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Recap: policy gradients

REINFORCE algorithm: ) T
; : Q" (x¢,uy) = ZT(Xt',Utf)
1. sample {7'} from my(a;|s;) (run the policy) by
T i |l r it
2. Vo (0) = i (S, Vologmo(ails)) (X4, r(sial)))
3. 00+ aVyJ(0)

o~

fit a model to
estimate return

generate
samples (i.e.
run the polic
; improve the
) N ) policy
VoJ(0) ~ ~ 2_:1 ; Vo log mo(ai t[sit) Q7 0 0+ aVeJ(0)
= e

“reward to go”

can also use function approximation here



Why does policy gradient work?

Aﬂ- (Xt , llt)

N T
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Vo J (0 _N E E Vo logmg(aj i|si) A7

fit a model to
1 =1 t=1 -
estimate return
generate
samples (i.e.
) A ) run the oI|c
@ 1. Estimate A7 (s¢, a;) for current policy 7

2. Use fl”(st,at) to get improved policy 7’

improve the
policy

0« 0+ aVeJ(0

look familiar?

policy iteration algorithm:
1. evaluate A™ (s, a)

2. set ™ 7'



Policy gradient as policy iteration 70 =r.,,« [thvﬂ(stjat)
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Policy gradient as policy iteration

J(0') = J(0) = Erepy (r)

expectation under 7y j

ETme/ (1) [Z fYtAWQ (Sta at)] —
t

is it OK to use py(s;) instead?

2.7
|

AT (s, at)]

_

t

t

|

advantage under my

— ZEStNPQ’(St) [Eatmﬂe(aﬂst) |:
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= [ sy

q(x)
= FEpq(a) {Mf(iv)}
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lgnoring distribution mismatch?

?
T (aylse) ” [ [fef (aclst) ¢ x “
ES ~ 1\ S¢ EatN’ﬂ' at |S¢ Aﬂ-e S 7a ESt St aAr~Toglag St A o S 7a
Zt: o )[ o(an )[m(atlst) 8 Z o(anlso) 7 AT (51, a)

e (at]st)
L N
1
why do we want this to be true? A(Ql)
JO) - JO)~=AO) = ¢ « arg max A(0) 2. Use A™(s;,a;) to get improved policy 7/

9/’

is it true? and when?

Claim: pg(s;) is close to pg/(s¢) when 7y is close to g



Bounding the Distribution Change



lgnoring distribution mismatch?
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e (at]st)
L N
1
why do we want this to be true? A(Ql)
JO) - JO)~=AO) = ¢ « arg max A(0) 2. Use A™(s;,a;) to get improved policy 7/

9/’

is it true? and when?

Claim: pg(s;) is close to pg/(s¢) when 7y is close to g



Bounding the distribution change

Claim: pg(s;) is close to pg/(s¢) when g is close to g

Simple case: assume 7y is a deterministic policy a; = my(s;)

7o 18 close to g if wo (ar # mo(se)|st) < €

Do’ (St) — (1 — G)tpﬁ(st) + (1 — (1 — E)t))pmistake(st) seem familiar?
[— — — —
probability we made no mistakes some other distribution

por(s¢) — po(se)| = (1 — (1 — €)") [pmistake (8¢) — po(se)| < 2(1 — (1 — €)")
useful identity: (1 —¢€)* > 1 — et for € € [0, 1] < 2et

not a great bound, but a bound!



Bounding the distribution change

Claim: pg(s;) is close to pg/(s¢) when g is close to g

General case: assume mg is an arbitrary distribution

7o 18 close to my if |mer (ag|sy) — mo(ag|s:)| < € for all s,

Useful lemma: if [px (z)—py (x)| = €, exists p(z, y) such that p(z) = px(z) and p(y) = py(y) and p(x =y) =1 — ¢
= px(x) “agrees” with py (y) with probability e

= 7y (as|sy) takes a different action than my(as|s;) with probability at most €

por(s¢) — po(se)] = (1 — (1 — €)")|Pmistake(St) — pa(se)] < 2(1 — (1 —¢)")
< 2et

Proof based on: Schulman, Levine, Moritz, Jordan, Abbeel. “Trust Region Policy Optimization.”



Bounding the objective value

mor 18 close to my if |me: (ar|sy) — mg(as|sy)| < e for all s,

por (s¢) — po(se)| < 2et
Epef (St) Zp@’ St St > ZPG St ‘pQ(St) Po’ (St)l IHS?X f(St)

= EPQ(St)[f(St)] — 2et max f(s¢)

St

[ (o (as]s _ 17
ZESthgl(St) Eatrv';rg(at|st) 9( t| t)")/tA Q(St,at) 2

t

O(Trmax) or O (Tmi;j)
-’/Tgf (at|st) /
| To(ar]s;)

Z ESthe(St) Eat"\"ﬂ'a (at|se) ’}/tAﬂ-e (St7 at) — Z 2etC
- i ¢

t

maximizing this maximizes a bound on the thing we want!



Where are we at so far?

9/ E N Ea N T (at|St) 'f;Aﬂ'g
<—argn’19‘c}x t s, pg(st)[ i~mo (ag|sy) |:7Tt9(at’8t)f)/ (st,a)

such that |mgr (as|s¢) — mo(as|s)| < e

for small enough e, this is guaranteed to improve J(6') — J(60)



Policy Gradients with Constraints



A more convenient bound

Claim: pg(s;) is close to pg/(s¢) when g is close to g

7o 18 close to g if |mor (ag|sy) — mo(ag|st)| < € for all sy

P (5¢) — po(se)| < 2et

1
a more convenient bound: |me(as|st) — mo(as|s:)| < \/§DKL(7T6V(at\St)HWQ(at!St))

=  Dkr(mg (ag|sy)||me(as|s:)) bounds state marginal difference

o]

Dxr(p1(z)||p2(2)) = Eznp, (2) llog

KL divergence has some very convenient properties that
make it much easier to approximate!



