IASD M2 at Paris Dauphine

Deep Reinforcement Learning

4: Introduction to Reinforcement Learning

Eric Benhamou David Saltiel

PSL>* Pauphine i 2

: . UNIVERSITE PARIS AMINES. i
UNIVERSITE PARIS _

Acknowledgement

Most of the materials of this course is based on the seminal course of Sergey Levine CS285

Advances in :
Reinforcement Learning

https://rail.eecs.berkeley.edu/deeprlcourse/

Definitions

Terminology & notation

S; — state
0; — observation mg(as|o;) — policy
a; — action 7o (az|sy) — policy (fully observed)

Markov property
independent of s;_1

Imitation Learning

supervised
data learning

training 7o (az|oy)

Images: Bojarski et al. ‘16, NVIDIA

Reward functions

\ \
\ 13 \
| -‘-‘: 13 dense Jense 'l;|
256 i

Max
pooling

4056 4096

which action is better or worse? s, a, fr(s,a), and p(SI|S’ a) define
r(s,a): reward function Markov decision process

tells us which states and actions are better

low reward

Definitions

Markov chain

M={S,T}

S — state space states s € S (discrete or continuous)

T — transition operator p(Ser1|st) Andrey Markov
why “operator”? let pi; = p(s¢ = 1) {i; is a vector of probabilities

let 7:,j = p(se41 = i[st = j) then fipy1 =T

Markov property
independent of s;_1

(=)
P(St+1 |St)

(®
N
=
L2
+
o
4 v
G
<

Definitions

Markov decision process M={S,AT,r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

7 — transition operator (now a tensor!)

let pe; = p(se =7)

Js

let 'E,j,k = p(8t+1 — i’3t =J,a; = k)

Definitions

Markov decision process M={S,AT,r}
S — state space states s € § (discrete or continuous)
A — action space actions a € A (discrete or continuous)

Richard Bellman

T — transition operator (now a tensor!)

r — reward function r:SxA—R

r(s¢, a¢) — reward

Definitions

partially observed Markov decision process M={S5,A0,T,E r}
S — state space states s € § (discrete or continuous)

A — action space actions a € A (discrete or continuous)

O — observation space observations o € O (discrete or continuous)

T — transition operator (like before)
£ — emission probability p(o¢|s;)

r — reward function r:SxA—R

2 . o

The goal of reinforcement learning

we’ll come back to partially observed later

: . .
\ A \
\\ 3 \\ \13 \\ \13 \
3 - B i | .{
3 (s 3\ =t :.-\ 13 Se’| |dens » a #
N -
38 \ 384 h
Max
pooling 4096 4096 \

y,

T
po(s1.a1,...,s7,ar) = p(s) H (a¢|se)p(sit1]se, ay)
\ ' t—1

po(T)

0* = arg max Erpo(r) [Zt: 7(S¢, at)]

The goal of reinforcement learning

b \\ \e7 \ b \ [
\ \\ X \.\, 3 \\\ \13 \\ \\ 13 \\
i T=% s 33 :‘ \):3 N ‘"‘f'\ 13 dense’| (dens .[J e e
\\ z A 384 \ 3;4 ’ N 256 \
\ 256 e :dl“,‘q 40%6 4096
i pooling
Iy’ (S) /
(s]s, a)

y,

The goal of reinforcement learning

\
o5\ \
N X \27 \ N \ 1
A\ N
\ X \ Y [\ W W\ \
. 3.] = - !
7 ? - 13 N - - 13 N 13 dense | [dens * a #
\ -\
\ 3 \ 3
\ \ 384 \\ 384 N\ 256
\\ 256 Max "
max " Dpoaling 4096 4096
I ; /

y,

T
po(si,a1,...,sr,ar) =p(s1) | | mo(arls:)p(sisilse, a)

po(T) Markov chain on (s, a)

p((St+1,as+1)|(st, ar)) = R i
©)

p(St—l—l |St, at)ﬂ'e(at—H |St—{—1)
©

(&
©Xo)

Finite horizon case: state-action marginal

0* = arg mgl,x Erpo(r) [Z r(s¢, at)]

t
T

= arg mgxxz E(s, a,)~po(si,a,) |7 (8¢, az)] po(s¢,ay) state-action marginal
t=1

p((Se+1,a¢r1)[(se,a4)) =

p(St+1 |St, at)’]TG(at—l—l |St+1)
M) M)
&)

© 0O
®

Infinite horizon case: stationary distribution

T
0* = arg max ; E(s, a,)~po(st,a0) [7(St, at)]

what if T = o0?
does p(st, a;) converge to a stationary distribution?

w="Tu (T —Dp=0 i = pg(s,a) stationary distribution

N\ / p is eigenvector of 7 with eigenvalue 1!
stationary = the

same beforeand (always exists under some regularity conditions)
after transition

&

——

state-action transition operator

(St41) _ 7—(St) St4+k _ Tk St
ag+1 at At+k ay

© ¢

® ©®

Infinite horizon case: stationary distribution

1 T

0" = argmax — 2_) Es, a0)~po(se.a0) [T (5t:21)] = E(s.a)mpo(s.a)[7(s:2)]
(in the limit as T — 00)

what if T = o0?
does p(st, a;) converge to a stationary distribution?

