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Homework 2 : Policy gradients

Due on Wed 14 February. 3 outputs to Pauphine | PSL* Moodle
1. Report (pdf)
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2. (code) Submit.zip

Google
3. notebook

Any homework submitted late will not be graded
Ask your questions on Moodle and answer to others

Oral presentation of the best homework group in 5-10 minutes (Wed
28 February)
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Recap: Q-learning

full fitted Q-iteration algorithm:

1. collect dataset {(s;,a;,s.,;)} using some policy

— a’ ' a’
2. set y; < 7(S4,a;) + v maxy Qg(s], aj) Qs(s,a) < r(s,a) + ymaxy Qgu(s’,a’)

. fit a model to
€t arpming 7 10stone0 il — B

generate
samples (i.e.
jn the polj
. . . . . ; improve the
online Q iteration algorithm:

: /
1. take some action a; and observe (s;,a;,s;, ;) a = arg maxa Qy(s, a)

2.y, = T(S’waZ) + Y MaXa/ Q¢( Si5 z)
3. ¢« ¢ — a5 (si,a,)(Qu(si i) — yi)



What's wrong?

online Q) iteration algorithm:

1. take some action a; and observe (s;,a;,s;, ;)

2. yi = T(Sz', a'i) + 7 maXy/ Qcp(Sfp a;) \
these are correlated!
3. < ¢ — ade d¢ (SzaaZ)(QCb(Sivai) —¥i)

isn’t this just gradient descent? that converges, right?

Q-learning is not gradient descent!

66— % (51,20 (Qulsi i) ~(orr20) + 7 maxe Qs al)
no gradient through

target value



Correlated samples in online Q-learning

online Q) iteration algorithm: - sequential states are strongly correlated
@ 1. take some action a; and observe (s;,a;,s;, ;) - target value is always changing
2. o0 — ade d¢ (Si’ai)(be(Siaa’t) (s, @;) + v maxa Q¢( i a;)])
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synchronized parallel Q-learning asynchronous parallel Q-learning

get (s,a,s’,'r)<—l I I I

update ¢ «— B—m_m__m

get (s,a,s’,'r)<—l I I I

update ¢ «— Bl

NN I o




Another solution: replay buffers

online Q iteration algorithm:
@ 1. take some action a; and observe (s;,a;,s;, ;)

2. o0 — ade d¢ > (s, a’i)(be(Siva’i) — [r(si,a;) + v maxa QCb(S;;aa;:)])

special case with K =1, and one gradient step

full fitted Q-iteration algorithm:

: : any policy will work! (with broad support)
9 9909
[ @ 2. set y; < r(s;,a;) +7 maxa/ Qy(s;,a;) just load data from a buffer here

2
. set ¢ <— argming 5 Zz 1Qy(si;a;) — yill still use one gradient step

I NG

= 7

Fitted Q-iteration




Another solution: replay buffers

Q-learning with a replay buffer:
@ 1. sample a batch (si,ai,s’. r;) from B

2. ¢ & — X, G(sia)(Qolsi ar) — [r(si,a;) + 7 maxa Qu(s), a})])

but where does the data come from?

need to periodically feed the replay buffer...

/
s,a,s’,r
(s,a,8",7) dataset of transitions
(“replay buffer”)
off-policy

» T .Y\:\. Q-learning

.\.—//

mw(als) (e.g., e-greedy)




Putting it together

full Q-learning with replay buffer:

1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
K =1 is common, though

2. sample a batch (S'i7 a;, S/' 7“‘) from B larger K more efficient

3. ¢ & —a, Fe(siai)(Qslsi,a;) — [r(sia:) + ymaxa Qu(s), al)])

dataset of transitions
(“replay buffer”)

off-policy
Q-learning

mw(als) (e.g., e-greedy)




Target Networks



What's wrong?

online Q) iteration algorithm:

1. take some action a; and observe (s;,a;,s;, ;)

2. y; = (s, az-) + v maxa Qy(s;, a)) \

S

3. ¢ ¢ — ot dgb = (8i,,) (Qo(sisai) —yi) use replay buffer

Q-learning is not gradient descent!

