IASD M2 at Paris Dauphine

Deep Reinforcement Learning

8: Deep RL with Q-Functions

Eric Benhamou - Thérese des Escotais

Pauphine & &

UNIVERSITE PARIS M n X

N ‘_/

UNIVERSITE PARIS

Homework 2 : Policy gradients

Due on Wed 14 February. 3 outputs to Pauphine | PSL* Moodle
1. Report (pdf)

UNIVERSITE PARIS

2. (code) Submit.zip

Google
3. notebook

Any homework submitted late will not be graded
Ask your questions on Moodle and answer to others

Oral presentation of the best homework group in 5-10 minutes (Wed
28 February)

Acknowledgement

These materials are based on the seminal course of Sergey Levine CS285

Advances in
Reinforcement Learning

https://rail.eecs.berkeley.edu/deeprlcourse/

Recap: Q-learning

full fitted Q-iteration algorithm:

1. collect dataset {(s;,a;,s.,;)} using some policy

— a’ ' a’
2. set y; < 7(S4,a;) + v maxy Qg(s], aj) Qs(s,a) < r(s,a) + ymaxy Qgu(s’,a’)

. fit a model to
€t arpming 7 10stone0 il — B

generate
samples (i.e.
jn the polj
. ; improve the
online Q iteration algorithm:

: /
1. take some action a; and observe (s;,a;,s;, ;) a = arg maxa Qy(s, a)

2.y, = T(S’waZ) + Y MaXa/ Q¢(Si5 z)
3. ¢« ¢ — a5 (si,a,)(Qu(si i) — yi)

What's wrong?

online Q) iteration algorithm:

1. take some action a; and observe (s;,a;,s;, ;)

2. yi = T(Sz', a'i) + 7 maXy/ Qcp(Sfp a;) \
these are correlated!
3. < ¢ — ade d¢ (SzaaZ)(QCb(Sivai) —¥i)

isn’t this just gradient descent? that converges, right?

Q-learning is not gradient descent!

66— % (51,20 (Qulsi i) ~(orr20) + 7 maxe Qs al)
no gradient through

target value

Correlated samples in online Q-learning

online Q) iteration algorithm: - sequential states are strongly correlated
@ 1. take some action a; and observe (s;,a;,s;, ;) - target value is always changing
2. o0 — ade d¢ (Si’ai)(be(Siaa’t) (s, @;) + v maxa Q¢(i a;)])

AR N A NV SN

synchronized parallel Q-learning asynchronous parallel Q-learning

get (s,a,s’,'r)<—l I I I

update ¢ «— B—m_m__m

get (s,a,s’,'r)<—l I I I

update ¢ «— Bl

NN I o

Another solution: replay buffers

online Q iteration algorithm:
@ 1. take some action a; and observe (s;,a;,s;, ;)

2. o0 — ade d¢ > (s, a’i)(be(Siva’i) — [r(si,a;) + v maxa QCb(S;;aa;:)])

special case with K =1, and one gradient step

full fitted Q-iteration algorithm:

: : any policy will work! (with broad support)
9 9909
[@ 2. set y; < r(s;,a;) +7 maxa/ Qy(s;,a;) just load data from a buffer here

2
. set ¢ <— argming 5 Zz 1Qy(si;a;) — yill still use one gradient step

I NG

= 7

Fitted Q-iteration

Another solution: replay buffers

Q-learning with a replay buffer:
@ 1. sample a batch (si,ai,s’. r;) from B

2. ¢ & — X, G(sia)(Qolsi ar) — [r(si,a;) + 7 maxa Qu(s), a})])

but where does the data come from?

need to periodically feed the replay buffer...

/
s,a,s’,r
(s,a,8",7) dataset of transitions
(“replay buffer”)
off-policy

» T .Y\:\. Q-learning

.\.—//

mw(als) (e.g., e-greedy)

Putting it together

full Q-learning with replay buffer:

1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
K =1 is common, though

2. sample a batch (S'i7 a;, S/' 7“‘) from B larger K more efficient

3. ¢ & —a, Fe(siai)(Qslsi,a;) — [r(sia:) + ymaxa Qu(s), al)])

dataset of transitions
(“replay buffer”)

off-policy
Q-learning

mw(als) (e.g., e-greedy)

Target Networks

What's wrong?

online Q) iteration algorithm:

1. take some action a; and observe (s;,a;,s;, ;)

2. y; = (s, az-) + v maxa Qy(s;, a)) \

S

3. ¢ ¢ — ot dgb = (8i,,) (Qo(sisai) —yi) use replay buffer

Q-learning is not gradient descent!

