
IASD DRL Deep Reinforcement Learning 2022

Assignment 2: Policy Gradients
Due February 9, 11:59 pm AOE (anywhere on earth)

1 Acknowledgement
This homework is exactly the same as the one of the CS285 course.

2 Introduction
The goal of this assignment is to experiment with policy gradient and its variants, including
variance reduction tricks such as implementing reward-to-go and neural network baselines. The
starter code can be found at

https://github.com/berkeleydeeprlcourse/homework_fall2021/tree/master/hw2

3 Review
3.1 Policy gradient

3.2 Variance Reduction

3.2.1 Reward-to-go

One way to reduce the variance of the policy gradient is to exploit causality: the notion that the
policy cannot affect rewards in the past. This yields the following modified objective, where

https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://github.com/berkeleydeeprlcourse/homework_fall2021/tree/master/hw2
https://github.com/berkeleydeeprlcourse/homework_fall2021/tree/master/hw2

IASD DRL Deep Reinforcement Learning 2022

the sum of rewards here does not include the rewards achieved prior to the time step at which
the policy is being queried. This sum of rewards is a sample estimate of the Q function, and is
referred to as the “reward-to-go.”

3.2.2 Discounting

Multiplying a discount factor γ to the rewards can be interpreted as encouraging the agent to
focus more on the rewards that are closer in time, and less on the rewards that are further in the
future. This can also be thought of as a means for reducing variance (because there is more
variance possible when considering futures that are further into the future). We saw in lecture
that the discount factor can be incorporated in two ways, as shown below.

3.2.3 Baseline

Another variance reduction method is to subtract a baseline (that is a constant with respect to
τ) from the sum of rewards:

3.2.4 Generalized Advantage Estimation

IASD DRL Deep Reinforcement Learning 2022

IASD DRL Deep Reinforcement Learning 2022

4 Overview of ImplementationFiles
To implement policy gradients, we will be building up the code that we started in homework
1. All files needed to run your code are in the hw2 folder, but there will be some blanks
you will fill with your solutions from homework 1. These locations are marked with #
TODO: get this from hw1 and are found in the following files:

• infrastructure/rl trainer.py

• infrastructure/utils.py

• policies/MLP policy.py

After bringing in the required components from the previous homework, you can begin
work on the new policy gradient code. These placeholders are marked with TODO,
located in the following files:

• agents/pg agent.py

• policies/MLP policy.py
The script to run the experiments is found in scripts/run hw2.py (for the local option) or scripts/run
hw2.ipynb (for the Colab option).

4.2 Overview
As in the previous homework, the main training loop is implemented in infrastructure/rl
trainer.py.

The policy gradient algorithm uses the following 3 steps:

1. Sample trajectories by generating rollouts under your current policy.

2. Estimate returns and compute advantages. This is executed in the train function of
pg_agent.py

3. Train/Update parameters. The computational graph for the policy and the
baseline, as well as the update functions, are implemented in policies/MLP policy.py.

5 Implementing Policy Gradients
You will be implementing two different return estimators within pg agent.py. The first (“Case
1” within calculate_q_vals) uses the discounted cumulative return of the full trajectory and
corresponds to the “vanilla” form of the policy gradient (Equation 9):

Note that these differ only by the starting point of the summation.

Implement these return estimators as well as the remaining sections marked TODO in the code. For the
small- scale experiments, you may skip those sections that are run only if nn baseline is True; we will
return to baselines in Section 6. (These sections are in MLPPolicyPG:update and PGAgent:estimate
advantage.)

6 Small-Scale Experiments
After you have implemented all non-baseline code from Section 4, you will run two small-scale
experiments to get a feel for how different settings impact the performance of policy gradient

IASD DRL Deep Reinforcement Learning 2022

methods.

Experiment 1 (CartPole). Run multiple experiments with the PG algorithm on the discrete
CartPole-v0
environment, using the following commands:

What’s happening here:

• -n: Number of iterations.

• -b: Batch size (number of state-action pairs sampled while acting according to the
current policy at each iteration).

• -dsa: Flag: if present, sets standardize_advantages to False. Otherwise, by default,
standardizes advantages to have a mean of zero and standard deviation of one.

• -rtg: Flag: if present, sets reward_to_go=True. Otherwise, reward_to_go=False by default.

• --exp_name: Name for experiment, which goes into the name for the data logging
directory.

Various other command line arguments will allow you to set batch size, learning rate,
network architecture, and more. You can change these as well, but keep them fixed between
the 6 experiments mentioned above.

Deliverables for report:

• Create two graphs:

– In the first graph, compare the learning curves (average return at each iteration) for
the experiments prefixed with q1_sb_. (The small batch experiments.)

