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So far...

e Forward transfer: source domain to target domain
* Diversity is good! The more varied the training, the more likely transfer is to
succeed
e Multi-task learning: even more variety
* No longer training on the same kind of task
e But more variety = more likely to succeed at transfer

 How do we represent transfer knowledge?
 Model (as in model-based RL): rules of physics are conserved across tasks
e Policies — requires finetuning, but closer to what we want to accomplish
e What about learning methods?



What is meta-learning?

e If you've learned 100 tasks already, can you
figure out how to learn more efficiently?
 Now having multiple tasks is a huge advantage!

* Meta-learning = learning to learn

* |n practice, very closely related to multi-task
learning

 Many formulations
* Learning an optimizer
e Learning an RNN that ingests experience
* Learning a representation
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Why is meta-learning a good idea?

e Deep reinforcement learning, especially model-free, requires a
huge number of samples

* If we can meta-learn a faster reinforcement learner, we can learn
new tasks efficiently!

 What can a meta-learned learner do differently?
e Explore more intelligently
e Avoid trying actions that are know to be useless
e Acquire the right features more quickly



Meta-learning with supervised learning

training data test set
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Meta-learning with supervised learning

training data test set
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meta-training

meta-testing

Ytest «— test label
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test input

(few shot) training set

supervised learning: f(x) — y

A\

input (e.g., image) output (e.g., label)

supervised meta-learning: f(DY,xz) — y

/

training set

* How to read in training set?
e Many options, RNNs can work
 More on this later



What is being “learned”?

Ytest «— test label
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(few shot) training set

“GGeneric” learning:

0* = arg mgin L£(0,D')

— flearn (Dtr)

supervised meta-learning: f(D",z) — y

“Generic” meta-learning;:

* . ‘ ts
0" = argmemzﬁ(cbupg )

1=1

where ¢; = fo(D:")



What is being “learned”?

“Generic” learning:

0* = arg mgin L(

— flearn (Dtr)

O,Dtr)

“GGeneric” meta-learning:

* : ] ts
0 = argmin S £(6,, DY)

1=1

where ¢; = fo(D}")

meta-learned

RNN hidden .
state weights
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Meta Reinforcement Learning



The meta reinforcement learning problem

“GGeneric” learning: “Generic” meta-learning;:
0* = arg mein L(6,D™) 0* = arg mgin Zl L(¢p;, DS®)

— flearn (Dtr) where gb?, — f@ (Dfr)
Reinforcement learning: Meta-reinforcement learning:
0" = argmax Er, ()[R(7)] 0" = arg max Z} Er, (n|R(7)]

= frRL(M) M={S,AP,r} where ¢; = fo(M;)

\ \

MDP MDP for task i



The meta reinforcement learning problem

Some examples:

0* = arg max > Er, () R(7)]

1=1

where ¢; = fo(M;)

assumption: M; ~ p(M)

meta test-time:

sample Mest ~ p(M), get ¢; = fo(Miest)

{My, ..., My}

\

meta-training MDPs



Contextual policies and meta-learning

0* = arg mga,X; Er, (n]R(7)) > 0* — arg mga}{; E, [R(7T)]
where sz = f@(MZ) 7T9(@t|8t, §1,A1,7T15...,5t—1,0¢t—1, Tt—l)

—

context used to infer whatever we need to solve M;
i.e., z; or ¢; (which are really the same thing)

in meta-RL, the context is inferred from experience from M, mo(at|st, di)

in multi-task RL, the context is typically given \

o

> )
E J ‘;.__L = & -
- )\:“-\:

¢: stack location  ¢: walking direction  ¢: where to hit puck

“context”




Meta-RL with recurrent policies

main question: how to implement fy(M;)?

