
IASD M2 at Paris Dauphine

Deep Reinforcement Learning

22: Transfer and Multi-Task Learning

Eric Benhamou David Saltiel



Acknowledgement
These materials are based on the seminal course of Sergey Levine CS285

https://rail.eecs.berkeley.edu/deeprlcourse/


What’s the problem?

this is easy (mostly) this is impossible

Why?



Montezuma’s revenge
• Getting key = reward
• Opening door = reward
• Getting killed by skull = bad



Montezuma’s revenge
• We know what to do because we understand what

these sprites mean!
• Key: we know it opens doors!
• Ladders: we know we can climb them!
• Skull: we don’t know what it does, but we know it 

can’t be good!
• Prior understanding of problem structure can help

us solve complex tasks quickly!



Can RL use the same prior knowledge as us?

• If we’ve solved prior tasks, we might acquire useful knowledge for
solving a new task

• How is the knowledge stored?
• Q-function: tells us which actions or states are good
• Policy: tells us which actions are potentially useful

• some actions are never useful!
• Models: what are the laws of physics that govern the world?
• Features/hidden states: provide us with a good representation

• Don’t underestimate this!



Aside: the representation bottleneck

slide adapted from E. Schelhamer, “Loss is its own reward”



Transfer learning terminology

transfer learning: using experience from one set of tasks for faster
learning and better performance on a new task

in RL, task = MDP!

source domain target domain

“shot”: number of attempts in the target
domain

1shot: just run a policy trained in the source 
domain
2 shot: try the task once

few shot: try the task a few times



How can we frame transfer learning problems?
No single solution! Survey of various recent research papers

1. Forward transfer: train on one task, transfer to a new task
a) Transferring visual representations & domain adaptation
b) Domain adaptation in reinforcement learning
c) Randomization

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Sharing representations and layers across tasks in multi-task learning
b) Contextual policies
c) Optimization challenges for multi-task learning
d) Algorithms

3. Transferring models and value functions
a) Model-based RL as a mechanism for transfer
b) Successor features & representations



Forward Transfer



Pretraining + Finetuning

The most popular transfer learning method in (supervised) deep learning!



What issues are we likely to face?

➢Domain shift: representations learned in the source
domain might not work well in the target domain

➢Difference in the MDP: some things that are possible 
to do in the source domain are not possible to do in 
the target domain

➢Finetuning issues: if pretraining & finetuning, the
finetuning process may still need to explore, but 
optimal policy during finetuning may be deterministic!



Domain adaptation in computer vision
train here

do well here

Invariance assumption: everything that is different between domains is irrelevant

Is this true?

reversed gradient

(same network)

correct answer

can we force this layer to be invariant to domain?
domain classifier: 
guess domain from z

incorrect answer



How do we apply this idea in RL?

adversarial loss causes
internal CNN features to be

indistinguishable for sim and real

Tzeng*, Devin*, et al., “Adapting Visuomotor Representations with Weak Pairwise Constraints”

simulated images real images



Domain adaptation in RL for dynamics?
Why is invariance not enough when the dynamics don’t match?

When might this not work?

Eysenbach et al., “Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers”



What if we can also finetune?

1. RL tasks are generally much less diverse
• Features are less general
• Policies & value functions become overly specialized

2. Optimal policies in fully observed MDPs are
deterministic
• Loss of exploration at convergence
• Low-entropy policies adapt very slowly to new settings



Finetuning with maximum-entropy policies

How can we increase diversity and entropy?

policy entropy

Act as randomly as possible while collecting high rewards!



Example: pre-training for robustness

Learning to solve a task in all possible ways provides for more robust
transfer!



Example: pre-training for diversity

Haarnoja*, Tang*, et al. “Reinforcement Learning with Deep Energy-Based Policies”



Domain adaptation: suggested readings

Tzeng, Hoffman, Zhang, Saenko, Darrell. Deep Domain Confusion: Maximizing for Domain
Invariance. 2014.

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky. Domain-
Adversarial Training of Neural Networks. 2015.

Tzeng*, Devin*, et al., Adapting Visuomotor Representations with Weak Pairwise Constraints. 
2016.

Eysenbach et al., Off-Dynamics Reinforcement Learning: Training for Transfer with
Domain Classifiers. 2020.

…and many many others!



Finetuning: suggested readings

Finetuning via MaxEnt RL: Haarnoja*, Tang*, et al. (2017). Reinforcement Learning with Deep
Energy-Based Policies.
Andreas et al. Modular multitask reinforcement learning with policy sketches. 2017. 

Florensa et al. Stochastic neural networks for hierarchical reinforcement learning. 2017.

Kumar et al. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt
RL. 2020

…and many many others!



Forward Transfer with Randomization



What if we can manipulate the source domain?

• So far: source domain (e.g., empty room) and target domain (e.g.,
corridor) are fixed

• What if we can design the source domain, and we have a difficult
target domain?

• Often the case for simulation to real world transfer



EPOpt: randomizing physical parameters

train test

adapt

training on single torso mass training on model ensemble

unmodeled effectsensemble adaptation

Rajeswaran et al., “EPOpt: Learning robust neural network policies…”



Preparing for the unknown: explicit system ID

Yu et al., “Preparing for the Unknown: Learning a Universal Policy with Online System Identification”

model parameters 
(e.g., mass)

policy

system identification RNN



Another example

Xue Bin Peng et al., “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”



CAD2RL: randomization for real-world control

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

also called domain randomization



Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

CAD2RL: randomization for real-world control



Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



Randomization for manipulation

Tobin, Fong, Ray, Schneider, Zaremba, Abbeel

James, Davison, Johns



Source domain randomization and domain
adaptation suggested readings
Rajeswaran, et al. (2017). EPOpt: Learning Robust Neural Network Policies Using Model Ensembles.

