IASD M2 at Paris Dauphine

#### Deep Reinforcement Learning

#### 8: Deep RL with Q-Functions

Eric Benhamou David Saltiel



### Acknowledgement

These materials are based on the seminal course of Sergey Levine CS285



# Recap: Q-learning

full fitted Q-iteration algorithm:

1. collect dataset  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy 2. set  $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. set  $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i ||Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i||^2$ 

online Q iteration algorithm:



# What's wrong?

online Q iteration algorithm:

1. take some action 
$$\mathbf{a}_i$$
 and observe  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$   
2.  $\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$   
3.  $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$   
isn't this just gradient descent? that converges, right?

Q-learning is *not* gradient descent!

 $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)]$ no gradient through target value

# Correlated samples in online Q-learning

online Q iteration algorithm:

1. take some action **a**<sub>i</sub> and observe (**s**<sub>i</sub>, **a**<sub>i</sub>, **s**'<sub>i</sub>, r<sub>i</sub>) - target value
 2. φ ← φ − α dQ<sub>φ</sub>/dφ(**s**<sub>i</sub>, **a**<sub>i</sub>)(Q<sub>φ</sub>(**s**<sub>i</sub>, **a**<sub>i</sub>) − [r(**s**<sub>i</sub>, **a**<sub>i</sub>) + γ max<sub>**a**'</sub> Q<sub>φ</sub>(**s**'<sub>i</sub>, **a**'<sub>i</sub>)])

- sequential states are strongly correlated

- target value is always changing

asynchronous parallel Q-learning

 $\theta$ 

synchronized parallel Q-learning



# Another solution: replay buffers

online Q iteration algorithm:

1. take some action  $\mathbf{a}_i$  and observe  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ 2.  $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$ 

full fitted Q-iteration algorithm:

1. collect dataset  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, \mathbf{r}_i)\}$  using some policy  $K \times \frac{2}{3}$ . set  $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. set  $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$  special case with K = 1, and one gradient step

any policy will work! (with broad support) just load data from a buffer here still use one gradient step



# Another solution: replay buffers

Q-learning with a replay buffer:

+ samples are no longer correlated

1. sample a batch  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$  from  $\mathcal{B}$ 2.  $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)])$ 

+ multiple samples in the batch (low-variance gradient)

but where does the data come from?

need to periodically feed the replay buffer...



### Putting it together

full Q-learning with replay buffer:

1. collect dataset  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy, add it to  $\mathcal{B}$ 

 $\begin{array}{c} \mathbf{K} \times \\ \mathbf{K} \times \\ 3. \ \phi \leftarrow \phi - \alpha \sum_{i} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) (Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})]) \end{array}$ 

K = 1 is common, though larger K more efficient



### Target Networks

# What's wrong?

online Q iteration algorithm:

1. take some action  $\mathbf{a}_i$  and observe  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ 2.  $\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3.  $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$ use replay buffer



## Q-Learning and Regression

full Q-learning with replay buffer:

1. collect dataset  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy, add it to  $\mathcal{B}$   $K \times \begin{bmatrix} 2 & \text{sample a batch } (\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i) \text{ from } \mathcal{B} \\ 3 & \phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi} (\mathbf{s}_i, \mathbf{a}_i) (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)]) \end{bmatrix}$ 

#### one gradient step, moving target

full fitted Q-iteration algorithm:

1. collect dataset 
$$\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$$
 using some policy  
2. set  $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$   
3. set  $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$ 

#### perfectly well-defined, stable regression

#### Q-Learning with target networks

Q-learning with replay buffer and target network:

➡ 1. save target network parameters: 
$$\phi' \leftarrow \phi$$

▶ 2. collect dataset  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy, add it to  $\mathcal{B}$ 

$$\times$$
 3. sample a batch  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$  from  $\mathcal{B}$ 

4. 
$$\phi \leftarrow \phi - \alpha \sum_{i} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{i}, \mathbf{a}_{i})(Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_{i}, \mathbf{a}'_{i})]$$

targets don't change in inner loop!