w="Tu (T —Dp=0 i = pg(s,a) stationary distribution
\ / (1 is eigenvector of 7 with eigenvalue 1!

stationary = the
same beforeand (always exists under some regularity conditions)

after transition

——

state-action transition operator

(St41) _ 7—(St) St4+k _ Tk St
a1 ag A4k at

© ¢

® ©®

Expectations and stochastic systems

T
0" = arg max B(s a)p, (s.2)[1(5,2)] 0" = arg max > Es, a0)mpo(se,a0)[7(St,)]
t=1
infinite horizon case finite horizon case

In RL, we almost always care aboutexpectations

r(x) — not smooth
71'9(3. — fall) =0
E.,|r(x)] — smooth in 0!

Algorithms

The anatomy of a reinforcement learningalgorithm

fit a model/
estimate the return

generate samples
(i.e. run the policy)
; improve the policy

A simple example

fit a model/
estimate the return

generate samples
(i.e. run the policy)

improve the policy EN/RENERAVINIC)

Another example: RL by backpro

fit a model/

estimate the return learn f@” such that s;4q1 ~ qu(St, at)

St+1
generate samples

(i.e. run the policy)

backprop through f4 and r to

improve the policy frain 7 (St) _a,

Which parts are expensive?

A PAEES 9o

trivial, fast

fit a model/
estimate the return

learn St41 ~ f¢(St, at)

expensive

real robot/car/power\
grid/whatever:

1x real time, until we
invent time travel

/ generate samples
(i.e. run the policy)

MuloCo simulator:
up to 10000x real time

0« 0+ aVeJ(0)

improve the policy

backprop through f4 and r to
train mg(s;) = ay

Value Functions

How do we deal with all theseexpectations?

T
B po(r) {Z r(ste, at)}

t=1

ESlNP(Sl) [Ealw’”(aﬂsl) [T(Shal) + ESQNP(S2|51331) [Eazfv?r(aQISQ) [T(S% a2) + "'|52] |Slv al} |SlH

l J
I

what if we knew this part?

Q(Slaal) — T(Slaal) + ESQNp(SQ|S]_,al) [Eagrwr(a2|52) [T(SQJ 32) + ...|SQ] |Sla al}

T
ETNP@(T) [ZT(Staat)] - ESlNP(Sl) [E31NW(31|51) [Q(Sl’a1)|sl]:|

N

easy to modify mg(ay|s1) if Q(s1,a1) is known!

example: w(ai|s;) = 1 if a; = argmax,, Q(s1,a;)

Definition: Q-function

Q7 (s¢,a) = Zg::t Er, [r(sy,ay)|st, at]: total reward from taking a; in s;

Definrtion: value function

VT™(st) = ZtT,:t Er, [r(s¢,ap)|st]: total reward from s,

v (St) — EatNW(aHSt)[QW (St’ at)]

Eg, ~p(s1)[V™(s1)] is the RL objective!

Using Q-functions and value functions

Idea 1: if we have policy 7, and we know Q™ (s, a), then we can improve T:
set m'(als) = 1 if a = arg max, Q™ (s, a)
this policy is at least as good as 7 (and probably better)!

and it doesn’t matter what 7 is

Idea 2: compute gradient to increase probability of good actions a:
if Q™ (s,a) > V7(s), then a is better than average (recall that V7 (s) = F[Q™(s,a)] under w(als))

modify 7(als) to increase probability of a if Q™ (s,a) > V7 (s)

These ideas are very important in RL; we’ll revisit them again and again!

The anatomy of a reinforcement learningalgorithm

this often uses Q-

fit a model/ «— functions or value
estimate the return functions

generate samples
(i.e. run the policy)
; improve the policy

Types of Algorithms

Types of RL algorithms

0* = arg max B po(r) [Zt: (s, at)]

* Policy gradients: directly differentiate the above objective

e Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

e Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

e Model-based RL: estimate the transition model, and then...
e Use it for planning (no explicit policy)
e Use it to improve a policy
e Something else

Model-based RL algorithms

fit a model/

: learn p(s;11(st, a
estimate the return p(st+1lst, at)

generate samples
(i.e. run the policy)

improve the policy [ERC IR

Model-based RL algorithms

improve the policy [P EONaTe e

1. Just use the model to plan (no policy)
* Trajectory optimization/optimal control (primarily in continuous spaces) —
essentially backpropagation to optimize over actions

e Discrete planning in discrete action spaces — e.g., Monte Carlo tree search

1. Backpropagate gradients into the policy
e Requires some tricks to make it work

2. Use the model to learn a value function
* Dynamic programming
e Generate simulated experience for model-free learner

Value function based algorithms

fit a model/
ﬁ fit V(s) or Q(s, a)
)

generate samples
(i.e. run the policy)

[JEERLERLIIEAN set 7(s) = arg max, (s, a)

Direct policy gradients

fit a model/ evaluate returns
estimate the return [FAEEC I CPF: VY

generate samples
(i.e. run the policy)

improve the policy [RSE/AE QVBE[Zt T(St’ at)]

Actor-critic: value functions + policygradients

fit a model/
ﬁ fit V(s) or Q(s,a)

generate samples
(i.e. run the policy)
; improve the policy (RS vAYOlla CHPN

Tradeoftfs Between Algorithms

Why so many RLalgorithms?

e Different tradeoffs
e Sample efficiency

* Stability & ease of use
e Different assumptions ‘ =

e Stochastic or deterministic? generate

samples (i.e.

e Continuous or discrete? run the policy)

e Episodic or infinite horizon? ‘ improve the

policy

 Different things are easy or hard in
different settings
e Easier to represent the policy?
e Easier to represent the model?