– In the second graph, compare the learning curves for the experiments prefixed with
q1_lb_. (The large batch experiments.)

• Answer the following questions briefly:

– Which value estimator has better performance without advantage-standardization:
the trajectory- centric one, or the one using reward-to-go?

– Did advantage standardization help?

– Did the batch size make an impact?

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \
-dsa --exp_name q1_sb_no_rtg_dsa

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \

-rtg -dsa --exp_name q1_sb_rtg_dsa

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \

-rtg --exp_name q1_sb_rtg_na

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \

-dsa --exp_name q1_lb_no_rtg_dsa

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \

-rtg -dsa --exp_name q1_lb_rtg_dsa

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \

-rtg --exp name q1 lb rtg na

IASD DRL Deep Reinforcement Learning 2022

• Provide the exact command line configurations (or #@params settings in Colab) you
used to run your experiments, including any parameters changed from their defaults.

What to Expect:

• The best configuration of CartPole in both the large and small batch cases should
converge to a maximum score of 200.

Experiment 2 (InvertedPendulum). Run experiments on the InvertedPendulum-v2 continuous
control environment as follows:

where your task is to find the smallest batch size b* and largest learning rate r* that gets
to optimum (maximum score of 1000) in less than 100 iterations. The policy performance may
fluctuate around 1000; this is fine. The precision of b* and r* need only be one significant digit.

Deliverables:

• Given the b* and r* you found, provide a learning curve where the policy gets to optimum
(maximum score of 1000) in less than 100 iterations. (This may be for a single random seed,
or averaged over multiple.)

• Provide the exact command line configurations you used to run your experiments.

7 Implementing Neural Network Baselines
You will now implement a value function as a state-dependent neural network baseline. This will
require filling in some TODO sections skipped in Section 4. In particular:

• This neural network will be trained in the update method of MLPPolicyPG along with the
policy gradient update.
• In pg agent.py:estimate advantage, the predictions of this network will be subtracted
from the reward-to-go to yield an estimate of the advantage. This implements

8 More Complex Experiments
Note: The following tasks take quite a bit of time to train. Please start early! For all remaining
experiments, use the reward-to-go estimator.

Experiment 3 (LunarLander). You will now use your policy gradient implementation to learn a
controller for LunarLanderContinuous-v2. The purpose of this problem is to test and help you
debug your baseline implementation from Section 6.

Run the following command:

Deliverables:

• Plot a learning curve for the above command. You should expect to achieve an average
return of around 180 by the end of training.

Experiment 4 (HalfCheetah). You will be using your policy gradient implementation to learn a
controller for the HalfCheetah-v2 benchmark environment with an episode length of 150. This is
shorter than the default episode length (1000), which speeds up training significantly. Search over

python cs285/scripts/run_hw2.py –env_name InvertedPendulum-v2 \
--ep_len 1000 --discount 0.9 -n 100 -l 2 -s 64 -b <b*> -lr <r*> -rtg \

--exp_name q2_b<b*>_r<r*>

python cs285/scripts/run_hw2.py \
--env_name LunarLanderContinuous-v2 --ep_len 1000
--discount 0.99 -n 100 -l 2 -s 64 -b 40000 -lr 0.005 \
--reward_to_go --nn_baseline --exp_name q3_b40000_r0.005

IASD DRL Deep Reinforcement Learning 2022

batch sizes b ∈ [10000, 30000, 50000] and learning rates r ∈ [0.005, 0.01, 0.02] to replace and
<r> below.

Deliverables:

• Provide a single plot with the learning curves for the HalfCheetah experiments that
you tried. Describe in words how the batch size and learning rate affected task
performance.

Once you’ve found optimal values b* and r*, use them to run the following commands (replace
the terms in angle brackets):

Deliverables: Provide a single plot with the learning curves for these four runs. The run with
both reward- to-go and the baseline should achieve an average score close to 200.

9 Implementing Generalized Advantage Estimation
You will now use the value function you previously implemented to implement a simplified
version of GAE-λ. This will require filling in the remaining TODO section in pg agent.py:estimate
advantage.

Experiment 5 (HopperV2). You will now use your implementation of policy gradient with
generalized advantage estimation to learn a controller for a version of Hopper-v2 with noisy
actions. Search over λ ∈ [0, 0.95, 0.99, 1] to replace <λ> below. Note that with a correct
implementation, λ = 1 is equivalent to the vanilla neural network baseline estimator. Do not
change any of the other hyperparameters (e.g. batch size, learning rate).

