IASD M2 at Paris Dauphine

Deep Reinforcement Learning

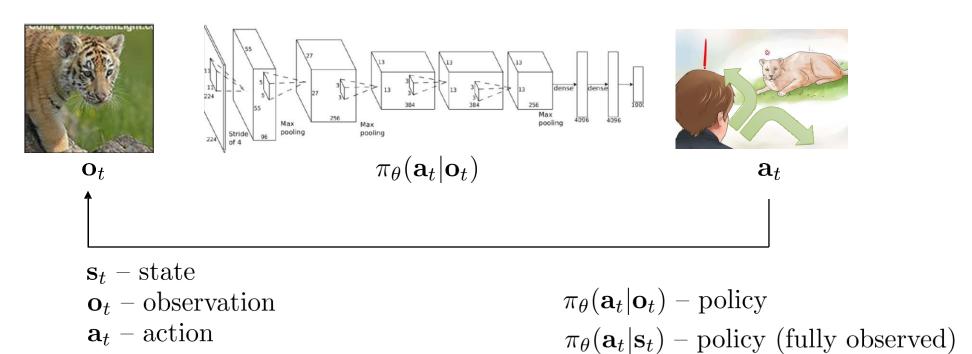
2: Supervised Learning for behaviors

Eric Benhamou David Saltiel

Acknowledgement

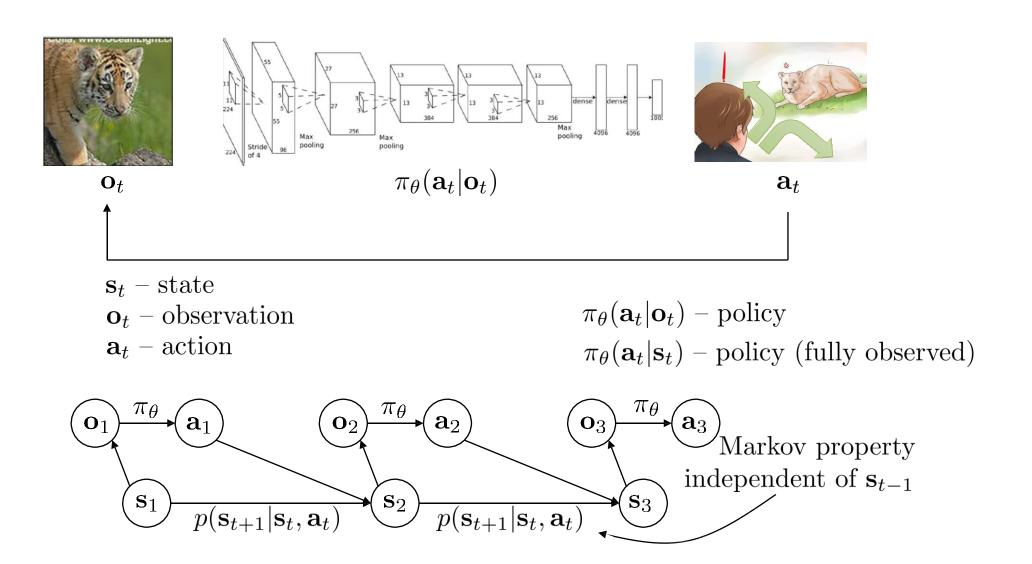
Most of the materials of this course is based on the seminal course of Sergey Levine CS285