66— % (51,20 (Qulsi i) ~(orr20) + 7 maxe Qs al)

no gradient through target value

This is still a
problem!

11

Q-Learning and Regression

full Q-learning with replay buffer:
1. collect dataset {(s;,a;,s,;)} using some policy, add it to B

2. sample a batch (si,aq;,s’- r;) from B
K x

3. ¢ ¢ — O‘Z@ Ao 2 (si,a:)(Qe(sia;) — [r(si, a;) + v maxar Qp(s],

a;)])

one gradient step, moving target

full fitted Q-iteration algorithm:
1. collect dataset {(s;,a;,s;,r;)} using some policy

2. set y; < r(s;,a;) + Y Maxy/ Qqs(Sé,aﬁ;)

K x) 1 2
3. set ¢ < arg ming 5 ZZ ||Q¢(Sz', az‘) — y@||

perfectly well-defined, stable regression

12

Q-Learning with target
networks

Q-learning with replay buffer and target network:

1. save target network parameters: ¢’ < ¢

2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

N x 3. sample a batch (Sz, a;,s;,r;) from B

K x

1. ¢ — Qb - O‘Zz dfb (Suaz)(qu(Szaaz) -

[r(si,a;) + ymaxa Qg (s],aj)])

targets don’t change in inner loop!

uoissaidau pasiniadns

13

«

Classic” deep Q-learning algorithm (DQN)

Q-learning with replay buffer and target network:

1. save target network parameters: ¢’ < ¢

2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

NXK 3. sample a batch (si,ai,s’-,fri) from B
X

1 66— aY, % (s;a,)(Qulsiar) — [r(sia;) + 7 maxa Qu (s}, al))

“classic” deep QQ-learning algorithm:

1. take some action a; and observe (s;,a;,s., r;), add it to B

2. sample mini-batch {s;,a;,s’,r;} from B uniformly

3. compute y; = 7“3 + 7 maxy Q¢/(s aj) using target network @)y K=1
4. ¢ cb—OéZJ o = (s5,a5)(Qolsya;) —y;)

5. update ¢': copy ¢ every N steps

Mnih et al. “13 You’ll implement this in HW3!

14

Alternative target network

“classic” deep QQ-learning algorithm:

= 1. take some action a; and observe (s;, a;, s}, r;), add it to B

2. sample mini-batch {s;,a;,s’,r;} from B uniformly
3. compute y; = 7"] + 7y maxg Q¢ (s},a;) using target network Qg
4. ¢<—¢_O‘ZJ rr ~(s5,a5)(Qe(ss,a;) —y;)

5. update ¢’ ¢ — &
Intuition: = — maximal Iagr_l_\
get target from here { N\ T~ no lag here

(s,a,s',7r) ¢ (s,a,s,r) ¢ (s,as’,r) ¢ (s,as,r) ¢ (s,as,r) ¢

Feels weirdly uneven, can we always have the same lag?

Popular alternative (similar to Polyak averaging):

5. update ¢’: ¢' « 17¢" + (1 —7)¢ 7 = 0.999 works well

15

A General View of Q-
Learning

Fitted Q-iteration and Q-learning

QQ-learning with replay buffer and target network: DQN: N=1, K =1
1. save target network parameters: ¢’ < ¢
2. collect M datapoints {(s;, a;,s;,r;)} using some policy, add them to B

NXK 3. sample a batch (Sz,ai,s’- r;) from B
4o ¢—aYy, F(si,ai)(Qolsia;) — [r(si a;) + v maxa Qu (s}, al)))

Fitted Q-learning (written similarly as above):

1. collect M datapoints {(s;,a;, s, r;)} using some policy, add them to B
2. save target network parameters: ¢’ < ¢

N x 3. sample a batch (sz, a;,s;,r;) from B .
K X . just SGD
4o ¢ — Y, Te(si,ai)(Qolsira;) — [r(si,a;) + ymaxa Qg (s],al)))

17

A more general view

Q-learning with replay buffer and target network:
% 1. save target network parameters: ¢’ < ¢

2. collect M datapoints {(s;, a;,s;,r;)} using some policy, add them to B
X@ 3. sample a batch (sz-, a;,s;,r;) from B
.

