IASD M2 at Paris Dauphine

Deep Reinforcement Learning

13: Model-Based Policy Learning

Eric Benhamou David Saltiel

PSL>* Pauphine i 2

: . UNIVERSITE PARIS AMINES. i
UNIVERSITE PARIS _

Acknowledgement

These materials are based on the seminal course of Sergey Levine
CS285

Advances In _
Reinforcement Learning

https://rail.eecs.berkeley.edu/deeprlcourse/

every N steps

Last time: model-based RL with MPC

model-based reinforcement learning version 1.5:
1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y. || f(s;, a;) — s&||?

plan through f(s,a) to choose actions

execute the first planned action, observe resulting state s’ (MPC)

A

append (s,a,s’) to dataset D

The stochastic open-loop case

why is this suboptimal?

The stochastic closed-loop case

T = argmax E
v

T~p(T)

form of 7? \
neural net %}O\O’é

time-varying linear

K:s; + k; \O(:b\

Backpropagate directly into the policy?

backprop I

easy for deterministic policies, but also possible for stochastic policy

model-based reinforcement learning version 1.5:

. backprop

>

1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?
3. backpropagate through f(s,a) into the policy to optimize mg(a;|s;)

4. run 7o (as|s;), appending the visited tuples (s,a,s’) to D

What's the problem with backprop into policy?

1;

/

big gradients here small gradients here

What's the problem with backprop into policy?

backprop I 5

e~

What's the problem with backprop into policy?

backprop I

e Similar parameter sensitivity problems as shooting methods

e But no longer have convenient second order LQR-like method,
because policy parameters couple all the time steps, so no dynamic
programming

e Similar problems to training long RNNs with BPTT

e Vanishing and exploding gradients
e Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics
are chosen by nature

What’s the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model
used to generate synthetic samples
e Seems weirdly backwards
e Actually works very well
e Essentially “model-based acceleration” for model-free RL

e Use simpler policies than neural nets
* LQR with learned models (LQR-FLM — Fitted Local Models)
 Train local policies to solve simple tasks
e Combine them into global policies via supervised learning

Model-Free Learning With a Model

What’s the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model
used to generate synthetic samples
e Seems weirdly backwards
e Actually works very well
e Essentially “model-based acceleration” for model-free RL

Model-free optimization with a model

1 T
Policy gradient: Vo J(0) ~ N Z Z Vo log mo(ai,i[si) Q7

T t
dr dsy da r—1
Backprop (pathwise) gradient: VoJ(0) = E :‘ t | | t :

* Policy gradient might be more stable (if enough samples are used)
because it does not require multiplying many Jacobians

e See a recent analysis here:

e Parmas et al. “18: PIPP: Flexible Model-Based Policy Search Robust to the
Curse of Chaos

Model-free optimization with a model

Dyna online Q-learning algorithm that performs model-free RL with a model
given state s, pick action a using exploration policy

observe s’ and r, to get transition (s, a,s’,r)

. update model p(s’|s,a) and #(s,a) using (s, a,s’)

. Q-update: Q(s,a) < Q(s,a) + aFy .[r+ max, Q(s',a") — Q(s,a)]

repeat K times:

SRR NI

6. sample (s,a) ~ B from buffer of past states and actions

7. Q-update: Q(s,a) < Q(s,a) + aEy [r + max, Q(s',a") — Q(s,a)]

Richard S. Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming.

|((

General “Dyna-style” model-based RL recipe

1. collect some data, consisting of transitions (s, a, s’,r)
2. learn model p(s’|s,a) (and optionally, 7(s,a))
3. repeat K times:

4. sample s ~ B from buffer

choose action a (from B, from 7, or random)

. simulate s’ ~ p(s’[s,a) (and r = 7(s,a))

train on (s, a,s’,r) with model-free RL

. (optional) take N more model-based steps g—o

o N o> o

Model-Based Acceleration (MBA)

