θ} would have taken!

$$\mathcal{L}(\phi) = rac{1}{N} \sum_i \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_i) - y_i
ight\|^2$$
 batch size

This algorithm is broken!

Can you spot the problems?

Fixing the value function

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{V}_{ϕ}^{π} using targets $y_i \in r_i + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i')$ for each \mathbf{s}_i
- 4. evaluate $\hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}) = r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}') \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i})$ 5. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i})$ 6. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ not the right target value

not the action π_{θ} would have taken!

where does this come from?

3. update
$$\hat{Q}_{\phi}^{\pi}$$
 using targets $y_i = r_i + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i')$ for each \mathbf{s}_i , \mathbf{a}_i
$$= r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$$

$$\mathcal{L}(\phi) = \frac{1}{N} \sum_{i} \left\| \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) - y_i \right\|^2$$

not from replay buffer $\mathcal{R}!$

$$\mathbf{a}_i' \sim \pi_{\theta}(\mathbf{a}_i'|\mathbf{s}_i')$$

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right] = E_{\mathbf{a} \sim \pi(\mathbf{a}_t | \mathbf{s}_t)} [Q(\mathbf{s}_t, \mathbf{a}_t)]$$

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$$

"total reward we get if we take \mathbf{a}_t in \mathbf{s}_t and then follow the policy π "

$$\mathcal{L}(\phi) = \frac{1}{N} \sum_{i} \left\| \hat{Q}_{\phi}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - y_{i} \right\|$$

Fixing the policy update

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$
- 4. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = Q(\mathbf{s}_i, \mathbf{a}_i) \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 5. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{\boldsymbol{s}}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 6. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

not the action π_{θ} would have taken!

use the same trick, but this time for \mathbf{a}_i rather than \mathbf{a}_i' !

sample $\mathbf{a}_i^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_i)$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi} | \mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi})$$

not from replay buffer \mathcal{R} ! higher variance, but convenient why is higher variance OK here?

in practice:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi} | \mathbf{s}_{i}) \hat{\hat{Q}}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi})$$

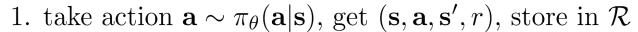
What else is left?

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$
- 4. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi}|\mathbf{s}_{i}) \hat{Q}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi}) \text{ where } \mathbf{a}_{i}^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Is there any remaining problem?

 \mathbf{s}_i didn't come from $p_{\theta}(\mathbf{s})$


nothing we can do here, just accept it

intuition: we want optimal policy on $p_{\theta}(\mathbf{s})$

but we get optimal policy on a broader distribution

Some implementation details

online actor-critic algorithm:

- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$
- 4. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi}|\mathbf{s}_{i}) \hat{Q}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi}) \text{ where } \mathbf{a}_{i}^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_{i})$

5.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

could also use **reparameterization trick** to better estimate the integral

Example practical algorithm:

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. 2018.

We'll also learn about algorithms that do this with deterministic policies later!

lots of fancier ways to fit Q-functions (more on this in next two lectures)

Critics as Baselines

Critics as state-dependent baselines

Actor-critic:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

+ lower variance (due to critic)

- not unbiased (if the critic is not perfect)

Policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - b \right)$$

+ no bias

higher variance (because single-sample estimate)

can we use \hat{V}_{ϕ}^{π} and still keep the estimator unbiased?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

+ no bias

+ lower variance (baseline is closer to rewards)

Control variates: action-dependent baselines

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$$

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$$

$$\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - V_{\phi}^{\pi}(\mathbf{s}_t)$$

+ no bias

- higher variance (because single-sample estimate)

$$\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - Q_{\phi}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$

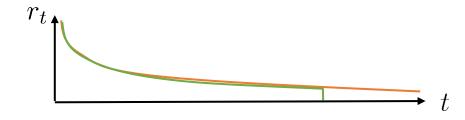
+ goes to zero in expectation if critic is correct!

- not correct

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\hat{Q}_{i,t} - Q_{\phi}^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right) + \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} E_{\mathbf{a} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{i,t})} \left[Q_{\phi}^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{t}) \right]$$

use a critic without the bias (still unbiased), provided second term can be evaluated

Gu et al. 2016 (Q-Prop)


Eligibility traces & n-step returns

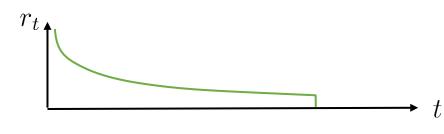
$$\hat{A}_{\mathrm{C}}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t})$$

$$\hat{A}_{\mathrm{MC}}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t})$$

- + lower variance
- -higher bias if value is wrong (it always is)
- + no bias
- -higher variance (because single-sample estimate)

Can we combine these two, to control bias/variance tradeoff?

cut here before variance gets too big!


smaller variance

bigger variance

$$\hat{A}_{n}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t}) + \gamma^{n} \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+n})$$

choosing n > 1 often works better!