4 ¢ b —ay, (s ai)(Qslsian) — [r(si,ai) + Y maxa Q (s}, a})])

w process 2

e target update

process 1: data collection

parameters

/
(s,a,s',7) ¢ ¢
dataset of transitions 3
(“replay buffer”) _process
f ‘\ -

evict old data

m(als) (e.g., e-greedy) .

A more general view
process 1: data collection w process 2

parameters target update

(s,,8',7) ¢ 4

dataset of transitions
(“replay buffer”)
4’ ‘\. -

evict old data

parameters

mw(als) (e.g., e-greedy)

e Online Q-learning (last lecture): evict immediately, process 1, process
2, and process 3 all run at the same speed

e DQN: process 1 and process 3 run at the same speed, process 2 is
slow

 Fitted Q-iteration: process 3 in the inner loop of process 2, which is in
the inner loop of process 1

19

Improving Q-
Learning

Are the Q-values accurate?

[]
250 Average Reward on Breakout 3 1800 Average Reward on Seaquest 4 Average Q on Breakout 9 Average Q on Seaquest A d t d

g 21600 G as M| S S p re Ic e
geo il o= 1 rlh e il
&5 Al A il 51200 | Il \ ‘\ S 25 Ss
° il \! m/‘ ©1000 5 g 5 °
) M| I »ﬂ a = 2 =

\ 800 \ p
& 100 H { 2 2
o ” o 600 ,4&' g g 3)
2 v 2400 1/ g ! g 2 /
g 50 N g s / e | ;
] B 200 |1 /4 l z 05 z1
2 z ol 0 0

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

XEXE XXX BRE: T does the return

: ¢ o

1

spepueR

Value (V)

vvvvvv
© 5 10 5 M 25 M 35 40 45 W 65 @ 65 0 5 W 85 W 96 160 105 10 15 130

Frame ¥

Acﬁon-Values Q)

— ey

21

Are the Q-values accurate?

| Space Invaders Time Pilot - Zaxxon
@ 20 - i 2.5 ' L
% o | 8 -) I estimate
w 15 -
3 15 4. .
Q Double DQN estimate
= 10 1.0 9 ;
«© : . —Double DQN true value
> Ny DQN true value

0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)

22

Overestimation in Q-learning

target value y; = r; + Y MaXa, Qg (537 a;)

this last term is the problem

imagine we have two random variables: X; and X5
Elmax (X1, X5)] > max(F[X1], E[X3])

Q4 (s’,a’) is not perfect — it looks “noisy”

hence maxy Qg (s',a’) overestimates the next value!

note that max, Qg (s',a’) = Qy (s', argmaxay Qg (s',a’))

value also comes from ()4 action selected according to @)y

23

Double Q-learning

E[maX(Xl, XQ)] > maX(E[Xl], E[XQ])

note that maxy Qg (s',a’) = Qu (s', arg maxa Qg (s',a’))

value also comes from ()4 action selected according to @)y

N\ /

if the noise in these is decorrelated, the problem goes away!
idea: don’t use the same network to choose the action and evaluate value!

“double” Q-learning: use two networks:

Qp4(8,2) 7 +7Qp, (s, argmax Qy, (s', "))

Q¢B (S7 a) — T+ 7Q¢A (Slv arg HE,LX QGbB (Slv a/))

AN /

if the two Q’s are noisy in different ways, there is no problem

24

Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: y = r + vQ (s’, arg max, Q4 (s’, a’
¢ ¢

double Q-learning: y = r + Q4 (s’, arg max, @ 4%, a’
¢

just use current network (not target network) to evaluate action

still use target network to evaluate value!

25

Multi-step returns

Q-learning target: y;; = 7 + ymaxa,,. , Qg (Sjt+1,a5t+1)

7

these are the only values that matter if ()4 is bad!

where does the signal come from?

remember this?

Policy gradient: Vy.J (0

Actor-critic:

these values are important if ()4 is good

QQ-learning does this: max bias, min variance

~FEET

- not unbiased (if the critic is not perfect)

N T
1
KE E V()I()(uy’l a,,|s,, ((E S,I a,,))—b)
ti=t

i=1 t=1

+ NO DiIas

- higher variance (because single-sample estimate)

can we construct multi-step targets, like in actor-critic?