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \
--discount 0.95 -n 100 -l 2 -s 32 -b -lr <r> -rtg --nn_baseline \
--exp_name q4_search_b_lr<r>_rtg_nnbaseline

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \
--discount 0.95 -n 100 -l 2 -s 32 -b <b*> -lr <r*> \
--exp_name q4_b<b*>_r<r*>

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \
--discount 0.95 -n 100 -l 2 -s 32 -b <b*> -lr <r*> -rtg \
--exp_name q4_b<b*>_r<r*>_rtg

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \
--discount 0.95 -n 100 -l 2 -s 32 -b <b*> -lr <r*> --nn_baseline \
--exp_name q4_b<b*>_r<r*>_nnbaseline

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \
--discount 0.95 -n 100 -l 2 -s 32 -b <b*> -lr <r*> -rtg --nn_baseline \
--exp_name q4_b<b*>_r<r*>_rtg_nnbaseline

python cs285/scripts/run_hw2.py \
--env_name Hopper-v2 --ep_len 1000
--discount 0.99 -n 300 -l 2 -s 32 -b 2000 -lr 0.001 \
--reward_to_go --nn_baseline --action_noise_std 0.5 --gae_lambda <λ> \
--exp_name q5_b2000_r0.001_lambda<λ>

IASD DRL Deep Reinforcement Learning 2022

Deliverables:
• Provide a single plot with the learning curves for the Hopper-v2 experiments that you tried.
Describe in words how λ affected task performance. The run with the best performance should
achieve an average score close to 400.

10 Bonus!
Choose any (or all) of the following:

• A serious bottleneck in the learning, for more complex environments, is the sample
collection time. In infrastructure/rl trainer.py, we only collect trajectories in a single thread, but
this process can be fully parallelized across threads to get a useful speedup. Implement the
parallelization and report on the difference in training time.

• In PG, we collect a batch of data, estimate a single gradient, and then discard the data
and move on. Can we potentially accelerate PG by taking multiple gradient descent steps with
the same batch of data? Explore this option and report on your results. Set up a fair
comparison between single-step PG and multi-step PG on at least one MuJoCo gym
environment.

11 Submission
11.1 Submitting the PDF
Your report should be a document containing

(a) All graphs and answers to short explanation questions requested for Experiments 1-4.

(b) All command-line expressions you used to run your experiments.

(c) (Optionally) Your bonus results (command-line expressions, graphs, and a few sentences
that comment on your findings).

11.2 Submitting the code and experiment runs
In order to turn in your code and experiment logs, create a folder that contains the following:

• A folder named run logs with all the experiment runs from this assignment. These folders
can be copied directly from the cs285/data folder. Do not change the names originally
assigned to the folders, as specified by exp_name in the instructions. Video logging
is disabled by default in the code, but if you turned it on for debugging, you need to run those
again with –video_log_freq -1, or else the file size will be too large for submission.

• The cs285 folder with all the .py files, with the same names and directory structure as
the original homework repository (excluding the cs285/data folder). Also include any
special instructions we need to run in order to produce each of your figures or tables in
the form of a README file.

As an example, the unzipped version of your submission should result in the following file
structure. Make sure that the submit.zip file is below 15MB.

IASD DRL Deep Reinforcement Learning 2022

11.3 Submitting a Google collab presentation
Please also provide a link to a google collab notebook completely working that reproduces
main results.

11.4 Turning it in
Turn in your assignment on Moodle. Upload
• the PDF of your report to HW2 -> Report
• submit.zip to HW2 -> Code
• Google collab link to HW2 -> Collab

https://moodle.dauphine.psl.eu/login/index.php

	3.1 Policy gradient
	3.2 Variance Reduction
	3.2.1 Reward-to-go
	3.2.2 Discounting
	3.2.3 Baseline
	3.2.4 Generalized Advantage Estimation

	4 Overview of Implementation
	4.1 Files
	4.2 Overview
	5 Implementing Policy Gradients
	6 Small-Scale Experiments
	Deliverables for report:
	What to Expect:
	Deliverables:

	7 Implementing Neural Network Baselines
	8 More Complex Experiments
	Deliverables:
	Deliverables:

	9 Implementing Generalized Advantage Estimation
	Deliverables:

	10 Bonus!
	11 Submission
	11.1 Submitting the PDF
	11.2 Submitting the code and experiment runs
	11.3 Submitting a Google collab presentation
	Please also provide a link to a google collab notebook completely working that reproduces main results.
	Please also provide a link to a google collab notebook completely working that reproduces main results.
	11.4 Turning it in
	Turn in your assignment on Moodle. Upload
	 the PDF of your report to HW2 -> Report
	 submit.zip to HW2 -> Code
	 Google collab link to HW2 -> Collab

