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Recap: what’s the problem?

this is easy (mostly) this is impossible

.




Unsupervised learning of diverse behaviors

What if we want to recover diverse behavior without any reward function at all?
Why?

> earn skills without supervision, then
use them to accomplish goals

>| earn sub-skills to use with
hierarchical reinforcement learning

>Fxplore the space of possible
behaviors




An Example Scenario

How can you prepare for an
unknown future goal?

training time: unsupervised



In this lecture...

> Definitions & concepts from information theory

> Learning without a reward function by reaching goals

> A state distribution-matching formulation of reinforcement learning
> |s coverage of valid states a good exploration objective?

> Beyond state covering: covering the space of skills



In this lecture...

> Definitions & concepts from information theory



Some useful identities

p(X) distribution (e.g., over observations x)

/H(p(X)) — — Lix~op(x) [logp(x)]

entropy — how “broad” p(x) is




Some useful identities

entropy — how “broad” p(x) is

H(p(X)) — — Lix~op(x) [logp(x)]

I(x;y) = DxL(p(x,y)|lp(x)p(y))

— E(X

Y)~p(X,y)

log o

= H(p(y)) — H(p(y[x))

y

> X

high MI: x and y are dependent
Yy

> X

low MI: x and y are independent



Information theoretic quantities in RL

T (S) state marginal distribution of policy 7

qguantifies coverage

H (7‘(‘(8)) state marginal entropy of policy 7

example of mutual information: “empowerment” (Polani et al.)

L(st+1;at) = H(ser1) — H(St+1]at)

can be viewed as quantifying “control authority” in an information-theoretic way




In this lecture...

Learning without a reward function by reaching goals



An Example Scenario

How can you prepare for an
unknown future goal?

training time: unsupervised



Learn without any rewards at all

VAE (Kingma & Welling ’13)

(but there are many other choices)

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. 18
Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. ‘19

12



Learn without any rewards at all

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. 18
Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. ‘19
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Learn without any rewards at all

1. Propose goal: z, ~ p(2), x4 ~ po(z4|24)
2. Attempt to reach goal using 7(a|z,z,), reach
3. Use data to update

4. Use data to update pg(x4|24), qs(24|74)

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. 18
Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. ‘19

q6(2]9) ¢

0 po(z|2)

14



How do we get diverse goals?

Skew ;' i Fit
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Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. 18
Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. ‘19



How do we get diverse goals?

/;> 1. Propose goal: z, ~ p(2), x4 ~ po(z4|24) 3

2. Attempt to reach goal using 7(a|z, z,), reach@

3. Use data to update 7

p(z)
" 4. Use data to update pg(z4]24), qp(24|24)
standard MLE: 0, ¢ <— argmaxy 4 E[logp(Z)]
weighted MLE: 0, ¢ <— argmaxg, » E[w(Z)logp(T)] as(2]9) ¢ [I 0 po(x|z)

\

w() = po(2)®
key result: for any a € [—1,0), entropy H(pg(x)) increases!

Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. 18
Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. ‘19
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How do we get diverse goals?

what does RL do?
7(alS, G) trained to reach goal G

what is the objective?

H(p(G))—H(p(G|S
max H(p(G))=H(p(G|9)) as m gets better, final state S gets close to G

/ that means p(G|S) becomes more deterministic!
goals get higher
entropy due to Skew-Fit / \
= -\
w(x) = T
(Z) = po(T) goal final state
a € [—1,0)
Skew 5 Fit :
T T
Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. 18 T

Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. ‘19



How do we get diverse goals?

what is the objective?

max H(p(G))-H(p(G]S)) = max Z(S; G)

maximizing mutual information between S and G leads to
good exploration (state coverage) — H(p(G))
effective goal reaching — H(p(G|S))

Skew = Fit
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Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. 18
Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. ‘19



Reinforcement learning with
imagined goals

Desired Goals
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Nair*, Pong*, Bahl, Dalal, Lin, L. Visual Reinforcement Learning with Imagined Goals. 18
Dalal*, Pong*, Lin*, Nair, Bahl, Levine. Skew-Fit: State-Covering Self-Supervised Reinforcement Learning. ‘19



In this lecture...