<section-header><section-header><text>



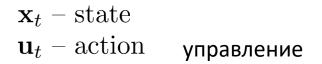
 \mathbf{o}_t – observation

 $\mathbf{s}_t - \mathrm{state}$

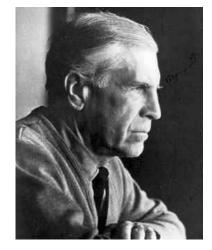


Aside: notation

 $\mathbf{s}_t - ext{state} \ \mathbf{a}_t - ext{action}$

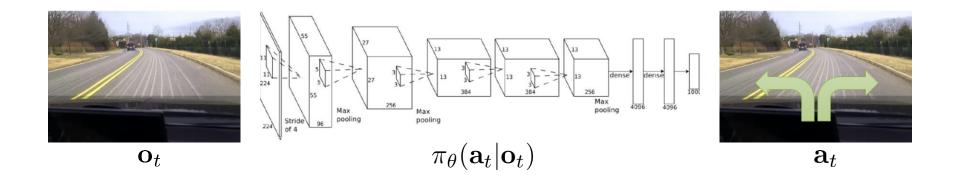


Richard Bellman



Lev Pontryagin

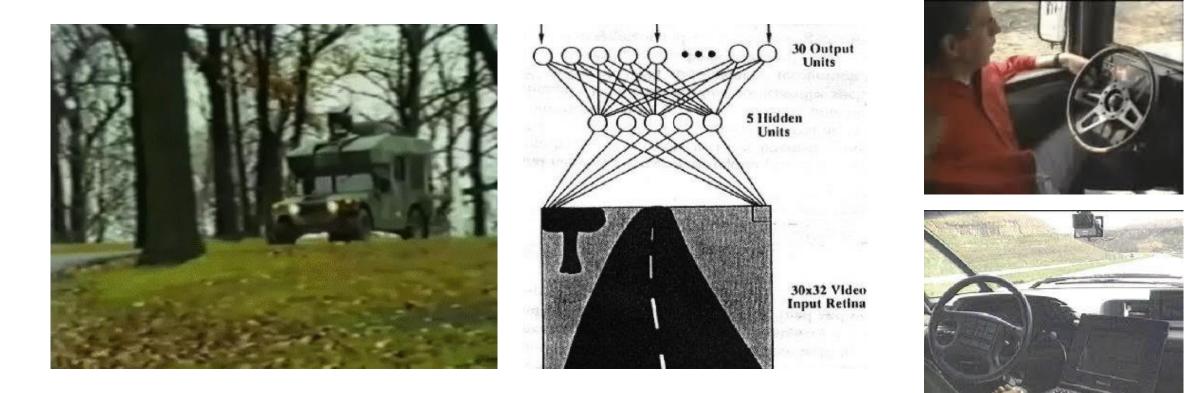
Imitation Learning



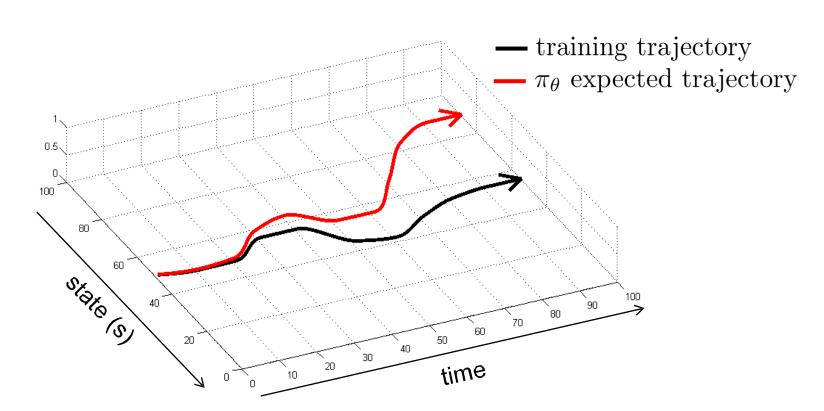
behavioral cloning

The original deep imitation learning system

ALVINN: Autonomous Land Vehicle In a Neural Network 1989



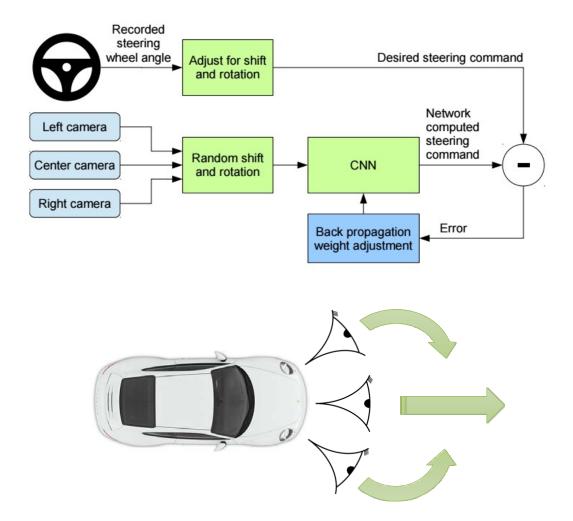
Does it work?



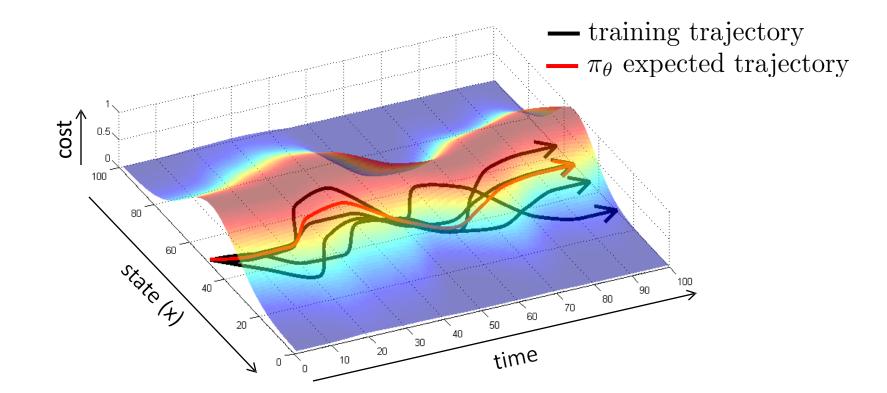
No!

Does it work? Yes!

Why did that work?



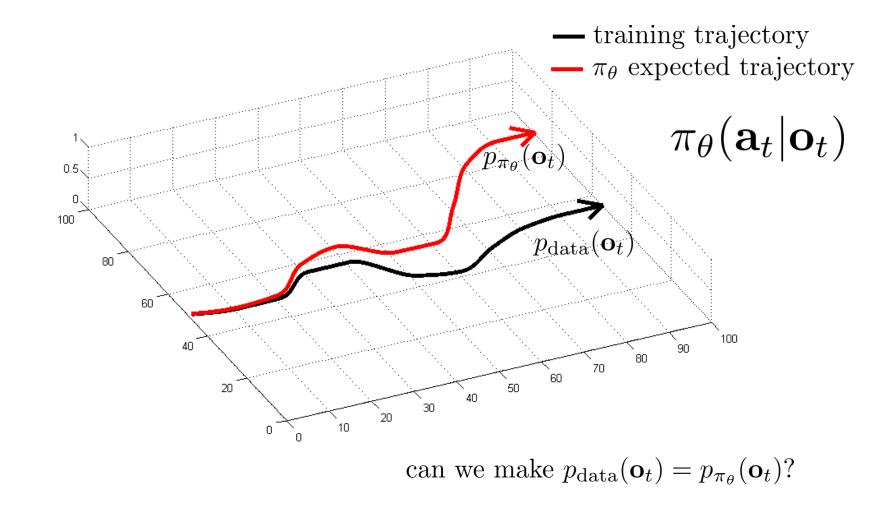
Can we make it work more often?



stability

(more on this later)

Can we make it work more often?



Can we make it work more often?