0* = arg max > Er, () R(7)]

i=1 what should fg(M;) do?
h i = Jo(M;
@re P = Jol ) 1. improve policy with experience from M;
{(817 ai,S2, Tl)v ceey (STJ ar,ST+1, TT)}

2. (new in RL): choose how to interact, i.e. choose a;
meta-RL must also choose how to explore!

meta-learned

rg*ﬁ SRt':,'(ihidden\A weiihts
as before, ¢; = [h;, 0]

> > —>h2—>

T I I

piCk CLt ~ W@(at|8t) (81,61,82,?"]_) (82,a2,83,?’2) (53133:349T3)
—

use (st, at, St+1,7¢) to improve mp mo: (als)

& —» —



Meta-RL with recurrent policies

n 0*
a
6" = argmax ) Er, (r)[R(7) r ﬁ T
i=1
> > — hz_’
where ¢; = fo(M;) | | ! i
(s1,a1,82,71) (82,az2,83,72) (83,03, 54,73) S
\_’—'
s0... we just train an RNN policy? T, (als)

yes!
crucially, RNN hidden state is not reset between episodes!

T_’_ _L;T_:I o
~55 +0 +0 I?fo-j




Why recurrent policies learn to explore

F@*ﬁ
b > —>hz—>

T I T

(sl,al, Sa, T]_) (82, a2, 83, ?’2) (SSa a3, 54, TS)

1. improve policy with experience from M;

{(817 ay, SQ,Tl), KL (STJ ar, 8T+1JTT)}

n —p —> O

2. (new in RL): choose how to interact, i.e. choose a;

- meta-RL must also choose how to explore!
Te. (als
v:(als) .
0* = argmax F,, r(s¢, a,t)]
o t=0
s e — T s optimizing total reward over
e - y the entire meta-episode with
—_— — RNN policy automatically
episode learns to explore!
‘-H- L » -

meta-episode



Meta-RL with recurrent policies

n 0
0* = arg max Z Er, ()| R(7)]

|
l

\ 4
A

> —>h2—>

where ¢; = fo(M;) | | I

(81,01, 82,71) (82,az,s3,72) (53,03,54,73)

(a) Good behavior, Ist (b) Good behavior, 2nd (¢) Bad behavior, Ist (d) Bad behavior, 2nd

(C} ({_:I } [E ) - episode episode episode episode
(d) Labryinth I-maze (b) Hlustrative Episode
Heess, Hunt, Lillicrap, Silver Memory-based control with Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2:
recurrent neural networks. 2015. Blundell, Kumaran, Botvinick. Learning to Reinforcement Fast Reinforcement Learning via Slow Reinforcement

Learning. 2016. Learning. 2016.



Architectures for meta-RL

standard RNN (LSTM) architecture

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2:

Wi TR MDHEP“M“ Fast Reinforcement Learning via Slow Reinforcement
— _—_— Learning. 2016.
Tnal 1 Tral 2

Reinforcement Learning |I i } T !Il |: }
dy3 dyp App Actions 5, -r'.l._. 5,11 — —= 2 4 7 {:l :
o _ # - 1 gs(zlc)
‘6 © O o ; : 2 , £ o \
i i attention + temporal convolution 2 i = X y 9
i~ & ¢ ol ' 1
65 b (s,a,8, r)v—__@ |~Tolzlen)
Lo L |1
io o o o
9 _$ -2 9 Mishra, Rohaninejad, Chen, Abbeel. A Simple arallel permutation-invariant context encoder
10 0~ 0 o Neural Attentive Meta-Learner. P P u
P P
L
(f;,t_3 Cilt.z g,l_] gt ——— Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-

B B Reinforcement learning via Probabilistic Context Variables.



Gradient-Based Meta-Learning



Back to representations...

i IMAGENET
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is pretraining a type of meta-learning? better
features = faster learning of new task!



Meta-RL as an optimization problem

0* = arg mgxz E’”% () [R(T)] 1. improve policy with experience from M,
=1 {(Sl,Ql,SQ,Tl),...,(ST,CET,ST_|_1,?"T)}

where ¢; = f@(Mi)

what if fy(M;) is itself an RL algorithm? standard RL:
fo(M;) = 0+ aVJ;(6) 0" = argmax Ex, () [R(7)]
, { — _
requires interacting with M; J(0)
to estimate VoE ., |R(T)] OF L 0, 4+ aVyr J(6%)

this is model-agnostic meta-learning (MAML) for RL!

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.



MAML for RL in pictures
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What did we just do??

supervised learning: f(z) — y
supervised meta-learning: f(D"Y,z) — y

model-agnostic meta-learning: fy AML(D“, Tr) —y

Just another computation graph...
fvamn (DY, z) = for () : : :
Can implement with any autodiff
0=0-a Y Vel(fs(z),y) package (e.g., TensorFlow)

(z,y)€D

But has favorable inductive bias...