66— % (51,20 (Qulsi i) ~(orr20) + 7 maxe Qs al)

no gradient through target value

This is still a
problem!
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Q-Learning and Regression

full Q-learning with replay buffer:
1. collect dataset {(s;,a;,s,;)} using some policy, add it to B

2. sample a batch (si,aq;,s’- r;) from B
K x

3. ¢ ¢ — O‘Z@ Ao 2 (si,a:)(Qe(sia;) — [r(si, a;) + v maxar Qp(s],

a;)])

one gradient step, moving target

full fitted Q-iteration algorithm:
1. collect dataset {(s;,a;,s;,r;)} using some policy

2. set y; < r(s;,a;) + Y Maxy/ Qqs(Sé,aﬁ;)

K x ) 1 2
3. set ¢ < arg ming 5 ZZ ||Q¢(Sz', az‘) — y@||

perfectly well-defined, stable regression

12



Q-Learning with target
networks

Q-learning with replay buffer and target network:

1. save target network parameters: ¢’ < ¢

2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

N x 3. sample a batch (Sz, a;,s;,r;) from B

K x

1. ¢ — Qb - O‘Zz dfb (Suaz)(qu(Szaaz) -

[r(si,a;) + ymaxa Qg (s],aj)])

targets don’t change in inner loop!

uoissaidau pasiniadns
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«

Classic” deep Q-learning algorithm (DQN)

Q-learning with replay buffer and target network:

1. save target network parameters: ¢’ < ¢

2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

NXK 3. sample a batch (si,ai,s’-,fri) from B
X

1 66— aY, % (s;a,)(Qulsiar) — [r(sia;) + 7 maxa Qu (s}, al))

“classic” deep QQ-learning algorithm:

1. take some action a; and observe (s;,a;,s., r;), add it to B

2. sample mini-batch {s;,a;,s’,r;} from B uniformly

3. compute y; = 7“3 + 7 maxy Q¢/(s aj) using target network @)y K=1
4. ¢ cb—OéZJ o = (s5,a5)(Qolsya;) —y;)

5. update ¢': copy ¢ every N steps

Mnih et al. “13 You’ll implement this in HW3!
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Alternative target network

“classic” deep QQ-learning algorithm:

= 1. take some action a; and observe (s;, a;, s}, r;), add it to B

2. sample mini-batch {s;,a;,s’,r;} from B uniformly
3. compute y; = 7"] + 7y maxg Q¢ (s},a;) using target network Qg
4. ¢<—¢_O‘ZJ rr ~(s5,a5)(Qe(ss,a;) —y;)

5. update ¢’ ¢ — &
Intuition: = — maximal Iagr_l_\
get target from here { N\ T~ no lag here

(s,a,s',7r) ¢ (s,a,s,r) ¢ (s,as’,r) ¢ (s,as,r) ¢ (s,as,r) ¢

Feels weirdly uneven, can we always have the same lag?

Popular alternative (similar to Polyak averaging):

5. update ¢’: ¢' « 17¢" + (1 —7)¢ 7 = 0.999 works well

15



A General View of Q-
Learning



Fitted Q-iteration and Q-learning

QQ-learning with replay buffer and target network: DQN: N=1, K =1
1. save target network parameters: ¢’ < ¢
2. collect M datapoints {(s;, a;,s;,r;)} using some policy, add them to B

NXK 3. sample a batch (Sz,ai,s’- r;) from B
4o ¢—aYy, F(si,ai)(Qolsia;) — [r(si a;) + v maxa Qu (s}, al)))

Fitted Q-learning (written similarly as above):

1. collect M datapoints {(s;,a;, s, r;)} using some policy, add them to B
2. save target network parameters: ¢’ < ¢

N x 3. sample a batch (sz, a;,s;,r;) from B .
K X . just SGD
4o ¢ — Y, Te(si,ai)(Qolsira;) — [r(si,a;) + ymaxa Qg (s],al)))
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A more general view

Q-learning with replay buffer and target network:
% 1. save target network parameters: ¢’ < ¢

2. collect M datapoints {(s;, a;,s;,r;)} using some policy, add them to B
X@ 3. sample a batch (sz-, a;,s;,r;) from B
.