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

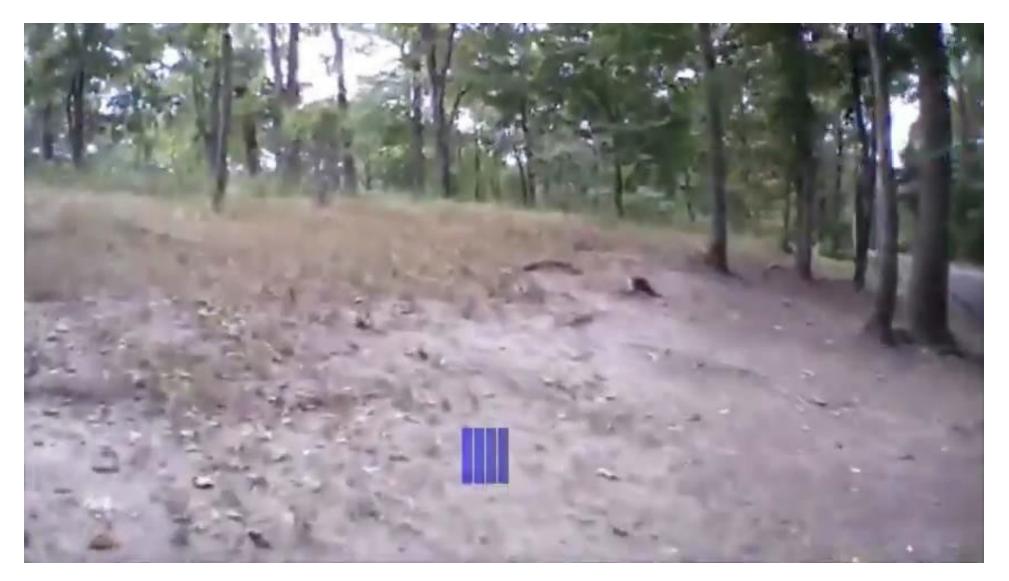
idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ but need labels \mathbf{a}_t !

1. train
$$\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$$
 from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example



What's the problem?

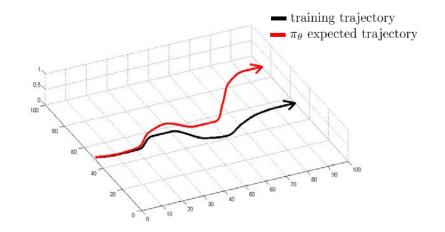
1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$(\mathbf{a}_t | \mathbf{o}_t)$$

Deep imitation learning in practice

Can we make it work without more data?

- DAgger addresses the problem of distributional "drift"
- What if our model is so good that it doesn't drift?
- Need to mimic expert behavior very accurately
- But don't overfit!



- 1. Non-Markovian behavior
- 2. Multimodal behavior

 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$

behavior depends only on current observation

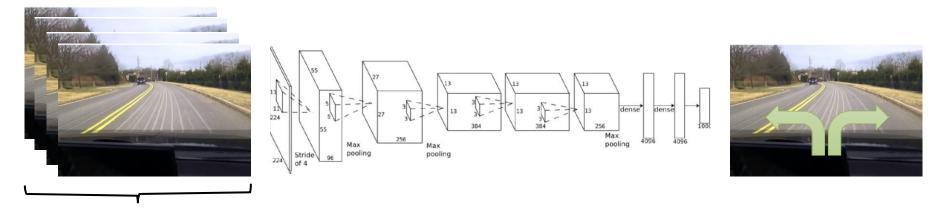
 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_1, ..., \mathbf{o}_t)$

behavior depends on all past observations

If we see the same thing twice, we do the same thing twice, regardless of what happened before

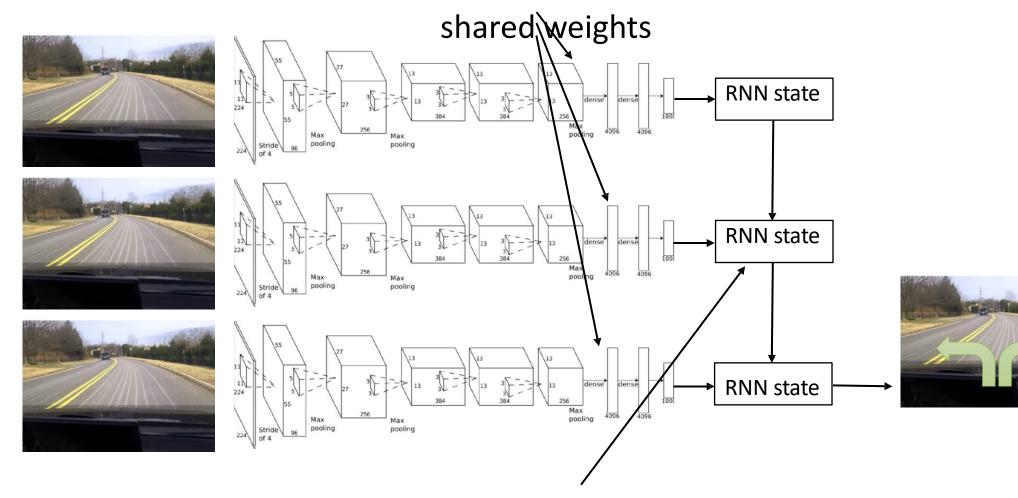
Often very unnatural for human demonstrators

How can we use the whole history?