Yu et al. (2017). Preparing for the Unknown: Learning a Universal Policy with Online System Identification.

Sadeghi & Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin et al. (2017). Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real
World.

James et al. (2017). Transferring End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage 
Task.

Methods that also incorporate domain adaptation together with randomization:

Bousmalis et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping.

Rao et al. (2017). RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real.

… and many many others!



Multi-Task Transfer



Can we learn faster by learning multiple tasks?

learn learn learn learn learn

learn
Multi-task learning can:
- Accelerate learning of all tasks 

that are learned together
- Provide better pre-training for

down-stream tasks



Can we solve multiple tasks at once?

Multi-task RL corresponds to single-task RL in a joint MDP

etc.
sample

etc.

etc.

MDP 0

MDP 1

MDP 2

pick MDP randomly
in first state



What is difficult about this?

• Gradient interference: becoming better on one task can make you
worse on another

• Winner-take-all problem: imagine one task starts getting good –
algorithm is likely to prioritize that task (to increase average expected
reward) at the expensive of others

➢ In practice, this kind of multi-task RL is very challening



Actor-mimic and policy distillation



Distillation for Multi-Task Transfer

Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”

some other details
(e.g., feature regression objective)
– see paper

(just supervised learning/distillation)

analogous to guided policy search, but
for transfer learning
-> see model-based RL slides



Combining weak policies into a strong policy

supervised learninglotcraaljencetuorrayl-cneenttproicliRciLes

For details, see: “Divide and Conquer Reinforcement Learning”



Distillation Transfer Results

Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”



How does the model know what to do?

• So far: what to do is apparent from the input (e.g., which game is
being played)

• What if the policy can do multiple things in the same environment?



Contextual policies

e.g., do dishes or laundry

images: Peng, van de Panne, Peters



Contextual policies

e.g., do dishes or laundry

images: Peng, van de Panne, Peters

will discuss more in the context
of meta-learning!



Transferring Models and Value Functions



The problem setting

Common setting:
• Autonomous car learns how to drive to a few destinations,

and then has to navigate to a new one
• A kitchen robot learns to cook many different recipes, and 

then has to cook a new one in the same kitchen



What is the best object to transfer?

Model: very simple to transfer, since the model is already (in principle) 
independent of the reward

Value function: not straightforward to transfer by itself, since the value function
entangles the dynamics and reward, but possible with a decomposition

- what kind of “dynamics relevant” information does a value function contain?

Policy: possible to do with contextual policies, but otherwise tricky, because the
policy contains the least dynamics information



Transferring models

source domain target domain

why might zero-shot transfer
not always work?



Transferring value functions
Not so fast! Value functions couple dynamics, rewards, and policies!

Is this really such a good idea? Yes, because of linearity

Key observation: the value function is linear in the reward function



Successor representations & successor features



this is no longer linear!

Successor representations & successor features



Aside: successor representations

Dayan. Improving generalization for temporal difference learning: The successor representation. 1993.



Transfer with successor features

For more details, see: Barreto et al., Successor Features for Transfer in Reinforcement Learning



Recap
No single solution! Survey of various recent research papers

1. Forward transfer: train on one task, transfer to a new task
a) Transferring visual representations & domain adaptation
b) Domain adaptation in reinforcement learning
c) Randomization

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Sharing representations and layers across tasks in multi-task learning
b) Contextual policies
c) Optimization challenges for multi-task learning
d) Algorithms

3. Transferring models and value functions
a) Model-based RL as a mechanism for transfer
b) Successor features & representations


	Slide Number 1
	Acknowledgement
	What’s the problem?
	Montezuma’s revenge
	Montezuma’s revenge
	Can RL use the same prior knowledge as us?
	Aside: the representation bottleneck
	Transfer learning terminology
	How can we frame transfer learning problems?
	Slide Number 10
	Pretraining + Finetuning
	What issues are we likely to face?
	Domain adaptation in computer vision
	How do we apply this idea in RL?
	Domain adaptation in RL for dynamics?
	What if we can also finetune?
	Finetuning with maximum-entropy policies
	Example: pre-training for robustness
	Example: pre-training for diversity
	Domain adaptation: suggested readings
	Finetuning: suggested readings
	Slide Number 22
	What if we can manipulate the source domain?
	Slide Number 24
	Preparing for the unknown: explicit system ID
	Another example
	CAD2RL: randomization for real-world control
	CAD2RL: randomization for real-world control
	Slide Number 29
	Slide Number 30
	Source domain randomization and domainadaptation suggested readings
	Slide Number 32
	Slide Number 33
	Can we solve multiple tasks at once?
	Slide Number 35
	Actor-mimic and policy distillation
	Distillation for Multi-Task Transfer
	Combining weak policies into a strong policy
	Distillation Transfer Results
	How does the model know what to do?
	Slide Number 41
	Contextual policies
	Slide Number 43
	The problem setting
	What is the best object to transfer?
	Transferring models
	Transferring value functions
	Successor representations & successor features
	Successor representations & successor features
	Aside: successor representations
	Transfer with successor features
	Recap