How do we optimize the objective?

St)

0 Earpy(on) | Earomafaton) | o215t g
arg%@x; st~pg t)[ ¢~ (ag|se) |:7T9(at’ Y (Styat)
such that Dgr,(mg (as|s:)||me(ag|s:)) < e

for small enough e, this is guaranteed to improve J(6') — J(60)



How do we enforce the constraint?

o (at|st)

) s

atlst

/
0 <—argmgz}x Estwpe(st) [ a;~mo(at|st) [
t
<€

such that Dkr, (mg (a¢|st)||me(az|st))

e (at ’St)

TTar\a+|S
=" Eapio [Eamwsg[ o(axlst) tA”@(st,aa”—A(DKL(wmaast)Hvrecat\sm—e)
t

1. Maximize L£(0', \) with respect to 6’

A

can do this incompletely (for a few grad steps)

2. X A+ a( Dy (e (agls:) |76 (agls:)) — €)

Intuition: raise A if constraint violated too much, else lower it

an instance of dual gradient descent (more on this later!)



Natural Gradient



How (else) do we optimize the objective?
A(0')

A
[ |

9/ E N Ea N T (at|St) 'f;Aﬂ'g
<—argn’19‘c}x t s, pg(st)[ i~mo (ag|sy) |:7Tt9(at’8t)f)/ (st,a)

such that Dgp (mgr(as|s:)||ma(ar|s:)) < e

for small enough e, this is guaranteed to improve J(6') — J(60)

4 0" < arg max VoA0) (6" —0)

such that Dgr(mgr (a¢|st)||me(az]st)) < e

> Use first order Taylor approximation for objective (a.k.a., linearization)



How do we optimize the objective?

/ atlst t |
0 + argmgz}x Eg,~po(s)) [ a, oo (as|se) [ v A™ (s¢, ay) ]
<€

P atlst

such that Dgp, (mgr (a¢|se)||ma(as|st))

0" + arg max VoA (0 —0)
such that Dkry (mg (a¢|s)||me(ass:)) < e

o (az|st)
e (at\st)

ng ZEStNPG(St) |: atmﬂg(a”st) [ ’)/tVQr 10g7r9f(at|st)A7r9(st7at)”

(see policy gradient lecture for derivation)

- Z ESthe (st) Eatfv?re(atlst)
t _

at|5t)

t ™o
DU T log ol 4 <st,at>”

- Z EStNPG (st) :Eat’vﬂe(aﬂst) :fytvg log WQ(at|St)A7T6 (Stv at)” — VQJ(Q)
t

exactly the normal policy gradient!




Can we just use the gradient then? \

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

0 < 9-|-OéV9J(9) W@(at|5t)

some parameters change probabilities a lot more than others!

Claim: gradient ascent does this:

0« arg max Vo (0)' (6" —0)

? =0+ O

such that [|§ — 0'|? < e



Can we just use the gradient then?

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

not the same!

0" < arg max VoJ(0)1 (0 —0)

such that [|§ — 0'||? < e

second order Taylor expansion

7

1
Dy, (g ||mg) ~ 5(9’ —0)TF (0 —0) F = E,,[Vglogmy(als)Vglogmy(als)”]

Fisher-information matrix can estimate with samples




Can we just use the gradient then? \

0« arg max Vo (0)' (6" —0)

such that Dkr,(mg (az|s:)||me(ar|s:)) < e

1
D (o ||mo) = 5 (6" = 0)"F (6" — 6)

0 =0+ aF 'VyJ(6) \

natural gradient

2€
“= \/ Vo (0)TFV 4.7 (6)




s this even a problem in practice?

— A~ R
74& (a) ‘Vam]la’ policy gradlents
< O * > |9 =
1] & s ""i:
< 0.4f - - ~'
5 5 § 03
r(s¢,a;) = —s; — a; g 0.2
1 2 0.1
= . 2 o % 0.0l 5
log mp(at|st) = 952 (kst —at)” + const 0 = (k,o) 5722 =15 =10 =05 00
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(image from Peters & Schaal 2008)
(a)*Vanilla’ pnllcy gradlents (b) Natural policy gradients

Essentially the same problem as this:
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(figure from Peters & Schaal 2008) 10 0 10



Practical methods and notes

* Natural policy gradient 0 =0+ aF~'V,J(0)
e Generally a good choice to stabilize policy gradient training
e See this paper for details:
e Peters, Schaal. Reinforcement learning of motor skills with policy gradients.
e Practical implementation: requires efficient Fisher-vector products, a bit
non-trivial to do without computing the full matrix
e See: Schulman et al. Trust region policy optimization

2
 Trust region policy optimization = \/VQJ(Q)T;WJ(Q)

 Just use the IS objective directly
e Use regularization to stay close to old policy
e See: Proximal policy optimization



Review

e Policy gradient = policy iteration

» Optimize advantage under new policy state AT (x¢, 1)
distribution
e Using old policy state distribution optimizes a ‘ I estimate return
bound, if the policies are close enough
generate
e Results in constrained optimization problem samples (i.e.
run the polic

* First order approximation to objective = gradient
ascent improve the
policy

e Regular gradient ascent has the wrong constraint,
use natural gradient 0+ 0+ aVeJ(0)

e Practical algorithms

e Natural policy gradient
e Trust region policy optimization
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