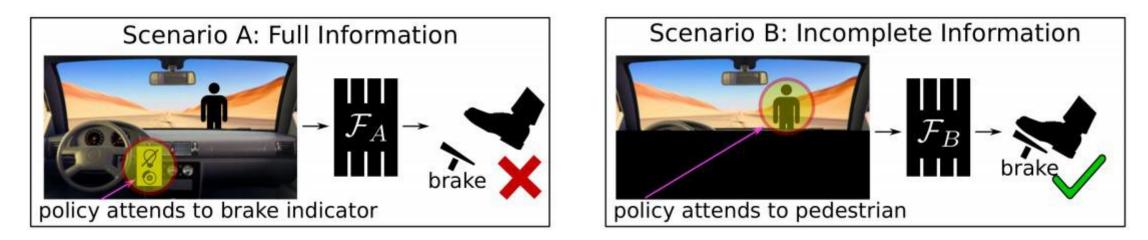
variable number of frames, too many weights

How can we use the whole history?



Typically, LSTM cells work better here

Aside: why might this work poorly?



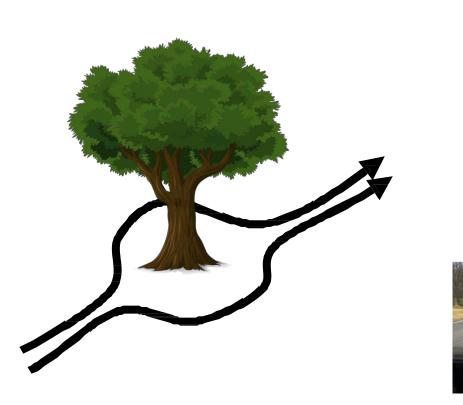
"causal confusion"

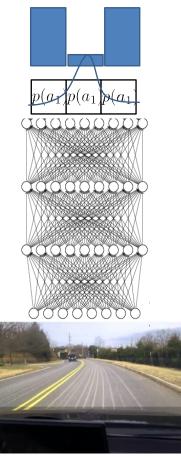
see: de Haan et al., "Causal Confusion in Imitation Learning"

Question 1: Does including history mitigate causal confusion?

Question 2: Can DAgger mitigate causal confusion?

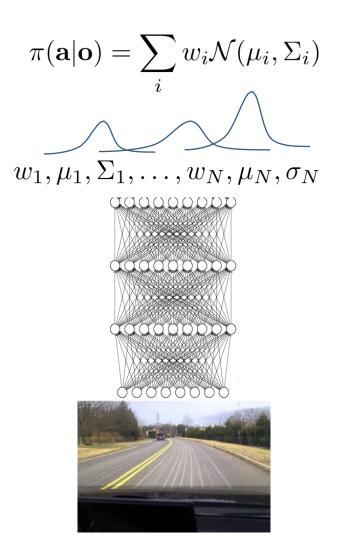
- 1. Non-Markovian behavior
- 2. Multimodal behavior





- 1. Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

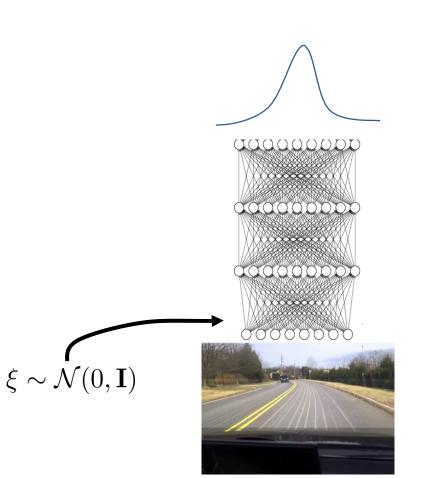
- Output mixture of Gaussians
- 2. Latent variable models
- 3. Autoregressive discretization

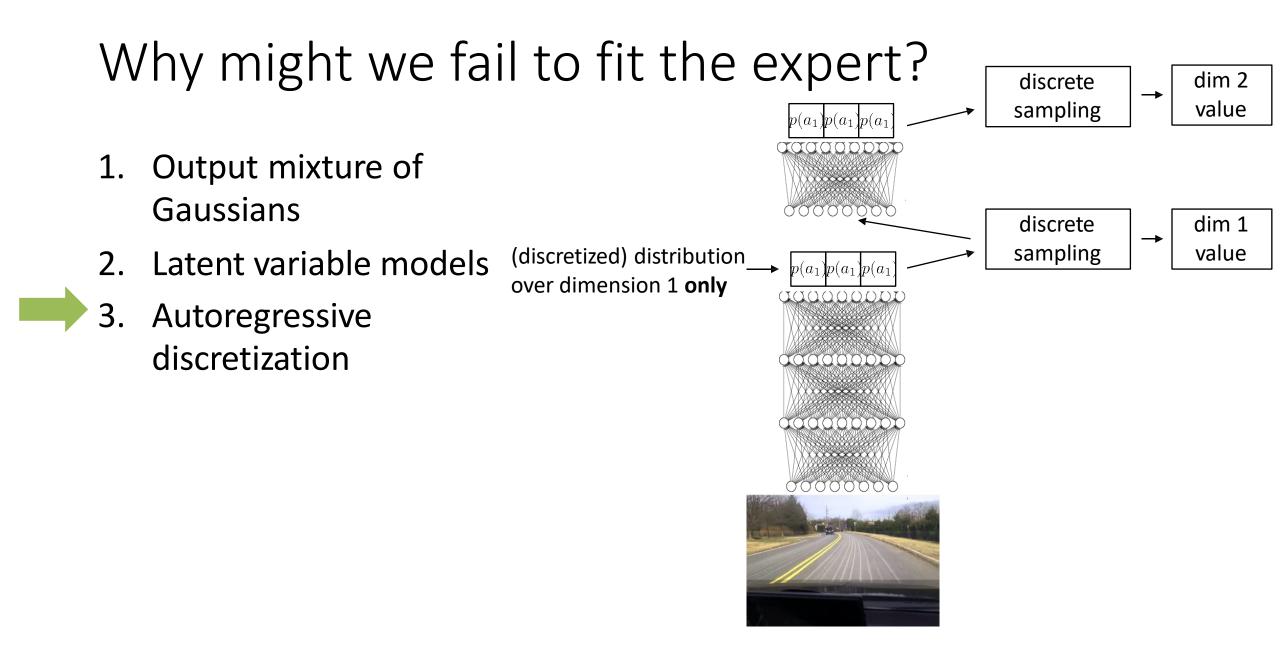


- Output mixture of Gaussians
- 2. Latent variable models
 - 3. Autoregressive discretization