A state distribution-matching formulation of reinforcement learning



Aside: exploration with intrinsic motivation

4 common method for exploration:

incentivize policy m(a|s) to explore diverse states
...before seeing any reward

reward visiting novel states

v

if a state is visited often, it is not nowvel

= add an exploration bonus to reward: 7(s) = r(s) — log p,(s)

f

state density under 7(als)
1. update w(als) to maximize F,[F(s)]

2. update p;(s) to fit state marginal



Can we use this for state marginal matching?

the state marginal matching problem: learn m(a|s) so as to minimze Dky,(px(s)|[p*(s))
idea: can we use intrinsic motivation? [

’f(S) _ logp*(s) — log px (S) target state density

this does not perform marginal matching! (

1. learn 7*(als) to maximize E,[7"(s)]

2 —npdatep{sto-fit-state-mareinal-

2. update p,«x(s) to fit all states seen so far

I
>

3. return 7*(als) = 3, 7% (as) special case: logp*(s) = C' = uniform target
Dxr(px(s)[|U(s)) = H(px(s))

this does perform marginal matching!
pr(s) = p*(s) is Nash equilibrium of two player game between 7% and p._«

Lee*, Eysenbach*, Parisotto*, Xing, Levine, Salakhutdinov. Efficient Exploration via State Marginal Matching
See also: Hazan, Kakade, Singh, Van Soest. Provably Efficient Maximum Entropy Exploration



State marginal matching for exploration

the state marginal matching problem: learn mw(als) so as to minimze Dxr,(px(s)|[p*(s))

mmm SAC mmm Qurs,N=3 mmm Qurs,N=10
mss Qurs,N=1 = Ours,N=5
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7

much better coverage! MaxEnt on actions

variants of SMM

Lee*, Eysenbach*, Parisotto*, Xing, Levine, Salakhutdinov. Efficient Exploration via State Marginal Matching
See also: Hazan, Kakade, Singh, Van Soest. Provably Efficient Maximum Entropy Exploration



In this lecture...

Is coverage of valid states a good exploration objective?



s state entropy really a good objective?

Skew-Fit: max H(p(G))—H(p(G|S)) = maxZ(S;G) —
more or less the same thing

SMM (special case where p*(s) = C): max H(p.(S5)) —

When is this a good idea?

“Eysenbach’s Theorem” (not really what it’s called)

(follows trivially from classic maximum entropy modeling)
at test time, an adversary will choose the worst goal G
which goal distribution should you use for training?

answer: choose p(G) = argmax, H(p(G))

See also: Hazan, Kakade, Singh, Van Soest. Provably Efficient Maximum Entropy Exploration

Gupta, Eysenbach, Finn, Levine. Unsupervised Meta-Learning for Reinforcement Learning



In this lecture...

Beyond state covering: covering the space of skills



Learning diverse skills

m(als, 2)

task index 7r(a|s,0)

w(als, 1) .| 2

Reaching diverse goals is not the same as performing diverse tasks

not all behaviors can be captured by goal-reaching

Intuition: different skills should visit different state-space regions

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

o4 f

m(als,0)




Diversity-promoting reward function

W(&‘S, Z) = arg mgxz Es~7r(s|z) [’I“(S7 Z)]

: T

reward states that are unlikely for other 2z’ # z

r(s, z) = log p(z]s)

Environment }

Action State “ﬁ[ Discriminator(D) ]

m i Policy(Agent) ]e
A y
: Skill (z) <> Predict Skill

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.




Examples of learned tasks

Cheetah

Ant

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

Mountain car



A connection to mutual information
W(&‘S, Z) = arg maXZ Es~7r(s|z) [’I“(S7 Z)]
r(s, z) = log p(z|s)

I[(z,8) = H(z) — H(z|s)

/ \

maximized by using uniform prior p(z) minimized by maximizing log p(z|s)

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

See also: Gregor et al. Variational Intrinsic Control. 2016
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