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Today’s Lecture

1. Introduction to model-based reinforcement learning
2. What if we know the dynamics? How can we make decisions?
3. Stochastic optimization methods
4. Monte Carlo tree search (MCTS)
5. Trajectory optimization
• Goals:

• Understand how we can perform planning with known dynamics models in
discrete and continuous spaces



Recap: the reinforcement learning objective



Recap: model-free reinforcement learning

assume this is unknown
don’t even attempt to learn it



What if we knew the transition dynamics?

• Often we do know the dynamics
1. Games (e.g., Atari games, chess, Go)
2. Easily modeled systems (e.g., navigating a car)
3. Simulated environments (e.g., simulated robots, video games)

• Often we can learn the dynamics
1. System identification – fit unknown parameters of a known model
2. Learning – fit a general-purpose model to observed transition data

Does knowing the dynamics make things easier? 

Often, yes!



1. Model-based reinforcement learning: learn the transition dynamics,
then figure out how to choose actions

2. Today: how can we make decisions if we know the dynamics?
a. How can we choose actions under perfect knowledge of the system dynamics?
b. Optimal control, trajectory optimization, planning

3. Next week: how can we learn unknown dynamics?
4. How can we then also learn policies? (e.g. by imitating optimal control)

policy

Model-based reinforcement learning

system dynamics



The objective

1. run away
2. ignore
3. pet



The deterministic case



The stochastic open-loop case

why is this suboptimal?



Aside: terminology
what is this “loop”?

closed-loop open-loop

only sent at t = 1,
then it’s one-way!



The stochastic closed-loop case

(more on this later)



Open-Loop Planning



But for now, open-loop planning



Stochastic optimization

simplest method: guess & check “random shooting method”



Cross-entropy method (CEM)

can we do better?
typically use Gaussian 
distribution

see also: CMA-ES (sort of 
like CEM with 
momentum)



What’s the problem?
1. Very harsh dimensionality limit
2. Only open-loop planning

What’s the upside?
1. Very fast if parallelized
2. Extremely simple



Discrete case: Monte Carlo tree search (MCTS)



Discrete case: Monte Carlo tree search (MCTS)

e.g., random policy



Discrete case: Monte Carlo tree search (MCTS)

+10 +15



Discrete case: Monte Carlo tree search (MCTS)
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Additional reading
1. Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener, 

Perez, Samothrakis, Colton. (2012). A Survey of Monte Carlo Tree
Search Methods.
• Survey of MCTS methods and basic summary.



Trajectory Optimization with Derivatives



Can we use derivatives?



Shooting methods vs collocation

shooting method: optimize over actions only



Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints



Linear case: LQR

linear quadratic



Linear case: LQR



Linear case: LQR



Linear case: LQR

linear linearquadratic



Linear case: LQR

linear linearquadratic



Linear case: LQR



Linear case: LQR



LQR for Stochastic and Nonlinear Systems



Stochastic dynamics



The stochastic closed-loop case



Nonlinear case: DDP/iterative LQR



Nonlinear case: DDP/iterative LQR



Nonlinear case: DDP/iterative LQR



Nonlinear case: DDP/iterative LQR



Nonlinear case: DDP/iterative LQR



Nonlinear case: DDP/iterative LQR



Case Study and Additional Readings



Case study: nonlinear model-predictive control



Synthesis of Complex Behaviors
with

Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

I E E E International Conference
o n Intelligent Robots and Systems

2012



Additional reading
1. Mayne, Jacobson. (1970). Differential dynamic programming.

• Original differential dynamic programming algorithm.

2. Tassa, Erez, Todorov. (2012). Synthesis and Stabilization of Complex 
Behaviors through Online Trajectory Optimization.
• Practical guide for implementing non-linear iterative LQR.

3. Levine, Abbeel. (2014). Learning Neural Network Policies with Guided
Policy Search under Unknown Dynamics.
• Probabilistic formulation and trust region alternative to deterministic line search.



What’s wrong with known dynamics?

Next time: learning the dynamics model
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