4 ¢ b —ay, (s ai)(Qslsian) — [r(si,ai) + Y maxa Q (s}, a})])

w process 2

e target update

process 1: data collection

parameters

/
(s,a,s',7) ¢ ¢
dataset of transitions 3
(“replay buffer”) _process
f ‘\ -

evict old data

m(als) (e.g., e-greedy) .




A more general view
process 1: data collection w process 2

parameters target update

(s,,8',7) ¢ 4

dataset of transitions
(“replay buffer”)
4’ ‘\. -

evict old data

parameters

mw(als) (e.g., e-greedy)

e Online Q-learning (last lecture): evict immediately, process 1, process
2, and process 3 all run at the same speed

e DQN: process 1 and process 3 run at the same speed, process 2 is
slow

 Fitted Q-iteration: process 3 in the inner loop of process 2, which is in
the inner loop of process 1

19



Improving Q-
Learning



Are the Q-values accurate?
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Are the Q-values accurate?

| Space Invaders Time Pilot - Zaxxon
@ 20 - i 2.5 ' L
% o | 8 - ) I estimate
w 15 -
3 15 4. .
Q Double DQN estimate
= 10 1.0 9 ;
«© : . —Double DQN true value
> Ny DQN true value

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)
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Overestimation in Q-learning

target value y; = r; + Y MaXa, Qg (537 a;)

this last term is the problem

imagine we have two random variables: X; and X5
Elmax (X1, X5)] > max(F[X1], E[X3])

Q4 (s’,a’) is not perfect — it looks “noisy”

hence maxy Qg (s',a’) overestimates the next value!

note that max, Qg (s',a’) = Qy (s', argmaxay Qg (s',a’))

value also comes from ()4 action selected according to @)y

23



Double Q-learning

E[maX(Xl, XQ)] > maX(E[Xl], E[XQ])

note that maxy Qg (s',a’) = Qu (s', arg maxa Qg (s',a’))

value also comes from ()4 action selected according to @)y

N\ /

if the noise in these is decorrelated, the problem goes away!
idea: don’t use the same network to choose the action and evaluate value!

“double” Q-learning: use two networks:

Qp4(8,2) 7 +7Qp, (s, argmax Qy, (s', "))

Q¢B (S7 a) — T+ 7Q¢A (Slv arg HE,LX QGbB (Slv a/))

AN /

if the two Q’s are noisy in different ways, there is no problem

24



Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: y = r + vQ (s’, arg max, Q4 (s’, a’
¢ ¢

double Q-learning: y = r + Q4 (s’, arg max, @ 4%, a’
¢

just use current network (not target network) to evaluate action

still use target network to evaluate value!

25



Multi-step returns

Q-learning target: y;; = 7 + ymaxa,,. , Qg (Sjt+1,a5t+1)

7

these are the only values that matter if ()4 is bad!

where does the signal come from?

remember this?

Policy gradient: Vy.J (0

Actor-critic:

these values are important if ()4 is good

QQ-learning does this: max bias, min variance

~FEET

- not unbiased (if the critic is not perfect)

N T
1
KE E V()I()( uy’l a,,|s,, ((E S,I a,,))—b)
ti=t

i=1 t=1

+ NO DiIas

- higher variance (because single-sample estimate)

can we construct multi-step targets, like in actor-critic?

_ t+N—-1 ¢/ N
Yjt = Dop—y YV Tip + " maxa,,, n Qu(Sje+N,5,04N)

N-step return estimator

26



Q-learning with N-step returns

_ t+N—-1 ¢+ N
Yjt = Zt/:t Y Tit T maXa; ;. N Q¢’(Sj,t+N7 aj,t+N)

this is supposed to estimate Q™ (s, ¢+, a;¢+) for o : .
PP Q" (8j,t,aj,t) - only actually correct when learning on-policy

1 if a; = arg maxa, Q4 (st, at) why?
_ ¢ ’ V!
m(ay[st) { 0 otherwise

we need transitions s;,a; 4,8 ¢+1 to come from 7w for ¢ —t < N —1

(not an issue when N = 1)
« ignore the problem

how to fix? « often works very well
e cut the trace — dynamically choose N to get only on-policy
data

« works well when data mostly on-policy, and action space is small
e importance sampling

For more details, see: “Safe and efficient off-policy reinforcement learning” Munos et al. ‘16 57



Q-Learning with Continuous
Actions



Q-learning with continuous actions

What’s the problem with continuous actions?

