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Assignment 2: Policy Gradients 
Due February 9, 11:59 pm AOE (anywhere on earth) 

 

1 Acknowledgement 
This homework is exactly the same as the one of the CS285 course.  

 

2 Introduction 
The goal of this assignment is to experiment with policy gradient and its variants, including 
variance reduction tricks such as implementing reward-to-go and neural network baselines. The 
starter code can be found at 

https://github.com/berkeleydeeprlcourse/homework_fall2021/tree/master/hw2 

 

3 Review 
3.1 Policy gradient 

 

 
3.2 Variance Reduction 

3.2.1 Reward-to-go 

One way to reduce the variance of the policy gradient is to exploit causality: the notion that the 
policy cannot affect rewards in the past. This yields the following modified objective, where 

  

https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://github.com/berkeleydeeprlcourse/homework_fall2021/tree/master/hw2
https://github.com/berkeleydeeprlcourse/homework_fall2021/tree/master/hw2
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the sum of rewards here does not include the rewards achieved prior to the time step at which 
the policy is being queried.  This sum of rewards is a sample estimate of the Q function, and is 
referred to as the “reward-to-go.” 

3.2.2 Discounting 

Multiplying a discount factor γ to the rewards can be interpreted as encouraging the agent to 
focus more on the rewards that are closer in time, and less on the rewards that are further in the 
future. This can also be thought of as a means for reducing variance (because there is more 
variance possible when considering futures that are further into the future). We saw in lecture 
that the discount factor can be incorporated in two ways, as shown below. 

3.2.3 Baseline 

Another variance reduction method is to subtract a baseline (that is a constant with respect to 
τ) from the sum of rewards: 

3.2.4 Generalized Advantage Estimation 
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4 Overview of ImplementationFiles 
To implement policy gradients, we will be building up the code that we started in homework 
1. All files needed to run your code are in the hw2 folder, but there will be some blanks 
you will fill with your solutions from homework 1. These locations are marked with # 
TODO: get this from hw1 and are found in the following files: 

• infrastructure/rl trainer.py 

• infrastructure/utils.py 

• policies/MLP policy.py 

After bringing in the required components from the previous homework, you can begin 
work on the new policy gradient code. These placeholders are marked with TODO, 
located in the following files: 

• agents/pg agent.py 

• policies/MLP policy.py 
The script to run the experiments is found in scripts/run hw2.py (for the local option) or scripts/run 
hw2.ipynb (for the Colab option). 

 

4.2 Overview 
As in the previous homework, the main training loop is implemented in infrastructure/rl 
trainer.py. 

The policy gradient algorithm uses the following 3 steps: 

1. Sample trajectories by generating rollouts under your current policy. 

2. Estimate returns and compute advantages. This is executed in the train function of 
pg_agent.py 

3. Train/Update parameters. The computational graph for the policy and the 
baseline, as well as the update functions, are implemented in policies/MLP policy.py. 

 

5 Implementing Policy Gradients 
You will be implementing two different return estimators within pg agent.py. The first (“Case 
1” within calculate_q_vals) uses the discounted cumulative return of the full trajectory and 
corresponds to the “vanilla” form of the policy gradient (Equation 9): 

 
Note that these differ only by the starting point of the summation. 

Implement these return estimators as well as the remaining sections marked TODO in the code. For the 
small- scale experiments, you may skip those sections that are run only if nn baseline is True; we will 
return to baselines in Section 6. (These sections are in MLPPolicyPG:update and PGAgent:estimate 
advantage.) 

 
 

6 Small-Scale Experiments 
After you have implemented all non-baseline code from Section 4, you will run two small-scale 
experiments to get a feel for how different settings impact the performance of policy gradient 
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methods. 
 
Experiment 1 (CartPole). Run multiple experiments with the PG algorithm on the discrete 
CartPole-v0 
environment, using the following commands: 

 

 
 

What’s happening here: 

• -n: Number of iterations. 

• -b: Batch size (number of state-action pairs sampled while acting according to the 
current policy at each iteration). 

• -dsa:  Flag:  if present, sets standardize_advantages to False.  Otherwise, by default, 
standardizes advantages to have a mean of zero and standard deviation of one. 

• -rtg: Flag: if present, sets reward_to_go=True. Otherwise, reward_to_go=False by default. 

• --exp_name: Name for experiment, which goes into the name for the data logging 
directory. 

Various other command line arguments will allow you to set batch size, learning rate, 
network architecture, and more. You can change these as well, but keep them fixed between 
the 6 experiments mentioned above. 