_ t+N—-1 ¢/ N
Yjt = Dop—y YV Tip + " maxa,,, n Qu(Sje+N,5,04N)

N-step return estimator

26

Q-learning with N-step returns

_ t+N—-1 ¢+ N
Yjt = Zt/:t Y Tit T maXa; ;. N Q¢’(Sj,t+N7 aj,t+N)

this is supposed to estimate Q™ (s, ¢+, a;¢+) for o : .
PP Q" (8j,t,aj,t) - only actually correct when learning on-policy

1 if a; = arg maxa, Q4 (st, at) why?
_ ¢ ’ V!
m(ay[st) { 0 otherwise

we need transitions s;,a; 4,8 ¢+1 to come from 7w for ¢ —t < N —1

(not an issue when N = 1)
« ignore the problem

how to fix? « often works very well
e cut the trace — dynamically choose N to get only on-policy
data

« works well when data mostly on-policy, and action space is small
e importance sampling

For more details, see: “Safe and efficient off-policy reinforcement learning” Munos et al. ‘16 57

Q-Learning with Continuous
Actions

Q-learning with continuous actions

What’s the problem with continuous actions?

1if a arg maXs, S¢, a -
m(ay|s;) = { t Q Qo t) this max

0 otherwisé

target value y; = r; + (maxa; Q (S}, ED this max

particularly problematic (inner loop of training)

How do we perform the max?

Option 1: optimization

» gradient based optimization (e.g., SGD) a bit slow
in the inner loop

 action space typically low-dimensional — what
about stochastic optimization?

29

Q-learning with stochastic optimization

Simple solution:

mgx@(s, a) ~ Imax {Q(S7 al)a s 7Q(87 aN>}

(a1, ...,an) sampled from some distribution (e.g., uniform)
not very accurate

but... do we care? How good does the target need to be anyway?

More accurate solution:

works OK, for up to about 40
e cross-entropy method (CEM) dimensions

« simple iterative stochastic optimization

« CMA-ES

« substantially less simple iterative stochastic optimization

Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

1 - N —= u
Q(5:2) = —(a— us(8) T Ps(s) (@ — o(9) + Vols) 5> I > P

—> |/

NAF: Normalized Advantage Functions

arg max Qo(s,a) = uy(s) max Qy(s,a) = Vy(s)

Gu, Lillicrap, Sutskever, L., ICML 2016

NAF Architecture.

- loses representational power

31

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016) “deterministic” actor-critic
(really approximate Q-learning)

maxa Q¢ (s,a) = Qu(s,argmax, Qy(s,a))

idea: train another network pg(s) such that pg(s) ~ arg max, Q4(s,a)

dQy dadQy

how? just solve 0 + a a S, lg(s S
w? just solv rgmaxg Qg(s, o (s)) 4 = 70 m

new target y; = r; +vQu (s}, 1g(s})) ~ rj + 7Qe (8}, arg maxa Qg (s, %))

32

Q-learning with continuous
%Ctl

ption Sr]earn an approximate maximizer

DDPG:

take some action a; and observe (s;,a;,s.,r;), add it to B

. sample mini-batch {s;,a;,s’,r;} from B uniformly

compute y; = r] + 7Qy (s j,,ugr(s’;)) using target nets Qg and pg
L PP — 0423 a5 (85,2)(Qs(s;,a5) — vj)

040+ 53, G5(s;) G (5, 1(7))

. update ¢’ and @’ (e.g., Polyak averaging)

< I SL B JUR R

33

Implementation Tips and
Examples

Simple practical tips for Q-learning

e Q-learning takes some care to stabilize
 Test on easy, reliable tasks first, make sure your implementation is correct

Pong Breakout Venture

S0 r 400 Video Pinball 250
400000 200

1544 L 3204 % v 320000 \
/ ‘ 150

0 | 2404 240000 f)
160 1600004 /1 [gy f W 100
i | 80 80000/ P NIV LY AL 50
-304) . : ol : : : | 0+t Lo

Figure: From T. Schaul, J. Quan, |. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