1if a arg maXs, S¢, a -
m(ay|s;) = { t Q Qo t) this max

0 otherwisé

target value y; = r; + (maxa; Q (S}, ED this max

particularly problematic (inner loop of training)

How do we perform the max?

Option 1: optimization

» gradient based optimization (e.g., SGD) a bit slow
in the inner loop

 action space typically low-dimensional — what
about stochastic optimization?

29



Q-learning with stochastic optimization

Simple solution:

mgx@(s, a) ~ Imax {Q(S7 al)a s 7Q(87 aN>}

(a1, ...,an) sampled from some distribution (e.g., uniform)
not very accurate

but... do we care? How good does the target need to be anyway?

More accurate solution:

works OK, for up to about 40
e cross-entropy method (CEM) dimensions

« simple iterative stochastic optimization

« CMA-ES

« substantially less simple iterative stochastic optimization



Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

1 - N —= u
Q(5:2) = —(a— us(8) T Ps(s) (@ — o(9) + Vols) 5> I > P

—> |/

NAF: Normalized Advantage Functions

arg max Qo(s,a) = uy(s) max Qy(s,a) = Vy(s)

Gu, Lillicrap, Sutskever, L., ICML 2016

NAF Architecture.

- loses representational power

31



Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016) “deterministic” actor-critic
(really approximate Q-learning)

maxa Q¢ (s,a) = Qu(s,argmax, Qy(s,a))

idea: train another network pg(s) such that pg(s) ~ arg max, Q4(s,a)

dQy  dadQy

how? just solve 0 + a a S, lg(s S
w? just solv rgmaxg Qg(s, o (s)) 4 = 70 m

new target y; = r; +vQu (s}, 1g(s})) ~ rj + 7Qe (8}, arg maxa Qg (s, %))

32



Q-learning with continuous
%Ctl

ption Sr]earn an approximate maximizer

DDPG:

take some action a; and observe (s;,a;,s.,r;), add it to B

. sample mini-batch {s;,a;,s’,r;} from B uniformly

compute y; = r] + 7Qy (s j,,ugr( s’;)) using target nets Qg and pg
L PP — 0423 a5 (85,2)(Qs(s;,a5) — vj)

040+ 53, G5(s;) G (5, 1(7))

. update ¢’ and @’ (e.g., Polyak averaging)

< I SL B JUR R

33



Implementation Tips and
Examples



Simple practical tips for Q-learning

e Q-learning takes some care to stabilize
 Test on easy, reliable tasks first, make sure your implementation is correct

Pong Breakout Venture

S0 r 400 Video Pinball 250
400000 200

1544 L 3204 % v 320000 \
/ ‘ 150

0 | 2404 240000 f)
160 1600004 /1 [ gy f W 100
i | 80 80000/ P NIV LY AL 50
-304 ) . : ol : : : | 0+t Lo

Figure: From T. Schaul, J. Quan, |. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

 Large replay buffers help improve stability
« Looks more like fitted Q-iteration

e |t takes time, be patient — might be no better than random for a
while

o Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman
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Advanced tips for Q-learning

e Bellman error gradients can be big; clip gradients or use Huber
loss

x?/2 if|x| <6
L(X) = 2 .
d|x| — /2 otherwise

e Double Q-learning helps a lot in practice, simple and no
downsides

« N-step returns also help a lot, but have some downsides

e Schedule exploration (high to low) and learning rates (high to
low), Adam optimizer can help too

e Run multiple random seeds, it’s very inconsistent between
runs

Slide partly borrowed from J. Schulman



Fitted Q-iteration in a latent space

“Autonomous
reinforcement
learning from raw
visual data,” Lange &
Riedmiller ‘12

Q-learning on top of
latent space learned
with autoencoder
Uses fitted Q-iteration

