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Definitions



Terminology & notation

S; — state
0; — observation mg(as|o;) — policy
a; — action 7o (az|sy) — policy (fully observed)

Markov property
independent of s;_1




Imitation Learning

supervised
data learning

training 7o (az|oy)

Images: Bojarski et al. ‘16, NVIDIA



Reward functions
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which action is better or worse? s, a, fr(s,a), and p(SI|S’ a) define
r(s,a): reward function Markov decision process

tells us which states and actions are better

low reward




Definitions

Markov chain

M={S,T}

S — state space states s € S (discrete or continuous)

T — transition operator p(Ser1|st) Andrey Markov
why “operator”? let pi; = p(s¢ = 1) {i; is a vector of probabilities

let 7:,j = p(se41 = i[st = j) then fipy1 =T

Markov property
independent of s;_1
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Definitions

Markov decision process M={S,AT,r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

7 — transition operator (now a tensor!)

let pe; = p(se =7)

Js

let 'E,j,k = p(8t+1 — i’3t =J,a; = k)




Definitions

Markov decision process M={S,AT,r}
S — state space states s € § (discrete or continuous)
A — action space actions a € A (discrete or continuous)

Richard Bellman

T — transition operator (now a tensor!)

r — reward function r:SxA—R

r(s¢, a¢) — reward



Definitions

partially observed Markov decision process M={S5,A0,T,E r}
S — state space states s € § (discrete or continuous)

A — action space actions a € A (discrete or continuous)

O — observation space observations o € O (discrete or continuous)

T — transition operator (like before)
£ — emission probability p(o¢|s;)

r — reward function r:SxA—R

2 . o




The goal of reinforcement learning

we’ll come back to partially observed later
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T
po(s1.a1,...,s7,ar) = p(s) H (a¢|se)p(sit1]se, ay)
\ ' t—1

po(T)

0* = arg max Erpo(r) [Zt: 7(S¢, at)]



The goal of reinforcement learning
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The goal of reinforcement learning
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po(T) Markov chain on (s, a)
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Finite horizon case: state-action marginal

0* = arg mgl,x Erpo(r) [Z r(s¢, at)]

t
T

= arg mgxxz E(s, a,)~po(si,a,) |7 (8¢, az)] po(s¢,ay)  state-action marginal
t=1

p((Se+1,a¢r1)[(se,a4)) =

p(St+1 |St, at)’]TG(at—l—l |St+1)
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Infinite horizon case: stationary distribution

T
0* = arg max ; E(s, a,)~po(st,a0) [7(St, at)]

what if T = o0?
does p(st, a;) converge to a stationary distribution?

w="Tu (T —Dp=0 i = pg(s,a) stationary distribution

N\ / p is eigenvector of 7 with eigenvalue 1!
stationary = the

same beforeand  (always exists under some regularity conditions)
after transition

&

——

state-action transition operator

( St41 ) _ 7—( St ) St4+k _ Tk St
ag+1 at At+k ay
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Infinite horizon case: stationary distribution

1 T

0" = argmax — 2_) Es, a0)~po(se.a0) [T (5t:21)] = E(s.a)mpo(s.a)[7(s:2)]
(in the limit as T — 00)

what if T = o0?
does p(st, a;) converge to a stationary distribution?

w="Tu (T —Dp=0 i = pg(s,a) stationary distribution
\ / (1 is eigenvector of 7 with eigenvalue 1!

stationary = the
same beforeand  (always exists under some regularity conditions)

after transition

——

state-action transition operator

( St41 ) _ 7—( St ) St4+k _ Tk St
a1 ag A4k at
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Expectations and stochastic systems

T
0" = arg max B(s a)p, (s.2)[1(5,2)] 0" = arg max > Es, a0 )mpo(se,a0)[7(St, )]
t=1
infinite horizon case finite horizon case

In RL, we almost always care aboutexpectations

r(x) — not smooth
71'9(3. — fall) =0
E.,|r(x)] — smooth in 0!