MAMVL for RL in videos

after 1 gradient step  after 1 gradient step
after MAML training  (forward reward) (backward reward)
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More on MAML/gradient-based meta-learning for
RL

MAML meta-policy gradient estimators:

* Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.

* Foerster, Farquhar, Al-Shedivat, Rocktaschel, Xing, Whiteson. DIiCE: The Infinitely
Differentiable Monte Carlo Estimator.

* Rothfuss, Lee, Clavera, Asfour, Abbeel. ProMP: Proximal Meta-Policy Search.

Improving exploration:

* Gupta, Mendonca, Liu, Abbeel, Levine. Meta-Reinforcement Learning of Structured
Exploration Strategies.

e Stadie*, Yang*, Houthooft, Chen, Duan, Wu, Abbeel, Sutskever. Some Considerations on
Learning to Explore via Meta-Reinforcement Learning.

Hybrid algorithms (not necessarily gradient-based):
* Houthooft, Chen, Isola, Stadie, Wolski, Ho, Abbeel. Evolved Policy Gradients.

* Fernando, Sygnowski, Osindero, Wang, Schaul, Teplyashin, Sprechmann, Pirtzel, Rusu. Meta-
Learning by the Baldwin Effect.



Meta-RL as a POMDP



Meta-RL as... partially observed RL?

M={S,ADO,PRE r}

O — observation space observations o € O (discrete or continuous)

£ — emission probability p(o¢|s)
policy must act on observations o;!

ey @ & @ e

typically requires either:

S1 52 @ explicit state estimation, i.e. to estimate p(s¢|o1.¢)

policies with memory



I\/Ietag—RL as... partially observed RL?

——
mo(als, z) this is just a POMDP!
\ before: M ={S, A, P,r}
encapsulates information policy - - -
needs to solve current task now: M = {87 A,O0,P,¢E, T}

~

learning a task = inferring z

~

SxZ §=(s,2)
S

0= 3§

S
|

from context (s1,a1,S2,71), (82, a2, 83,72), ...

key idea: solving the POMDP M is equivalent to meta-learning!



Meta-RL as... partially observed RL?

mo(als, z) this is just a POMDP!
\ typically requires either:
encapsulates information policy — . _ _ '
needs to solve current task @hclt state estimation, i.e. to estimate p(st@

policies with memory
learning a task = inferring z

need to estimate v(z¢|S71.4. @1.4.77.
from context (s1,a1,S2,71), (82, a2, 83,72), ... P(2e|S1:4, Q125 7121

exploring via posterior sampling with latent context this is not optimal!  but it’s pretty good,
why? both in theory and in

some approximate posterior practice!

1. sample z ~ ﬁ(zt|31:ta a1:t,7”1:t) (e.g., variational)

2. act according to mg(als, z) to collect more data

N

act as though z was correct!

See, e.g. Russo, Roy. Learning to Optimize via Posterior Sampling.



Variational inference for meta-RL

olicy: mp(as|St. 2
P y 9( t| ty t) ZtNqu(zt|31,a1,7“1,...,St,at,m)

inference network: qg(2¢|s1,a1,71,..., 8¢, as, 7t)

(6, 6) = argmax " Burgy roory [Ri(7) = Diceale] ) Ip(2)

S N\

maximize post-update reward stay close to prior @
(same as standard meta-RL)

conceptually very similar to RNN meta-RL, but with stochastic z

stochastic z enables exploration via posterior sampling

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via
Probabilistic Context Variables. ICML 2019.



Specific instantiation: PEARL

policy: mg(a¢|s¢, 2¢) (s,a,s’,7); —»[

]——lIJ¢(z|Cl)1 g6 (zc)

: X— A
|- wzlen) ]

inference network: qu(z¢|s1,a1,7r1,..., 8¢, a, 1) —>

¢
¢

(Sa a, S’a T)N—'[

(0, ¢) = arg max % > Eergyrmmo[Ri(T) — Dxw(a(z] . ..)|[p(2))]

i=1
[ Half-Cheetah-Fwd-Back Half-Cheetah-Vel Humanoid-Direc-2D
] ------------- a -
perform maximization using soft actor-critic (SAC), /.' JN‘"’ o L
: . P 200 -~
state-of-the-art off-policy RL algorithm J s

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via
Probabilistic Context Variables. ICML 2019.