 
Deliverables for report: 

• Create two graphs: 

– In the first graph, compare the learning curves (average return at each iteration) for 
the experiments prefixed with q1_sb_. (The small batch experiments.) 

– In the second graph, compare the learning curves for the experiments prefixed with 
q1_lb_. (The large batch experiments.) 

• Answer the following questions briefly: 

– Which value estimator has better performance without advantage-standardization: 
the trajectory- centric one, or the one using reward-to-go? 

– Did advantage standardization help? 

– Did the batch size make an impact? 

python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \ 
-dsa --exp_name q1_sb_no_rtg_dsa 

 
python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \ 

-rtg -dsa --exp_name q1_sb_rtg_dsa 
 
python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 1000 \ 

-rtg --exp_name q1_sb_rtg_na 
 
python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \ 

-dsa --exp_name q1_lb_no_rtg_dsa 
 
python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \ 

-rtg -dsa --exp_name q1_lb_rtg_dsa 
 
python cs285/scripts/run_hw2.py --env_name CartPole-v0 -n 100 -b 5000 \ 

-rtg --exp name q1 lb rtg na 
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• Provide the exact command line configurations (or #@params settings in Colab) you 
used to run your experiments, including any parameters changed from their defaults. 

What to Expect: 

• The best configuration of CartPole in both the large and small batch cases should 
converge to a maximum score of 200. 

 
Experiment 2 (InvertedPendulum). Run experiments on the InvertedPendulum-v2 continuous 
control environment as follows: 

 

 
 

where your task is to find the smallest batch size b* and largest learning rate r* that gets 
to optimum (maximum score of 1000) in less than 100 iterations. The policy performance may 
fluctuate around 1000; this is fine. The precision of b* and r* need only be one significant digit. 

Deliverables: 

• Given the b* and r* you found, provide a learning curve where the policy gets to optimum 
(maximum score of 1000) in less than 100 iterations. (This may be for a single random seed, 
or averaged over multiple.) 

• Provide the exact command line configurations you used to run your experiments. 
 

7 Implementing Neural Network Baselines 
You will now implement a value function as a state-dependent neural network baseline. This will 
require filling in some TODO sections skipped in Section 4. In particular: 

• This neural network will be trained in the update method of MLPPolicyPG along with the 
policy gradient update. 
• In pg agent.py:estimate advantage,  the predictions of this network will be subtracted 
from the reward-to-go to yield an estimate of the advantage. This implements  

 

8 More Complex Experiments 
Note: The following tasks take quite a bit of time to train. Please start early! For all remaining 
experiments, use the reward-to-go estimator. 

 

Experiment 3 (LunarLander). You will now use your policy gradient implementation to learn a 
controller for LunarLanderContinuous-v2. The purpose of this problem is to test and help you 
debug your baseline implementation from Section 6. 

Run the following command: 
 

 
 

Deliverables: 

• Plot a learning curve for the above command. You should expect to achieve an average 
return of around 180 by the end of training. 

 
 
Experiment 4 (HalfCheetah). You will be using your policy gradient implementation to learn a 
controller for the HalfCheetah-v2 benchmark environment with an episode length of 150. This is 
shorter than the default episode length (1000), which speeds up training significantly. Search over 

python cs285/scripts/run_hw2.py –env_name InvertedPendulum-v2 \ 
--ep_len 1000 --discount 0.9 -n 100 -l 2 -s 64 -b <b*> -lr <r*> -rtg \ 

--exp_name q2_b<b*>_r<r*> 

python cs285/scripts/run_hw2.py \ 
--env_name LunarLanderContinuous-v2 --ep_len 1000 
--discount 0.99 -n 100 -l 2 -s 64 -b 40000 -lr 0.005 \ 
--reward_to_go --nn_baseline --exp_name q3_b40000_r0.005 
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batch sizes b ∈ [10000, 30000, 50000] and learning rates r ∈ [0.005, 0.01, 0.02] to replace <b> and 
<r> below. 

 

 
 

Deliverables: 

• Provide a single plot with the learning curves for the HalfCheetah experiments that 
you tried. Describe in words how the batch size and learning rate affected task 
performance. 

Once you’ve found optimal values b* and r*, use them to run the following commands (replace 
the terms in angle   brackets): 

 

 
 

Deliverables: Provide a single plot with the learning curves for these four runs. The run with 
both reward- to-go and the baseline should achieve an average score close to 200. 