# "Classic" deep Q-learning algorithm (DQN)

Q-learning with replay buffer and target network:

1. save target network parameters: 
$$\phi' \leftarrow \phi$$
  
2. collect dataset  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy, add it to  $\mathcal{B}$   
 $N \times \mathbf{k} \times$ 

"classic" deep Q-learning algorithm:

1. take some action 
$$\mathbf{a}_i$$
 and observe  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ , add it to  $\mathcal{B}$   
2. sample mini-batch  $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$  from  $\mathcal{B}$  uniformly  
3. compute  $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$  using *target* network  $Q_{\phi'}$   
4.  $\phi \leftarrow \phi - \alpha \sum_j \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_j, \mathbf{a}_j)(Q_{\phi}(\mathbf{s}_j, \mathbf{a}_j) - y_j)$   
5. update  $\phi'$ : copy  $\phi$  every  $N$  steps

#### You'll implement this in HW3!

Mnih et al. '13

### Alternative target network

"classic" deep Q-learning algorithm:



Feels weirdly uneven, can we always have the same lag?

Popular alternative (similar to Polyak averaging): 5. update  $\phi': \phi' \leftarrow \tau \phi' + (1 - \tau)\phi$   $\tau = 0.999$  works well

#### A General View of Q-Learning

## Fitted Q-iteration and Q-learning

Q-learning with replay buffer and target network:

1. save target network parameters:  $\phi' \leftarrow \phi$ 

DQN: N = 1, K = 1

2. collect M datapoints  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy, add them to  $\mathcal{B}$  $N \times \mathbf{k} \times \mathbf$ 

Fitted Q-learning (written similarly as above):

→ 1. collect *M* datapoints  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy, add them to  $\mathcal{B}$ 

▶ 2. save target network parameters: 
$$\phi' \leftarrow \phi$$

$$\underbrace{\mathbb{N} \times \mathbb{K} \times }_{4. \ \phi \leftarrow \phi - \alpha \sum_{i} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{i}, \mathbf{a}_{i})(Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_{i}, \mathbf{a}'_{i})]) } \mathbf{sust SGD}$$

## A more general view

Q-learning with replay buffer and target network:

▶ 1. save target network parameters:  $\phi' \leftarrow \phi$ 

2. collect *M* datapoints  $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$  using some policy, add them to  $\mathcal{B}$ 

 $N \times \mathbf{K} \times 3. \text{ sample a batch } (\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i) \text{ from } \mathcal{B}$   $4. \phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi} (\mathbf{s}_i, \mathbf{a}_i) (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_i, \mathbf{a}'_i)])$ 



# A more general view

![](_page_17_Figure_1.jpeg)

- Online Q-learning (last lecture): evict immediately, process 1, process 2, and process 3 all run at the same speed
- DQN: process 1 and process 3 run at the same speed, process 2 is slow
- Fitted Q-iteration: process 3 in the inner loop of process 2, which is in the inner loop of process 1

#### Improving Q-Learning

#### Are the Q-values accurate?

![](_page_19_Figure_1.jpeg)

#### As predicted Q increases, so does the return

![](_page_19_Figure_3.jpeg)

### Are the Q-values accurate?

![](_page_20_Figure_1.jpeg)

#### Overestimation in Q-learning

target value  $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ this last term is the problem

imagine we have two random variables:  $X_1$  and  $X_2$ 

 $E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$ 

 $Q_{\phi'}(\mathbf{s}', \mathbf{a}')$  is not perfect – it looks "noisy"

hence  $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}')$  overestimates the next value!

note that  $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$ 

value *also* comes from  $Q_{\phi'}$  action selected according to  $Q_{\phi'}$ 

#### Double Q-learning

 $E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$ 

note that  $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$ value also comes from  $Q_{\phi'}$  action selected according to  $Q_{\phi'}$ if the noise in these is decorrelated, the problem goes away!

idea: don't use the same network to choose the action and evaluate value!

"double" Q-learning: use two networks:

$$Q_{\phi_A}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_B}(\mathbf{s}', \arg\max_{\mathbf{a}'} Q_{\phi_A}(\mathbf{s}', \mathbf{a}'))$$
$$Q_{\phi_B}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_A}(\mathbf{s}', \arg\max_{\mathbf{a}'} Q_{\phi_B}(\mathbf{s}', \mathbf{a}'))$$

if the two Q's are noisy in *different* ways, there is no problem

# Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning:  $y = r + \gamma Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$ 

double Q-learning:  $y = r + \gamma Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} (\phi \phi', \mathbf{a}'))$ 

just use current network (not target network) to evaluate action still use target network to evaluate value!