MELD: Model-Based Meta-RL with Images

meta-learning can be viewed as a (kind of) POMDP

Episode 1: Explore Reward Prediction Mean  Reward Prediction Variance

20§ m
| Dense

Reward
151 T Region |

1.0
regular POMDP [ a0
| “:.,. —— reconst i
Eli 10 20 3‘0 tjll 1‘0 2‘0 3‘0
Timestep Timestep

Using this latent variable model generalizes meta-learning and POMDPs
Turns out to work very well as a meta-learning algorithm!

et hae — — e — Rl ol

4

Epusodei Episode 2 3 Episode 1 Episode 2

Reward given when nsorred into corroct hole Ax normal speer}wf

Zhao, Nagabandi, Rakelly, Finn, Levine. MELD: Meta-Reinforcement Learning from Images via Latent State Models. 20



References on meta-RL, inference, and POMDPs

e Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy
Meta-Reinforcement learning via Probabilistic Context
Variables. ICML 2019.

e Zintgraf, Igl, Shiarlis, Mahajan, Hofmann, Whiteson.
Variational Task Embeddings for Fast Adaptation in Deep
Reinforcement Learning.

e Humplik, Galashov, Hasenclever, Ortega, Teh, Heess. Meta
reinforcement learning as task inference.



The three perspectives on meta-RL

Perspective 1: just RNN it

r Q*W

ot T

(81,61,1, S9, ?“1) (SQ, a2, 83, ?’2) (53: as, 54, TS)

hz'_’

a
S
Perspective 2: bi-level optimization

fg(M@) =0 -+ OéVgJi(Q)
MAML for RL

Perspective 3: it’s an inference problem!

ﬂ-Q(GJ'S?’Z) Zt Np(zt|31:taa1:ta(r1:t)

everything needed to solve task

0* = arg max > Er, () R(7)]

1=1

where ¢; = fo(M;)

what should fy(M;) do?

1. improve policy with experience from M,

{(817 ai, SQJT].)) SR (STa ar, ST+1,?"T)}

2. (new in RL): choose how to interact, i.e. choose a;

meta-RL must also choose how to explore!



The three perspectives on meta-RL

Perspective 1: just RNN it

r Q*W

T T T

(s1,a1,52,71) (52,02, 83,72) (s3,03,54,73)

h,,;—>

wn —> — 2

Perspective 2: bi-level optimization
fe (MZ) = 9 + OéVgJZ'(Q)
MAML for RL

Perspective 3: it’s an inference problem!

7T9(C’J|Saz) 2t ~ p(2¢|S1:4, Q11457121

everything needed to solve task

+ conceptually simple
+ relatively easy to apply
- vulnerable to meta-overfitting

- challenging to optimize in practice

+ good extrapolation (“consistent”)
+ conceptually elegant

- complex, requires many samples

+ simple, effective exploration via posterior sampling
+ elegant reduction to solving a special POMDP
- vulnerable to meta-overfitting

- challenging to optimize in practice



But they're not that different!

Perspective 1: just RNN it

I

hn —p —

just perspective 1, > > — h,;—
but with stochastic T T T
hidden variables! (s1,01,52,71) (82,a0,53,72) (83,03, 54.73)
e, 0 =12 just a particular
Perspective 2: bi-level optimization architecture choice
for these

fo(M;) =0+ aVyJ;(0)
MAML for RL

Perspective 3: it’s an inference problem!

ﬂ—Q(GJ'S?’Z) Zt Np(zt|31:taa1:t7(r1:t)

everything needed to solve task



Model-Based Meta-RL



Model-based meta-RL

0* = arg max Erory [R(T)]
short sketch of model-based RL:

1. collect data B
2. use B to get p(sia1]st,ar)

3. use p(si11]st,ar) to plan a

improve my...
* . . . . why?
...directly, via policy gradients
. _ ) + requires much less data vs model-free
...via value function or Q-function

+ a bit different due to model
@plicitly, via model ﬁ(st+1|st,aD

+ can adapt extremely quickly!

pick a; ~ mwg(a¢|st)