Look up some of these:

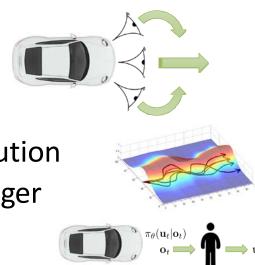
- Conditional variational autoencoder
- Normalizing flow/realNVP
- Stein variational gradient descent





Imitation learning: recap

- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more **on-policy** data, e.g. using Dagger
 - Better models that fit more accurately

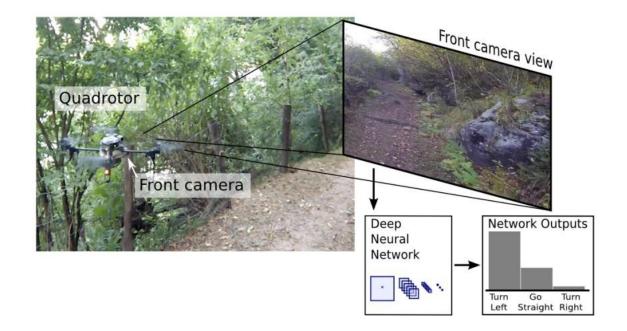


A case study: trail following from human demonstration data

Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

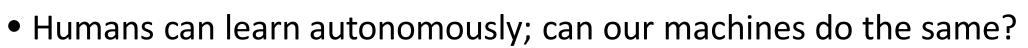
Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹



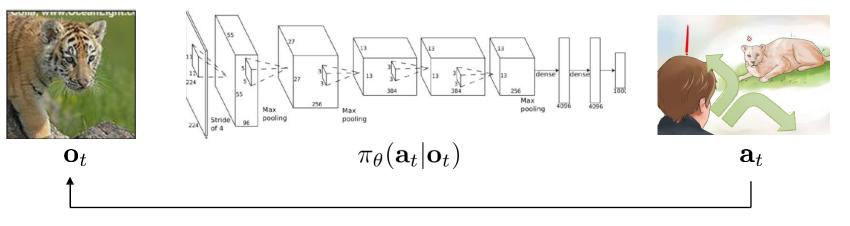
Cost functions, reward functions, and a bit of theory

Imitation learning: what's the problem?

- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions



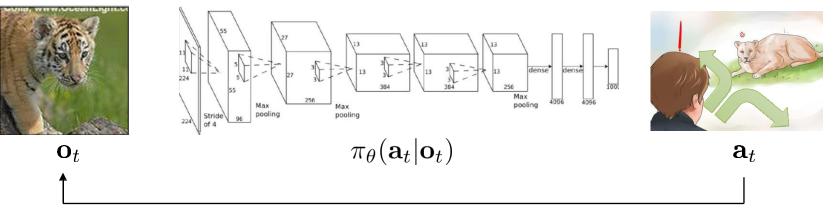
- Unlimited data from own experience
- Continuous self-improvement



$$\mathbf{s}_t - \mathrm{state}$$

$$\mathbf{o}_t$$
 – observation

$$\mathbf{a}_t$$
 – action

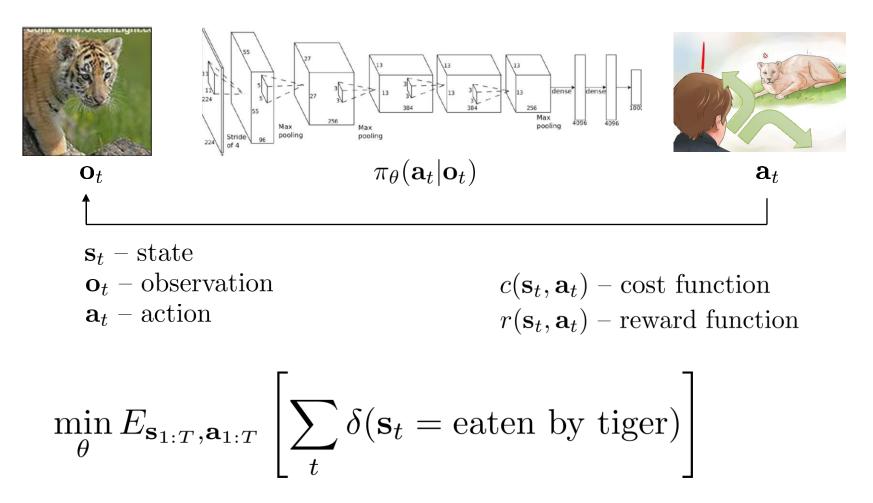


$$\mathbf{s}_t - \mathrm{state}$$

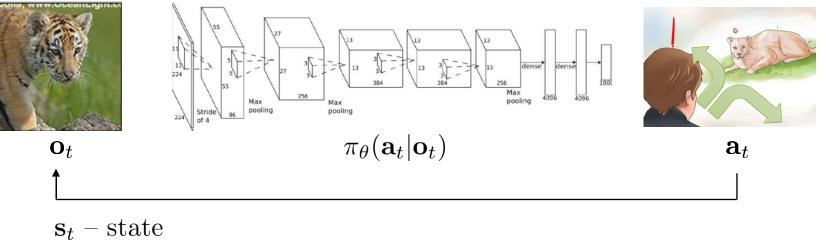
$$\mathbf{o}_t$$
 – observation

$$\mathbf{a}_t$$
 – action

$$\min_{\theta} E_{\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}), \mathbf{s}' \sim p(\mathbf{s}'|\mathbf{s}, \mathbf{a})} [\delta(\mathbf{s}' = \text{eaten by tiger})]$$



$$\min_{\mathbf{s}} E_{\mathbf{s}_{1:T}, \mathbf{a}_{1:T}} \left[\sum_{\mathbf{s}_{t}, \mathbf{s}_{t}} c(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$