Comparison: sample efficiency

e Sample efficiency = how many samples
do we need to get a good policy?

* Most important question: is the
algorithm off policy?

e Off policy: able to improve the policy
without generating new samples from that
policy

e On policy: each time the policy is changed,
even a little bit, we need to generate new
samples

fit a model/
estimate return
generate
samples (i.e.
run the policy)
improve the
policy

0« 0+ aVeE|) , r(st,ar)]

/

just one gradient step

Comparison: sample efficiency

off-policy « » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Whywould we use a less efficient algorithm?
Wall clock time Is not the same as efficiency!

Comparison: stability and ease ofuse

e Does it converge?
* And if it converges, to what?
 And does it converge every time?

Why is any of this even a question???

e Supervised learning: almost always gradient descent

* Reinforcement learning: often not gradient descent
e Q-learning: fixed point iteration
e Model-based RL: model is not optimized for expected reward

e Policy gradient: is gradient descent, but also often the least
efficient!

Comparison: stability and ease ofuse

 Value function fitting
e At best, minimizes error of fit (“Bellman error”)
* Not the same as expected reward
e At worst, doesn’t optimize anything

e Many popular deep RL value fitting algorithms are not guaranteed to
converge to anything in the nonlinear case

* Model-based RL

* Model minimizes error of fit
e This will converge

 No guarantee that better model = better policy
e Policy gradient

e The only one that actually performs gradient descent (ascent) on
the true objective

Comparison: assumptions

e Common assumption #1: full observability

e Generally assumed by value function fitting
methods

e Can be mitigated by adding recurrence

e Common assumption #2: episodic learning
e Often assumed by pure policy gradient methods
e Assumed by some model-based RL methods

e Common assumption #3: continuity or
smoothness
e Assumed by some continuous value function
learning methods

e Often assumed by some model-based RL
methods

Examples of Algorithms

Examples of specific algorithms

e Value function fitting methods
* Q-learning, DON
e Temporal difference learning
 Fitted value iteration

e Policy gradient methods ;
e REINFORCE We’ll learn about

e Natural policy gradient most of these in the

e Trust region policy optimization
n . next few weeks!
e Actor-critic algorithms

e Asynchronous advantage actor-critic (A3C)
e Soft actor-critic (SAC)

 Model-based RL algorithms
* Dyna
e Guided policy search

Example 1: Atari games with Q-functions

* Playing Atari with deep
reinforcement learning,
Mnih et al. ‘13

e Q-learning with
convolutional neural
networks

Example 2: robots and model-basedRL

* End-to-end training of
deep visuomotor
policies, L.* , Finn* '16

e Guided policy search
(model-based RL) for
image-based robotic
manipulation

Various Experiments
Including the policy input

Example 3: walking with policy gradients

lteration O

e High-dimensional
continuous control with
generalized advantage
estimation, Schulman et
al. ‘16

e Trust region policy
optimization with value
function approximation

Example 4: robotic grasping with Q-functions

e QT-Opt, Kalashnikov et
al. ‘18

e Q-learning from images
for real-world robotic

grasping

	Slide Number 1
	Acknowledgement
	Definitions
	Terminology & notation
	Imitation Learning
	Reward functions
	Definitions
	Definitions
	Definitions
	Definitions
	Slide Number 11
	The goal of reinforcement learning
	The goal of reinforcement learning
	Finite horizon case: state-action marginal
	Infinite horizon case: stationary distribution
	Infinite horizon case: stationary distribution
	Expectations and stochastic systems
	Algorithms
	The anatomy of a reinforcement learning algorithm
	A simple example
	Another example: RL by backprop
	Which parts are expensive?
	Value Functions
	How do we deal with all these expectations?
	Slide Number 25
	Using Q-functions and value functions
	The anatomy of a reinforcement learning algorithm
	Types of Algorithms
	Types of RL algorithms
	Model-based RL algorithms
	Model-based RL algorithms
	Value function based algorithms
	Direct policy gradients
	Actor-critic: value functions + policy gradients
	Tradeoffs Between Algorithms
	Why so many RL algorithms?
	Comparison: sample efficiency
	Comparison: sample efficiency
	Comparison: stability and ease of use
	Comparison: stability and ease of use
	Comparison: assumptions
	Examples of Algorithms
	Examples of specific algorithms
	Example 1: Atari games with Q-functions
	Example 2: robots and model-based RL
	Example 3: walking with policy gradients
	Example 4: robotic grasping with Q-functions