Algorithms



The anatomy of a reinforcement learningalgorithm

fit a model/
estimate the return

generate samples
(i.e. run the policy)
; improve the policy



A simple example

fit a model/
estimate the return

generate samples
(i.e. run the policy)

improve the policy EN/RENERAVINIC)



Another example: RL by backpro

fit a model/

estimate the return learn f@” such that s;4q1 ~ qu(St, at)

St+1
generate samples

(i.e. run the policy)

backprop through f4 and r to

improve the policy frain 7 (St) _a,




Which parts are expensive?

A PAEES 9o

trivial, fast

fit a model/
estimate the return

learn St41 ~ f¢(St, at)

expensive

real robot/car/power\
grid/whatever:

1x real time, until we
invent time travel

/ generate samples
(i.e. run the policy)

MuloCo simulator:
up to 10000x real time

0« 0+ aVeJ(0)

improve the policy

backprop through f4 and r to
train mg(s;) = ay




Value Functions



How do we deal with all theseexpectations?

T
B po(r) {Z r(ste, at)}

t=1

ESlNP(Sl) [Ealw’”(aﬂsl) [T(Shal) + ESQNP(S2|51331) [Eazfv?r(aQISQ) [T(S% a2) + "'|52] |Slv al} |SlH

l J
I

what if we knew this part?

Q(Slaal) — T(Slaal) + ESQNp(SQ|S]_,al) [Eagrwr(a2|52) [T(SQJ 32) + ...|SQ] |Sla al}

T
ETNP@(T) [ZT(Staat)] - ESlNP(Sl) [E31NW(31|51) [Q(Sl’a1)|sl]:|

N

easy to modify mg(ay|s1) if Q(s1,a1) is known!

example: w(ai|s;) = 1 if a; = argmax,, Q(s1,a;)



Definition: Q-function

Q7 (s¢,a) = Zg::t Er, [r(sy,ay)|st, at]: total reward from taking a; in s;

Definrtion: value function

VT™(st) = ZtT,:t Er, [r(s¢,ap)|st]: total reward from s,

v (St) — EatNW(aHSt)[QW (St’ at)]

Eg, ~p(s1)[V™(s1)] is the RL objective!



Using Q-functions and value functions

Idea 1: if we have policy 7, and we know Q™ (s, a), then we can improve T:
set m'(als) = 1 if a = arg max, Q™ (s, a)
this policy is at least as good as 7 (and probably better)!

and it doesn’t matter what 7 is

Idea 2: compute gradient to increase probability of good actions a:
if Q™ (s,a) > V7(s), then a is better than average (recall that V7 (s) = F[Q™(s,a)] under w(als))

modify 7(als) to increase probability of a if Q™ (s,a) > V7 (s)

These ideas are very important in RL; we’ll revisit them again and again!



The anatomy of a reinforcement learningalgorithm

this often uses Q-

fit a model/ «— functions or value
estimate the return functions

generate samples
(i.e. run the policy)
; improve the policy



Types of Algorithms



Types of RL algorithms

0* = arg max B po(r) [Zt: (s, at)]

* Policy gradients: directly differentiate the above objective

e Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

e Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

e Model-based RL: estimate the transition model, and then...
e Use it for planning (no explicit policy)
e Use it to improve a policy
e Something else



Model-based RL algorithms

fit a model/

: learn p(s;11(st, a
estimate the return p(st+1lst, at)

generate samples
(i.e. run the policy)

improve the policy [ERC IR




Model-based RL algorithms

improve the policy [P EONaTe e

1. Just use the model to plan (no policy)
* Trajectory optimization/optimal control (primarily in continuous spaces) —
essentially backpropagation to optimize over actions

e Discrete planning in discrete action spaces — e.g., Monte Carlo tree search

1. Backpropagate gradients into the policy
e Requires some tricks to make it work

2. Use the model to learn a value function
* Dynamic programming
e Generate simulated experience for model-free learner



Value function based algorithms

fit a model/
ﬁ fit V(s) or Q(s, a)
)

generate samples
(i.e. run the policy)