 Large replay buffers help improve stability
« Looks more like fitted Q-iteration

e |t takes time, be patient — might be no better than random for a
while

o Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman

35

Advanced tips for Q-learning

e Bellman error gradients can be big; clip gradients or use Huber
loss

x?/2 if|x| <6
L(X) = 2 .
d|x| — /2 otherwise

e Double Q-learning helps a lot in practice, simple and no
downsides

« N-step returns also help a lot, but have some downsides

e Schedule exploration (high to low) and learning rates (high to
low), Adam optimizer can help too

e Run multiple random seeds, it’s very inconsistent between
runs

Slide partly borrowed from J. Schulman

Fitted Q-iteration in a latent space

“Autonomous
reinforcement
learning from raw
visual data,” Lange &
Riedmiller ‘12

Q-learning on top of
latent space learned
with autoencoder
Uses fitted Q-iteration

Extra random trees for
function
approximation (but
neural net for
embedding)

system

high-dimensional

RSIRK]

SN

input: vector of pixel values

feature space

low-dimensional

action a

improved by
Reinforcement
Learning

poIiD

maps feature
vectors to
actions

37

Q-learning with convolutional networks

e “Human-level control
through deep

1 . ”
rem.forceme,nt leammg' Q-learning with convolutional networks
Mnih et al. ‘13

e Q-learning with oosn oooo
convolutional networks YYXXY
RRRRRR
« Uses replay buffer and 31 A
target network ¥ bes
e One-step backup KA

o One gradient step

« Can be improved a lot
with double Q-learning
(and other tricks)

Q-learning with continuous actions

° ”Continuous Control W|th deep O:|eam|ﬂg Wlth COﬂtIﬂUOUS aCtlonS
reinforcement learning,” Lillicrap
etal. ‘15 * “Continuous control with deep

« Continuous actions with reinforcement learning,” Lillicrap

etal. ‘15
Maximizer network * Continuous actions with

- Continuous control with deep
maximizer network

« Uses replay buffer and target reinforcement learning
network (with Polyak averaging) * Uses replay buffer and target

network (with Polyak averaging)
e One-step backup

* OnE'Step baCkUp Examples of behaviour learned with DDPG using both

low-dimensional and pixels based inputs.

* One gradient step per simulator

« One gradient step per simulator a5

step

Q-learning on a real robot

e “Robotic manipulation
with deep reinforcement
learning and ...,” Gu*,

Q-learning on a real robot

Holly*, et al. ‘17 * “Robotic manipulation
. . . ith d inf t
« Continuous actions with AITINg ahd o G, |
NAF (quadratic in actions) Holly",etal. 17
* Continuous actions with
e Uses rep|ay buffer and NAF (quadratic in actions)
target network b deniall
e One-step backup » One-step backup
* Four gradient steps per
i simulator step for
. Fpur gradient steps per Wiiie
simulator Step for * Parallelized across

efﬁCie ncy multiple robots

o Parallelized across
multiple robots

40

Large-scale Q-learning with continuous actions

(QT-Opt)
__ >

stored data from all
past experiments

{(S’i7 a;, S;)}z

~— 7

Large-scale Q-learning with continuous actions
(QT-Opt)

live data collection

Kalashnikoy, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan,

Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-

Based Robotic Manipulation Skills

training buffers

off-policy (s,a,s’,r)

on-policy (s,a,s’,r)

labeled (s,a, Qr(s,a))

\

-

0

training threads

min ||Qy(s,a) — Qr(s,a)|?

M\

J

hS

4 Bellman updaters

/)

compute Qr(s,a) =

r + maxy Q(s’, a

M\

/

=

)
y
<

Q-learning suggested readings

o Classic papers

Watkins. (1989). Learning from delayed rewards: introduces Q-learning

Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural
networks

o Deep reinforcement learning Q-learning papers

Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement
learning: early image-based Q-learning method using autoencoders to construct
embeddings

Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-
learning with convolutional networks for playing Atari.

Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning:
a very effective trick to improve performance of deep Q-learning.

Lillicrap et al. (2016). Continuous control with deep reinforcement learning:
continuous Q-learning with actor network for approximate maximization.

Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based
acceleration: continuous Q-learning with action-quadratic value functions.

Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network
architectures for deep reinforcement learning: separates value and advantage
estimation in Q-function.

Review

e Q-learning in practice
« Replay buffers
« Target networks
o Generalized fitted Q-iteration

e Double Q-learning
o Multi-step Q-learning

e Q-learning with continuous
actions

« Random sampling
« Analytic optimization
« Second “actor” network

Qy(s,a) < r(s,a) + ymaxa Qgu(s’,a’)
fit a model to
‘ ! estimate return

generate
samples (i.e.
1N the polj

;

policy

a = argmaxa, Q4(s,a)

43