Model-Based Value Expansion (MVE)
Model-Based Policy Optimization (MBPO)

take some action a; and observe (s;,a;,s,r;), add it to B
sample mini-batch {s;,a;,s’,r;} from B uniformly

use {s;,a;,s;} to update model p(s’[s, a)

. sample {s;} from B

for each s;, perform model-based rollout with a = 7(s)

S R W N

use all transitions (s, a, s, r) along rollout to update Q-function

Gu et al. Continuous deep Q-learning with model-based acceleration. ‘16
Feinberg et al. Model-based value expansion. ’18

Janner et al. When to trust your model: model-based policy optimization. 19

Local Models

What’s the solution?

e Use derivative-free (“model-free”) RL algorithms, with the model
used to generate synthetic samples
e Seems weirdly backwards
e Actually works very well
e Essentially “model-based acceleration” for model-free RL

e Use simpler policies than neural nets
* LQR with learned models (LQR-FLM — Fitted Local Models)
 Train local policies to solve simple tasks
e Combine them into global policies via supervised learning

What’s the solution?

Use simpler policies than neural nets
LQR with learned models (LQR-FLM — Fitted Local Models)
Train local policies to solve simple tasks
Combine them into global policies via supervised learning

Local models

T
min Zc(xt,ut) s.t. x¢ = f(X¢—1, 1)

ui,...,ur
t=1

min c(x1,u1) +c(f(x1,u1),u2) + - +c(f(f(...)...),up)

ui,..., U

usual story: differentiate via backpropagation and optimize!

if df \dc dc
ClXt, dllt

need

Local models

df df \dc dc
dXt ’ dllt ’ ClXt ’ dllt

need

df df

: around current trajectory or policy!

idea: just fit

dXt dut

LQR gives us a linear feedback controller

SR B can execute in the real world!

L R —

e

Local models

P(Xt+1|Xt; ut) = N(f(xt, ut)v E)
f(xe,ue) = Ayxy + Bouy

df df
A, = —— B, = ——
T ax, LT du,

e
run p(ut‘xt)

on robot

collect D = {r;
K {7}

(

next
1iteration

fit dynamics -1

p(Xt_|_1|Xt’ ut) k-

!

What controller to execute?

IMProve .«
controller =

Version 0.5: p(ug|x;) = d(u; = 0y)

J iLQR produces: Xx:, 0, K;, ks
U — Kt(Xt —)A{t) —+ kt + ﬁt

Doesn’t correct deviations or drift

Version 1.0: p(ut|xt) — (S(llt — Kt(Xt —)A(t) —+ kt —+ flt)
Better, but maybe a little too good?

Version 2.0: p(ut\xt) — N(Kt(Xt — }A(t) —+ kt —+ ﬁt, Zt)
Add noise so that all samples don’t look the same!

Set Zt = —1

U ,Uyg

Local models

P(Xt+1|Xt; ut) = N(f(xt, ut)v E)
f(xe,ue) = Ayxy + Bouy

df df
A, = —— B, = ——
T ax, LT du,

e
run p(ut‘xt)

on robot

collect D = {r;
K {7}

(

next
1iteration

fit dynamics -1

p(Xt_|_1|Xt’ ut) k-

!

AN
\ improve
. p(ug|xy)

How to fit the dynamics?

fit dynamics .
p (Xt—l-l |Xt) ut) \ S

{(x¢,us, X¢41)i }

fit p(xs11|x¢,us) at each time step using linear regression

p(Xey1]xe, ur) = N(Aexy + Brug + ¢, Ny) A~ Y

What if we go too far?

How to stay close to old controller?

improve @Jfﬁ
p(ut |Xt) _\ =

p(ue]xs) = N (Ke(xe — %x¢) + ke + g, X4)

Ut|Xt Xt—}—l’Xh Ut)

IISH

What if the new p(7) is “close” to the old one p()
If trajectory distribution is close, then dynamics will be close too!

What does “close” mean? Dkr,(p(7)||p(7)) <€

This is easy to do if p(7) also came from linear controller!

For details, see: “Learning Neural Network Policies with Guided Policy
Search under Unknown Dynamics”

autonomous execution

Global Policies from Local Models

What’s the solution?