- \mathbf{o}_t observation
- \mathbf{a}_t action

 $c(\mathbf{s}_t, \mathbf{a}_t)$ – cost function $r(\mathbf{s}_t, \mathbf{a}_t)$ – reward function

$$\min_{\theta} E_{\mathbf{s}_{1:T},\mathbf{a}_{1:T}} \left[\sum_{t} c(\mathbf{s}_{t},\mathbf{a}_{t}) \right]$$

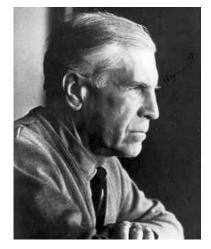
Aside: notation

 \mathbf{s}_t - state \mathbf{a}_t - action $r(\mathbf{s}, \mathbf{a})$ - reward function

 $\mathbf{u}_t - \mathrm{action} \ c(\mathbf{x}, \mathbf{u}) - \mathrm{cost} \ \mathrm{function}$

 \mathbf{x}_t – state

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$

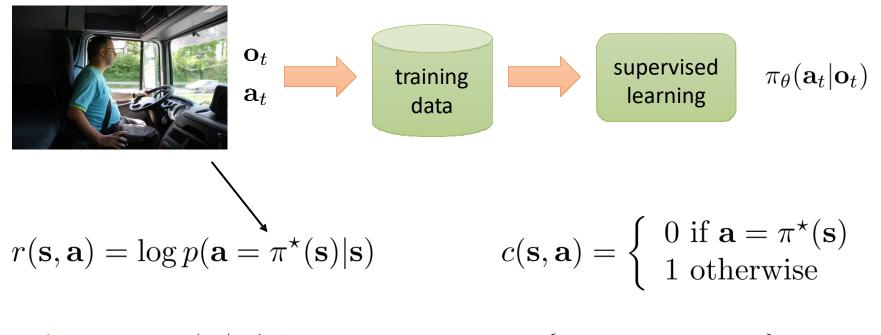


Lev Pontryagin

Richard Bellman

Cost functions, reward functions, and a bit of theory

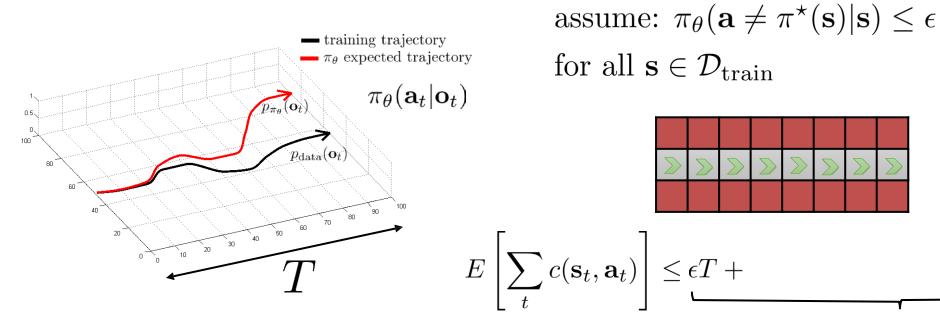
A cost function for imitation?



1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Some analysis

$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^{\star}(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$



 $O(\epsilon T^2)$

T terms, each $O(\epsilon T)$

More general analysis assume: $\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s}) \leq \epsilon$ for all $\mathbf{s} \in \mathcal{D}_{\text{train}}$ for $\mathbf{s} \sim p_{\text{train}}(\mathbf{s})$ actually enough for $E_{p_{\text{train}}(\mathbf{s})}[\pi_{\theta}(\mathbf{a} \neq \pi^{\star}(\mathbf{s})|\mathbf{s})] \leq \epsilon$ if $p_{\text{train}}(\mathbf{s}) \neq p_{\theta}(\mathbf{s})$: $p_{\theta}(\mathbf{s}_{t}) = (1-\epsilon)^{t} p_{\text{train}}(\mathbf{s}_{t}) + (1-(1-\epsilon)^{t})) p_{\text{mistake}}(\mathbf{s}_{t})$