[ JEERLERLIIEAN set 7(s) = arg max, (s, a)



Direct policy gradients

fit a model/ evaluate returns
estimate the return [FAEEC I CPF: VY

generate samples
(i.e. run the policy)

improve the policy [RSE/AE QVBE[Zt T(St’ at)]




Actor-critic: value functions + policygradients

fit a model/
ﬁ fit V(s) or Q(s,a)

generate samples
(i.e. run the policy)
; improve the policy (RS vAYOlla CHPN




Tradeoftfs Between Algorithms



Why so many RLalgorithms?

e Different tradeoffs
e Sample efficiency

* Stability & ease of use
e Different assumptions ‘ =

e Stochastic or deterministic? generate

samples (i.e.

e Continuous or discrete? run the policy)

e Episodic or infinite horizon? ‘ improve the

policy

 Different things are easy or hard in
different settings
e Easier to represent the policy?
e Easier to represent the model?



Comparison: sample efficiency

e Sample efficiency = how many samples
do we need to get a good policy?

* Most important question: is the
algorithm off policy?

e Off policy: able to improve the policy
without generating new samples from that
policy

e On policy: each time the policy is changed,
even a little bit, we need to generate new
samples

fit a model/
estimate return
generate
samples (i.e.
run the policy)
improve the
policy

0« 0+ aVeE|) , r(st,ar)]

/

just one gradient step



Comparison: sample efficiency

off-policy « » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy  evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Whywould we use a less efficient algorithm?
Wall clock time Is not the same as efficiency!



Comparison: stability and ease ofuse

e Does it converge?
* And if it converges, to what?
 And does it converge every time?

Why is any of this even a question???

e Supervised learning: almost always gradient descent

* Reinforcement learning: often not gradient descent
e Q-learning: fixed point iteration
e Model-based RL: model is not optimized for expected reward

e Policy gradient: is gradient descent, but also often the least
efficient!



Comparison: stability and ease ofuse

 Value function fitting
e At best, minimizes error of fit (“Bellman error”)
* Not the same as expected reward
e At worst, doesn’t optimize anything

e Many popular deep RL value fitting algorithms are not guaranteed to
converge to anything in the nonlinear case

* Model-based RL

* Model minimizes error of fit
e This will converge

 No guarantee that better model = better policy
e Policy gradient

e The only one that actually performs gradient descent (ascent) on
the true objective



Comparison: assumptions

e Common assumption #1: full observability

e Generally assumed by value function fitting
methods

e Can be mitigated by adding recurrence

e Common assumption #2: episodic learning
e Often assumed by pure policy gradient methods
e Assumed by some model-based RL methods

e Common assumption #3: continuity or
smoothness
e Assumed by some continuous value function
learning methods

e Often assumed by some model-based RL
methods




Examples of Algorithms



Examples of specific algorithms

e Value function fitting methods
* Q-learning, DON
e Temporal difference learning
 Fitted value iteration

e Policy gradient methods ;
e REINFORCE We’ll learn about

e Natural policy gradient most of these in the

e Trust region policy optimization
n . next few weeks!
e Actor-critic algorithms

e Asynchronous advantage actor-critic (A3C)
e Soft actor-critic (SAC)

 Model-based RL algorithms
* Dyna
e Guided policy search



Example 1: Atari games with Q-functions

* Playing Atari with deep
reinforcement learning,
Mnih et al. ‘13

e Q-learning with
convolutional neural
networks




Example 2: robots and model-basedRL

* End-to-end training of
deep visuomotor
policies, L.* , Finn* '16

e Guided policy search
(model-based RL) for
image-based robotic
manipulation

Various Experiments
Including the policy input




Example 3: walking with policy gradients

lteration O

e High-dimensional
continuous control with
generalized advantage
estimation, Schulman et
al. ‘16

e Trust region policy
optimization with value
function approximation




Example 4: robotic grasping with Q-functions

e QT-Opt, Kalashnikov et
al. ‘18

e Q-learning from images
for real-world robotic

grasping
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