Extra random trees for
function
approximation (but
neural net for
embedding)

system

high-dimensional

RSIRK]

SN

input: vector of pixel values

feature space

low-dimensional

action a

improved by
Reinforcement
Learning

poIiD

maps feature
vectors to
actions

37



Q-learning with convolutional networks

e “Human-level control
through deep

1 . ”
rem.forceme,nt leammg' Q-learning with convolutional networks
Mnih et al. ‘13

e Q-learning with oosn oooo
convolutional networks YYXXY
RRRRRR
« Uses replay buffer and 31 A
target network ¥ bes
e One-step backup KA

o One gradient step

« Can be improved a lot
with double Q-learning
(and other tricks)



Q-learning with continuous actions

° ”Continuous Control W|th deep O:|eam|ﬂg Wlth COﬂtIﬂUOUS aCtlonS
reinforcement learning,” Lillicrap
etal. ‘15 * “Continuous control with deep

« Continuous actions with reinforcement learning,” Lillicrap

etal. ‘15
Maximizer network * Continuous actions with

- Continuous control with deep
maximizer network

« Uses replay buffer and target reinforcement learning
network (with Polyak averaging) * Uses replay buffer and target

network (with Polyak averaging)
e One-step backup

* OnE'Step baCkUp Examples of behaviour learned with DDPG using both

low-dimensional and pixels based inputs.

* One gradient step per simulator

« One gradient step per simulator a5

step




Q-learning on a real robot

e “Robotic manipulation
with deep reinforcement
learning and ...,” Gu*,

Q-learning on a real robot

Holly*, et al. ‘17 * “Robotic manipulation
. . . ith d inf t
« Continuous actions with AITINg ahd o G, |
NAF (quadratic in actions) Holly",etal. 17
* Continuous actions with
e Uses rep|ay buffer and NAF (quadratic in actions)
target network b deniall
e One-step backup » One-step backup
* Four gradient steps per
i simulator step for
. Fpur gradient steps per Wiiie
simulator Step for * Parallelized across

efﬁCie ncy multiple robots

o Parallelized across
multiple robots

40



Large-scale Q-learning with continuous actions

(QT-Opt)
__ >

stored data from all
past experiments

{(S’i7 a;, S;)}z

~— 7

Large-scale Q-learning with continuous actions
(QT-Opt)

live data collection

Kalashnikoy, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan,

Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-

Based Robotic Manipulation Skills

training buffers

off-policy (s,a,s’,r)

on-policy (s,a,s’,r)

labeled (s,a, Qr(s,a))

\

-

0

training threads

min ||Qy(s,a) — Qr(s,a)|?

M\

J

hS

4 Bellman updaters

/)

compute Qr(s,a) =

r + maxy Q(s’, a

M\

/

=

)
y
<




Q-learning suggested readings

o Classic papers

Watkins. (1989). Learning from delayed rewards: introduces Q-learning

Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural
networks

o Deep reinforcement learning Q-learning papers

Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement
learning: early image-based Q-learning method using autoencoders to construct
embeddings

Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-
learning with convolutional networks for playing Atari.

Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning:
a very effective trick to improve performance of deep Q-learning.

Lillicrap et al. (2016). Continuous control with deep reinforcement learning:
continuous Q-learning with actor network for approximate maximization.

Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based
acceleration: continuous Q-learning with action-quadratic value functions.

Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network
architectures for deep reinforcement learning: separates value and advantage
estimation in Q-function.



Review

e Q-learning in practice
« Replay buffers
« Target networks
o Generalized fitted Q-iteration

e Double Q-learning
o Multi-step Q-learning

e Q-learning with continuous
actions

« Random sampling
« Analytic optimization
« Second “actor” network

Qy(s,a) < r(s,a) + ymaxa Qgu(s’,a’)
fit a model to
‘ ! estimate return

generate
samples (i.e.
1N the polj

;

policy

a = argmaxa, Q4(s,a)
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