Generalized advantage estimation

Do we have to choose just one n?

Cut everywhere all at once!

$$\hat{A}_n^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t) + \gamma^n \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+n})$$

$$\hat{A}_{\mathrm{GAE}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{n=1}^{\infty} w_n \hat{A}_n^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$

weighted combination of n-step returns

How to weight?

Mostly prefer cutting earlier (less variance)

$$w_n \propto \lambda^{n-1}$$

 $w_n \propto \lambda^{n-1}$ exponential falloff

$$\hat{A}_{GAE}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma((1 - \lambda)\hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+1}) + \lambda(r(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) + \gamma((1 - \lambda)\hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+2}) + \lambda r(\mathbf{s}_{t+2}, \mathbf{a}_{t+2}) + \dots)$$

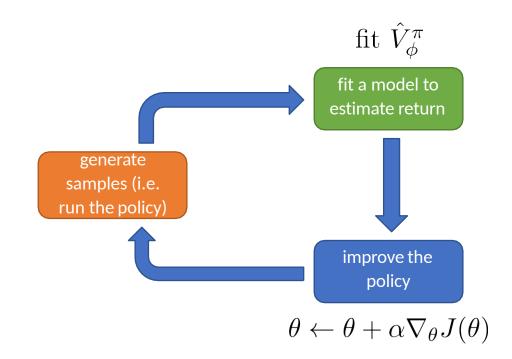
$$\hat{A}_{\mathrm{GAE}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} (\gamma \lambda)^{t'-t} \delta_{t'}$$

$$\hat{A}_{\text{GAE}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} (\gamma \lambda)^{t'-t} \delta_{t'} \qquad \delta_{t'} = r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t'+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t'})$$

similar effect as discount!

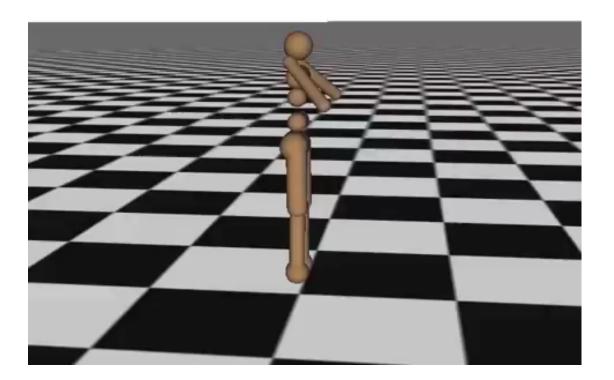
$$\begin{array}{ll} \text{option} & \nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) \\ \text{remember this?} \end{array}$$

discount = variance reduction!


Review, Examples, and Additional Readings

Review

- Actor-critic algorithms:
 - Actor: the policy
 - Critic: value function
 - Reduce variance of policy gradient
- Policy evaluation
 - Fitting value function to policy
- Discount factors
 - Carpe diem Mr. Robot


- ...but also a variance reduction trick
- Actor-critic algorithm design
 - One network (with two heads) or two networks
 - Batch-mode, or online (+ parallel)
- State-dependent baselines
 - Another way to use the critic
 - Can combine: n-step returns or GAE

Actor-critic examples

- High dimensional continuous control with generalized advantage estimation (Schulman, Moritz, L., Jordan, Abbeel '16)
- Batch-mode actor-critic
- Blends Monte Carlo and function approximator estimators (GAE)

Iteration 0

Actor-critic examples

- Asynchronous methods for deep reinforcement learning (Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu '16)
- Online actor-critic, parallelized batch
- N-step returns with N = 4
- Single network for actor and critic

Actor-critic suggested readings

Classic papers

- Sutton, McAllester, Singh, Mansour (1999). Policy gradient methods for reinforcement learning with function approximation: actor-critic algorithms with value function approximation
- Deep reinforcement learning actor-critic papers
 - Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu (2016).
 Asynchronous methods for deep reinforcement learning: A3C -- parallel online actor-critic
 - Schulman, Moritz, L., Jordan, Abbeel (2016). High-dimensional continuous control using generalized advantage estimation: batch-mode actor-critic with blended Monte Carlo and function approximator returns
 - Gu, Lillicrap, Ghahramani, Turner, L. (2017). Q-Prop: sample-efficient policygradient with an off-policy critic: policy gradient with Q-function control variate