#### Multi-step returns

Q-learning target:  $y_{j,t} = r_{j,t} + \gamma \max_{\mathbf{a}_{j,t+1}} Q_{\phi'}(\mathbf{s}_{j,t+1}, \mathbf{a}_{j,t+1})$ 

these are the only values that matter if  $Q_{\phi'}$  is bad! these values are important if  $Q_{\phi'}$  is good

where does the signal come from?

Q-learning does this: max bias, min variance

remember this?  
Actor-critic: 
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left( r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right) + lower variance (due to critic) - not unbiased (if the critic is not perfect)$$
  
Policy gradient:  $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left( \left( \sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) - b \right)$ 

+ no bias - higher variance (because single-sample estimate)

can we construct multi-step targets, like in actor-critic?

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t-t'} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N})$$

N-step return estimator

# Q-learning with N-step returns

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t-t'} r_{j,t'} + \gamma^N \max_{\mathbf{a}_{j,t+N}} Q_{\phi'}(\mathbf{s}_{j,t+N}, \mathbf{a}_{j,t+N})$$

this is supposed to estimate  $Q^{\pi}(\mathbf{s}_{j,t}, \mathbf{a}_{j,t})$  for  $\pi$ 

$$\pi(\mathbf{a}_t | \mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg \max_{\mathbf{a}_t} Q_\phi(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

- + less biased target values when Q-values are inaccurate
- + typically faster learning, especially early on
- only actually correct when learning on-policy

we need transitions  $\mathbf{s}_{j,t'}, \mathbf{a}_{j,t'}, \mathbf{s}_{j,t'+1}$  to come from  $\pi$  for t' - t < N - 1(not an issue when N = 1)

how to fix?

- ignore the problem
  - often works very well
- cut the trace dynamically choose N to get only on-policy data
  - works well when data mostly on-policy, and action space is small

why?

• importance sampling

For more details, see: "Safe and efficient off-policy reinforcement learning." Munos et al. '16

#### Q-Learning with Continuous Actions

# Q-learning with continuous actions

What's the problem with continuous actions?

$$\pi(\mathbf{a}_t | \mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg \max_{\mathbf{a}_t} Q_\phi(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases} \text{ this max}$$

target value  $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$  this max

particularly problematic (inner loop of training)

How do we perform the max?

Option 1: optimization

- gradient based optimization (e.g., SGD) a bit slow in the inner loop
- action space typically low-dimensional what about stochastic optimization?

# Q-learning with stochastic optimization

#### Simple solution:

 $\max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a}) \approx \max \{Q(\mathbf{s}, \mathbf{a}_1), \dots, Q(\mathbf{s}, \mathbf{a}_N)\}$ ( $\mathbf{a}_1, \dots, \mathbf{a}_N$ ) sampled from some distribution (e.g., uniform)

#### but... do we care? How good does the target need to be anyway?

More accurate solution:

- cross-entropy method (CEM)
  - simple iterative stochastic optimization
- CMA-ES
  - substantially less simple iterative stochastic optimization

- + dead simple
- + efficiently parallelizable
- not very accurate

works OK, for up to about 40 dimensions

## Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

$$Q_{\phi}(\mathbf{s}, \mathbf{a}) = -\frac{1}{2} (\mathbf{a} - \mu_{\phi}(\mathbf{s}))^T P_{\phi}(\mathbf{s}) (\mathbf{a} - \mu_{\phi}(\mathbf{s})) + V_{\phi}(\mathbf{s})$$

![](_page_29_Figure_3.jpeg)

#### **NAF: Normalized Advantage Functions**

$$\arg\max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = \mu_{\phi}(\mathbf{s}) \qquad \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = V_{\phi}(\mathbf{s})$$

- + no change to algorithm
- + just as efficient as Q-learning
- loses representational power

Gu, Lillicrap, Sutskever, L., ICML 2016

## Q-learning with continuous actions

Option 3: learn an approximate maximizer DDPG (Lillicrap et al., ICLR 2016)

"deterministic" actor-critic (really approximate Q-learning)