MOde‘_based mEta_RL a few episodes

broken leg non-adaptive method: /
1. collect data B = {s;,a;, s;}
2. train dy(s,a) — s’ on B

>

example task: ant wit

3. use dy to optimize actions

t+k
Aty ...,0t ) = arg max E r(sr,ar)
Atyeens A4k —t

s.t. Si11 = dg(s¢, ay)

adaptive method:

nice idea, but how much 1. take one step, get {s,a,s’}

can we really adapt in just — 9 0 12
. 04— 0—aVy|dy(s,a) —s
one (or a few) step(s)? olldo(s,a) |

3. use dp to optimize ay,...,as 1, take a;



Model-based meta-RL

meta-training time meta-test time
Dimetactrain = { (D, D), ..., (D, D)} adaptive method:
o o 1. take one step, get {s,a, s’}
D = {(2},93), ..., (xh, v
) {( 1791) a( kayk)} 2. 9(—9—0&V9||d9(8,a)—8’||2
i i 3. use dy to optimize ay,. .. take
D = {(},91), - (2}, )} use dp to optimize ar,..., ar, take
T < (s,a) y 8 assumes past experience has
many different dynamics
generate each D", Dis: /
sample subsequence s, a¢, ..., Stok, Qr+k, St+k+1 [rom past experience
D" < {(s¢,a4,5 oo (Strk—1,Qt4k—1,8
{( b Hl)j ( k=1 Bkl t+k)} ™~ could choose k = 1, butk>1
Dts < {(St—l—ka A1, St—i—k—i—l)} works better (e.g., k = 5)
/,J Dtr

A/\/\/_\



Model-based meta-RL

nt with broken leg meta-test time

Q

example task:

adaptive method:

3

.l
'

1. take one step, get {s,a, s’}
2. 0« 0 — aVyllde(s,a) — s'||?
3. use dy to optimize ay,...,a;1k, take a;

Real-world
e & . results

See also:

Saemundsson, Hofmann, Deisenroth. Meta-Reinforcement
Learning with Latent Variable Gaussian Processes.
Nagabandi, Finn, Levine. Deep Online Learning via Meta-
Learning: Continual Adaptation for Model-Based RL.

Nagabandi*, Clavera*, Liu, Fearing, Abbeel, Levine, Finn.
Learning to Adapt in Dynamic, Real-World Environments
Through Meta-Reinforcement Learning. ICLR 20109.



Model-Based Meta-RL for Quadrotor Control

€—— (Quadcopter

Belkhale, Li, Kahn, McAllister, Calandra, Le

o
=%

vine. Model-Based Meta-Reinforcement Learning for Flight with Suspended Payloads. ‘20



Meta-RL and emergent phenomena

meta-RL gives rise to model-free meta-RL gives rise to
episodic learning model-based adaptation
L.rDN.a. . DND.". . Stage 1 Stage 7

road \_\‘ A‘ & S'l =
% ic m l‘!- = r' -"",, -
il W PR h - - ) “ilt “ss’
;fl[ﬂt_llﬂﬁj‘l‘rtmiﬁ m mm m mm m mm Az i & ‘I Sz % o 5 : ..’-'_
sk sk RLleI‘{‘l‘:;lﬁ(jl' Task 1 TREE
Ritter, Wang, Kurth-Nelson, Jayakumar, Blundell, Pascanu, Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo,
Botvinick. Been There, Done That: Meta-Learning with Hassabis, Botvinick. Prefrontal Cortex as a Meta-
Episodic Recall. Reinforcement Learning System.

Humans and animals seemingly learn behaviors in a variety of ways:
> Highly efficient but (apparently) model-free RL

> Episodic recall

> Model-based RL

> Causal inference

> eftc.

Perhaps each of these is a separate “algorithm” in the brain

But maybe these are all emergent phenomena resulting from meta-RL?

meta-RL gives rise to
causal reasoning (!)

P p(A)

A A
/ g \ g—-!:' \
E j— H E —{ H
p(E|A) p(H|AE) d(E—e) p(H|AE)
Dasgupta, Wang, Chiappa, Mitrovic, Ortega, Raposo,

Hughes, Battaglia, Botvinick, Kurth-Nelson. Causal
Reasoning from Meta-Reinforcement Learning.
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