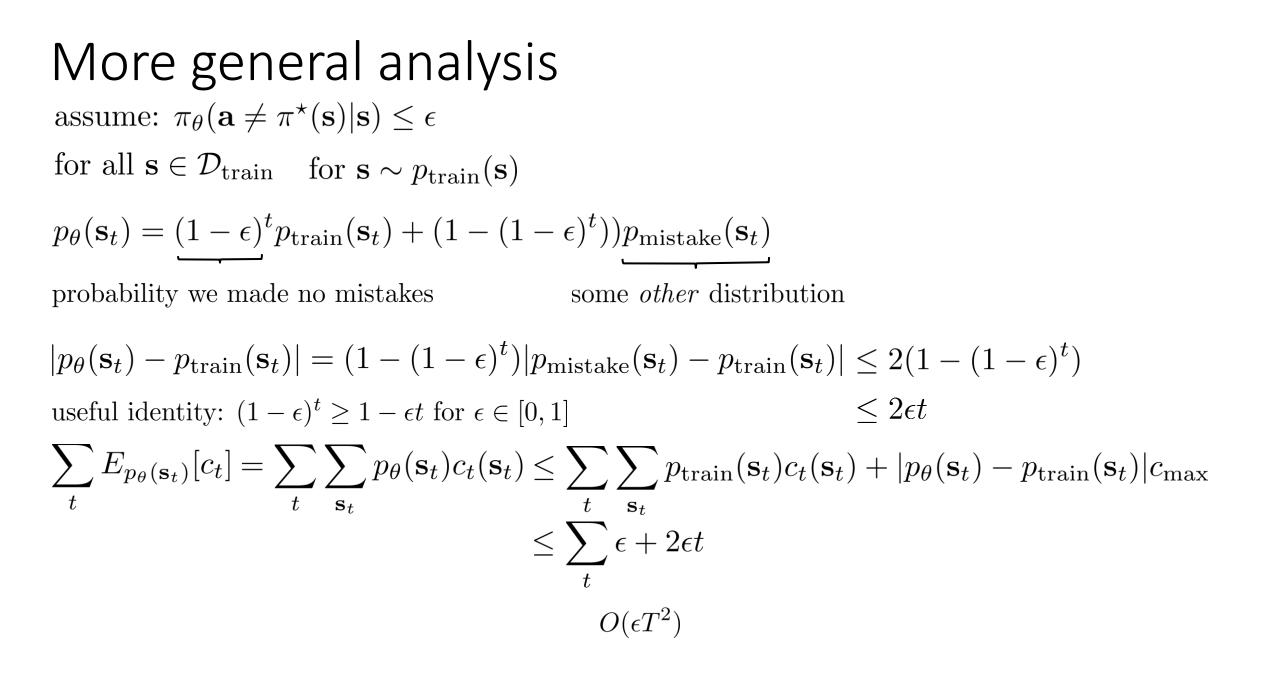
probability we made no mistakes

some other distribution

is
$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 \text{ if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 \text{ otherwise} \end{cases}$$

with DAgger, $p_{\text{train}}(\mathbf{s}) \to p_{\theta}(\mathbf{s})$ $E\left[\sum_{t} c(\mathbf{s}_{t}, \mathbf{a}_{t})\right] \leq \epsilon T$

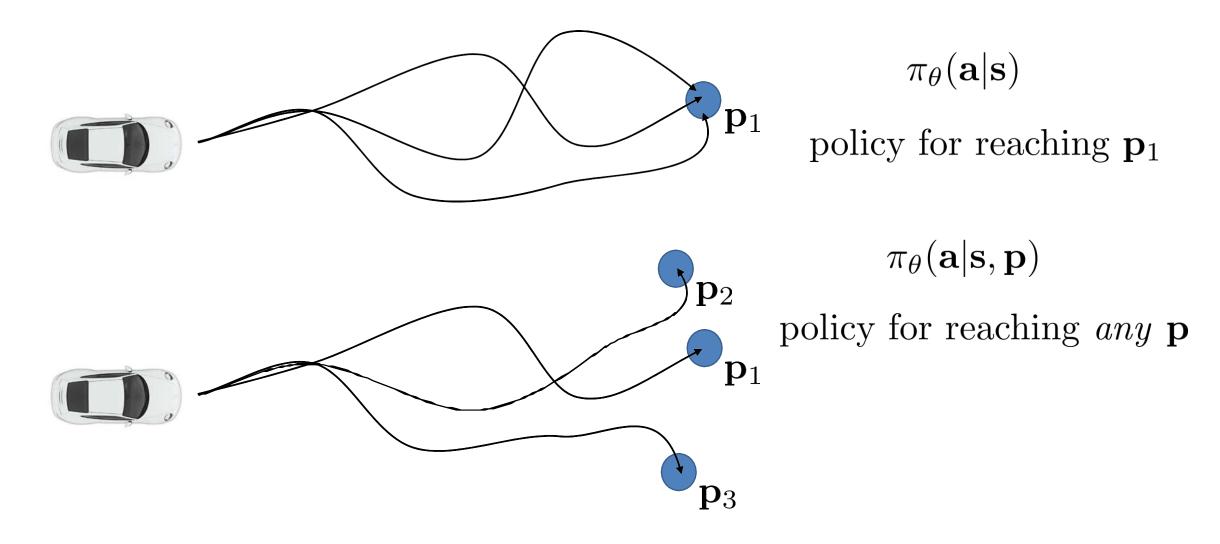
For more analysis, see Ross et al. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning"



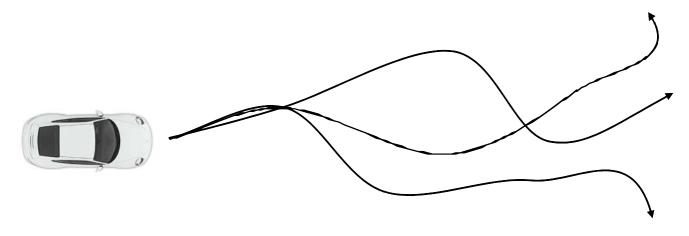
For more analysis, see Ross et al. "A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning"

Another way to imitate

Another imitation idea



Goal-conditioned behavioral cloning



training time:

demo 1: $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$ successful demo for reaching \mathbf{s}_T demo 1: $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$ learn $\pi_{\theta}(\mathbf{a}|\mathbf{s}, \mathbf{g})$ \leftarrow goal state demo 1: $\{\mathbf{s}_1, \mathbf{a}_t, \dots, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}, \mathbf{s}_T\}$