Use simpler policies than neural nets
LQR with learned models (LQR-FLM — Fitted Local Models)
Train local policies to solve simple tasks
Combine them into global policies via supervised learning

What’s the solution?

Use simpler policies than neural nets

Combine them into global policies via supervised learning

Guided policy search: high-level idea

Guided policy search: algorithm sketch

e modified cost to keep m,qr.i close to my

/

1. optimize each local policy mr,qr i(u¢|x:) on initial state x¢ ; w.r.t. ¢ (X, 1)
2. use samples from step (1) to train mg(u;|x;) to mimic each mrqr i (u|x;)

3. update cost function ¢x41 ;(x¢, uy) = c(X¢, W) + Ag41.i 10g o (ue|xy)

\

For details, see: “End-to-End Training of Deep Visuomotor Policies” Lagrange multiplier

Underlying principle: distillation

Ensemble models: single models are often not the most robust —
instead train many models and average their predictions

this is how most ML competitions (e.g., Kaggle) are won
this is very expensive at test time

Can we make a single model that is as good as an ensemble?

Distillation: train on the ensemble’s predictions as “soft” targets

logit 7™
exp(z;/T)

b Zj exp(z;j/T)—— temperature

Intuition: more knowledge in soft targets than hard labels!

Slide adanted from G Hinton see also Hinton et al “Distilline the Knowledoce in 3 Neural Network”

e« QN L W ~9
W WNeUE LYy N0
OO QR W F\Q
N h Eh Yy
QSYE s W UNO
NN bR W NQ
0 % s\b\\f‘\u’%\a
N YN L VOO

IS N
NS a kP

Distillation for Multi-Task Transfer

N N B
- £~ Yo el
TEs a|

(just supervised learning/distillation)

analogous to guided policy search, but
for multi-task learning

g, (als)

some other details
(e.g., feature regression objective)

— see paper
Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”

Combining weak policies into a strong policy

Divide and Conquer
Reinforcement
Learning

supervised learning

Divide and conquer reinforcement learning algorithm sketch:

1. optimize each local policy my, (a¢|s;) on initial state sg; w.r.t. 7 ;(s¢, as)
2. use samples from step (1) to train mg(u|x;) to mimic each 7y, (us|xy)

3. update reward function 751 ;(X¢, Ur) = 7(X¢, W) + Ag41,5 log o (ue|xy)

For details, see: “Divide and Conquer Reinforcement Learning”

Readings: guided policy search & distillation

e L.*, Finn*, et al. End-to-End Training of Deep Visuomotor Policies. 2015.
e Rusu et al. Policy Distillation. 2015.

e Parisotto et al. Actor-Mimic: Deep Multitask and Transfer Reinforcement
Learning. 2015.

e Ghosh et al. Divide-and-Conquer Reinforcement Learning. 2017.
e Teh et al. Distral: Robust Multitask Reinforcement Learning. 2017.

	Slide Number 1
	Acknowledgement
	Last time: model-based RL with MPC
	Slide Number 4
	Slide Number 5
	Backpropagate directly into the policy?
	What’s the problem with backprop into policy?
	What’s the problem with backprop into policy?
	What’s the problem with backprop into policy?
	What’s the solution?
	Slide Number 11
	What’s the solution?
	Model-free optimization with a model
	Model-free optimization with a model
	General “Dyna-style” model-based RL recipe
	Model-Based Acceleration (MBA)
Model-Based Value Expansion (MVE)
	Slide Number 17
	What’s the solution?
	What’s the solution?
	Local models
	Local models
	Local models
	What controller to execute?
	Local models
	How to fit the dynamics?
	What if we go too far?
	How to stay close to old controller?
	Slide Number 28
	Slide Number 29
	What’s the solution?
	What’s the solution?
	Guided policy search: high-level idea
	Guided policy search: algorithm sketch
	Underlying principle: distillation
	Slide Number 35
	Combining weak policies into a strong policy
	Readings: guided policy search & distillation