 

9 Implementing Generalized Advantage Estimation 
You will now use the value function you previously implemented to implement a simplified 
version of GAE-λ. This will require filling in the remaining TODO section in pg agent.py:estimate 
advantage. 

 

Experiment 5 (HopperV2). You will now use your implementation of policy gradient with 
generalized advantage estimation to learn a controller for a version of Hopper-v2 with noisy 
actions. Search over λ ∈ [0, 0.95, 0.99, 1] to replace <λ> below. Note that with a correct 
implementation, λ = 1 is equivalent to the vanilla neural network baseline estimator. Do not 
change any of the other hyperparameters (e.g. batch size, learning  rate). 

 

 
 

  

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \ 
--discount 0.95 -n 100 -l 2 -s 32 -b <b> -lr <r> -rtg --nn_baseline \ 
--exp_name q4_search_b<b>_lr<r>_rtg_nnbaseline 

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \ 
--discount 0.95 -n 100 -l 2 -s 32 -b <b*> -lr <r*> \ 
--exp_name q4_b<b*>_r<r*> 

 

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \ 
--discount 0.95 -n 100 -l 2 -s 32 -b <b*> -lr <r*> -rtg \ 
--exp_name q4_b<b*>_r<r*>_rtg 

 

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \ 
--discount 0.95 -n 100 -l 2 -s 32 -b <b*> -lr <r*> --nn_baseline \ 
--exp_name q4_b<b*>_r<r*>_nnbaseline 

 

python cs285/scripts/run_hw2.py --env_name HalfCheetah-v2 --ep_len 150 \ 
--discount 0.95 -n 100 -l 2 -s 32 -b <b*> -lr <r*> -rtg --nn_baseline \ 
--exp_name q4_b<b*>_r<r*>_rtg_nnbaseline 

python cs285/scripts/run_hw2.py \ 
--env_name Hopper-v2 --ep_len 1000 
--discount 0.99 -n 300 -l 2 -s 32 -b 2000 -lr 0.001 \ 
--reward_to_go --nn_baseline --action_noise_std 0.5 --gae_lambda <λ> \ 
--exp_name q5_b2000_r0.001_lambda<λ> 
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Deliverables: 
• Provide a single plot with the learning curves for the Hopper-v2 experiments that you tried. 
Describe in words how λ affected task performance. The run with the best performance should 
achieve an average score close to 400. 

 

10 Bonus! 
Choose any (or all) of the following: 

• A serious bottleneck in the learning, for more complex environments, is the sample 
collection time. In infrastructure/rl trainer.py, we only collect trajectories in a single thread, but 
this process can be fully parallelized across threads to get a useful speedup. Implement the 
parallelization and report on the difference in training time. 

• In PG, we collect a batch of data, estimate a single gradient, and then discard the data 
and move on. Can we potentially accelerate PG by taking multiple gradient descent steps with 
the same batch of data? Explore this option and report on your results. Set up a fair 
comparison between single-step PG and multi-step PG on at least one MuJoCo gym 
environment. 

 

11 Submission 
11.1 Submitting the PDF 
Your report should be a document containing 

(a) All graphs and answers to short explanation questions requested for Experiments 1-4. 

(b) All command-line expressions you used to run your experiments. 

(c) (Optionally) Your bonus results (command-line expressions, graphs, and a few sentences 
that comment on your findings). 

 

11.2 Submitting the code and experiment runs 
In order to turn in your code and experiment logs, create a folder that contains the following: 

• A folder named run logs with all the experiment  runs  from  this  assignment. These folders  
can be copied directly from the cs285/data folder. Do not change the names originally 
assigned to the folders, as specified by exp_name  in the instructions. Video logging 
is disabled by default in the code, but if you turned it on for debugging, you need to run those 
again with –video_log_freq -1, or else the file size will be too large for submission. 

• The cs285 folder with all the .py files, with the same names and directory structure as 
the original homework repository (excluding the cs285/data folder). Also include any 
special instructions we need to run in order to produce each of your figures or tables in 
the form of a README file. 

As an example, the unzipped version of your submission should result in the following file 
structure.  Make sure that the submit.zip file is below 15MB. 
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11.3 Submitting a Google collab presentation 
Please also provide a link to a google collab notebook completely working that reproduces 
main results. 
 
 
11.4 Turning it in 
Turn in your assignment on Moodle. Upload 
• the PDF of your report to HW2 -> Report 
• submit.zip to HW2 -> Code 
• Google collab link to HW2 -> Collab 
 

https://moodle.dauphine.psl.eu/login/index.php
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