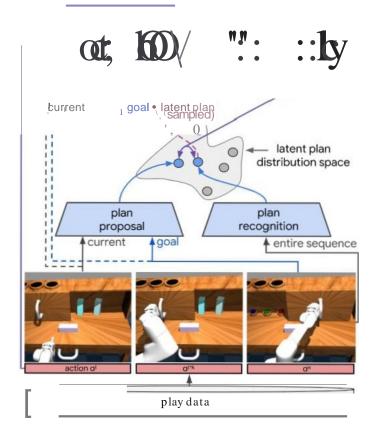
for each demo $\{\mathbf{s}_1^i, \mathbf{a}_1^i, \dots, \mathbf{s}_{T-1}^i, \mathbf{a}_{T-1}^i, \mathbf{s}_T^i\}$ maximize $\log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i, \mathbf{g} = \mathbf{s}_T^i)$

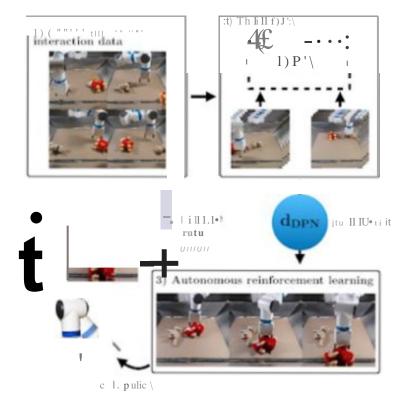
Learning Latent Plans from Play

Unsupervised Visuomotor Control through Distributional Planning Networks

Tianhe Yu. Gleb Shevchuk. Dorsa Sadigb, Chelsea Finn

Stanford University



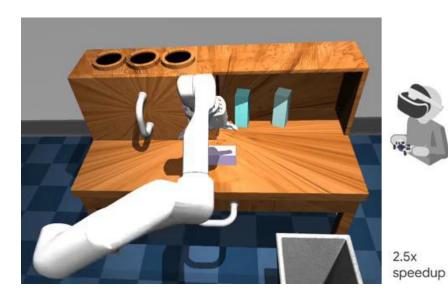


Learning Latent Plans from Play

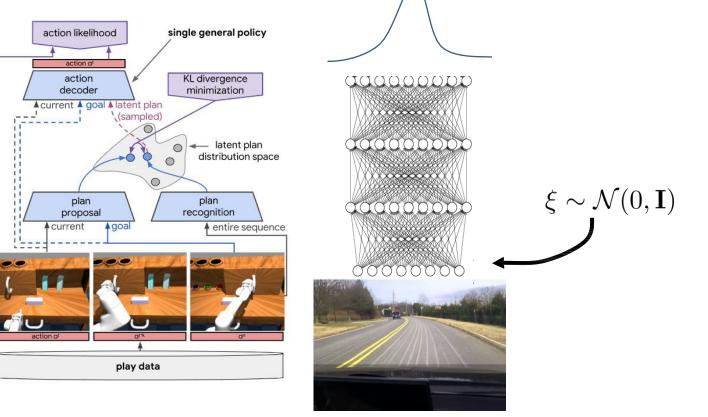
 COREY LYNCH
 MOHI KHANSARI
 TED XIAO
 VIKASH KUMAR
 JONATHAN TOMPSON
 SERGEY LEVINE
 PIERRE SERMANET

 Google Brain
 Google Brain

1. Collect data



2. Train goal conditioned policy

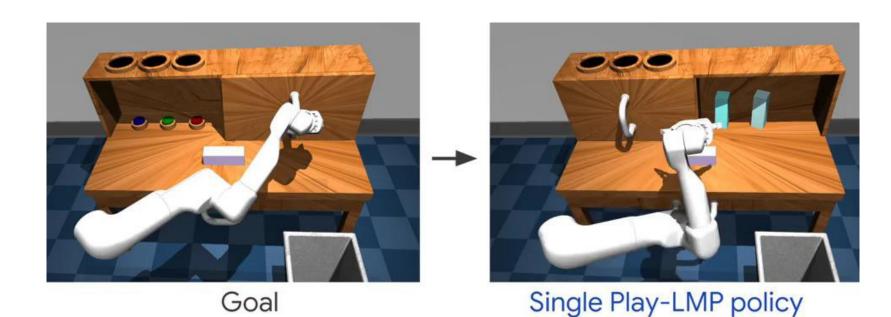


Learning Latent Plans from Play

 COREY LYNCH
 MOHI KHANSARI
 TED XIAO
 VIKASH KUMAR
 JONATHAN TOMPSON
 SERGEY LEVINE
 PIERRE SERMANET

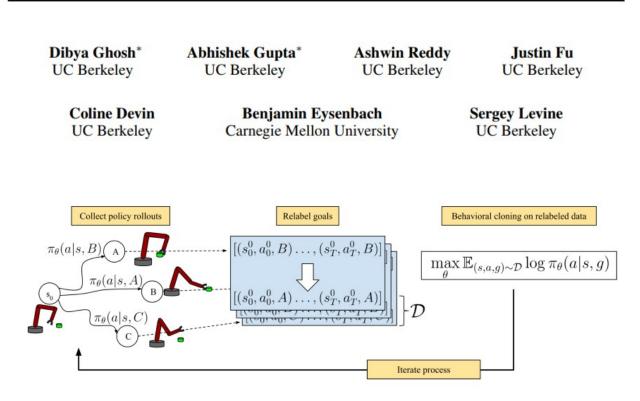
 Google Brain
 Google Brain

3. Reach goals



Going beyond just imitation?

Learning to Reach Goals via Iterated Supervised Learning



- > Start with a **random** policy
- > Collect data with **random** goals
- Treat this data as "demonstrations" for the goals that were reached
- > Use this to improve the policy
- ➤ Repeat