 $\max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = Q_{\phi}(\mathbf{s}, \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}))$ 

idea: train another network  $\mu_{\theta}(\mathbf{s})$  such that  $\mu_{\theta}(\mathbf{s}) \approx \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$ 

how? just solve  $\theta \leftarrow \arg \max_{\theta} Q_{\phi}(\mathbf{s}, \mu_{\theta}(\mathbf{s}))$   $\frac{dQ_{\phi}}{d\theta} = \frac{d\mathbf{a}}{d\theta} \frac{dQ_{\phi}}{d\mathbf{a}}$ 

new target  $y_j = r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta}(\mathbf{s}'_j)) \approx r_j + \gamma Q_{\phi'}(\mathbf{s}'_j, \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j))$ 

### Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG:

#### Implementation Tips and Examples

# Simple practical tips for Q-learning

- Q-learning takes some care to stabilize
  - Test on easy, reliable tasks first, make sure your implementation is correct

![](_page_33_Figure_3.jpeg)

Figure: From T. Schaul, J. Quan, I. Antonoglou, and D. Silver. "Prioritized experience replay". *arXiv preprint arXiv:1511.05952* (2015), Figure 7

- Large replay buffers help improve stability
  - Looks more like fitted Q-iteration
- It takes time, be patient might be no better than random for a while
- Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman

# Advanced tips for Q-learning

 Bellman error gradients can be big; clip gradients or use Huber loss

$$L(x) = egin{cases} x^2/2 & ext{if } |x| \leq \delta \ \delta |x| - \delta^2/2 & ext{otherwise} \end{cases}$$

![](_page_34_Figure_3.jpeg)

- Double Q-learning helps a lot in practice, simple and no downsides
- N-step returns also help a lot, but have some downsides
- Schedule exploration (high to low) and learning rates (high to low), Adam optimizer can help too
- Run multiple random seeds, it's very inconsistent between runs

# Fitted Q-iteration in a latent space

- "Autonomous reinforcement learning from raw visual data," Lange & Riedmiller '12
- Q-learning on top of latent space learned with autoencoder
- Uses fitted Q-iteration
- Extra random trees for function approximation (but neural net for embedding)

![](_page_35_Figure_5.jpeg)

# Q-learning with convolutional networks

- "Human-level control through deep reinforcement learning," Mnih et al. '13
- Q-learning with convolutional networks
- Uses replay buffer and target network
- One-step backup
- One gradient step
- Can be improved a lot with double Q-learning (and other tricks)

![](_page_36_Figure_7.jpeg)

# Q-learning with continuous actions

- "Continuous control with deep reinforcement learning," Lillicrap et al. '15
- Continuous actions with maximizer network
- Uses replay buffer and target network (with Polyak averaging)
- One-step backup
- One gradient step per simulator step

![](_page_37_Picture_6.jpeg)

# Q-learning on a real robot

- "Robotic manipulation with deep reinforcement learning and ...," Gu\*, Holly\*, et al. '17
- Continuous actions with NAF (quadratic in actions)
- Uses replay buffer and target network
- One-step backup
- Four gradient steps per simulator step for efficiency
- Parallelized across multiple robots

![](_page_38_Picture_7.jpeg)

![](_page_39_Figure_0.jpeg)

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. **QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills** 

# Q-learning suggested readings

- Classic papers
  - Watkins. (1989). Learning from delayed rewards: introduces Q-learning
  - Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural networks
- Deep reinforcement learning Q-learning papers
  - Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement learning: early image-based Q-learning method using autoencoders to construct embeddings
  - Mnih et al. (2013). Human-level control through deep reinforcement learning: Qlearning with convolutional networks for playing Atari.
  - Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: a very effective trick to improve performance of deep Q-learning.
  - Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous Q-learning with actor network for approximate maximization.
  - Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based acceleration: continuous Q-learning with action-quadratic value functions.
  - Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network architectures for deep reinforcement learning: separates value and advantage estimation in Q-function.

### Review

- Q-learning in practice
  - Replay buffers
  - Target networks
- Generalized fitted Q-iteration
- Double Q-learning
- Multi-step Q-learning
- Q-learning with continuous actions
  - Random sampling
  - Analytic optimization
  - Second "actor" network

![](_page_41_Figure_11.jpeg)