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Rappel : Programmation Linéaire

Un programme linéaire (PL) est un problème d’optimisation sous
contraintes où :

la fonction objectif est linéaire,
les contraintes sont linéaires,
les variables sont continues.

Dans cette séance, nous formalisons précisément ce cadre.
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Hypothèse de linéarité

L’hypothèse de linéarité implique :
proportionnalité des effets,
additivité des contributions,
absence d’interactions non linéaires.

Exemple : produire deux unités coûte exactement deux fois plus que
produire une unité.
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Conséquences de la linéarité

La linéarité permet :
une modélisation simple,
une interprétation géométrique claire,
l’existence d’algorithmes efficaces.

Limite : de nombreux phénomènes réels sont intrinsèquement non linéaires.
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Hypothèse de divisibilité

L’hypothèse de divisibilité suppose que :
les variables peuvent prendre des valeurs réelles,
des fractions sont autorisées.

Exemple :
x = 2.37 est une valeur admissible
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Divisibilité et modélisation

Cette hypothèse est raisonnable lorsque :
les quantités sont grandes,
la granularité est fine,
une approximation continue est acceptable.

Sinon, il est nécessaire d’utiliser des variables entières.

E. Lancini (Université Dauphine-PSL) Programmation linéaire 7 / 28



Forme générale d’un programme linéaire

min /max c⊤x

s.t. A1x ≤ b1

A2x = b2

A3x ≥ b3

xi ≥ 0 si i ∈ I+

xj ≤ 0 si j ∈ I−

x ∈ Rn est le vecteur des variables décisionnelles,
c ∈ Rn est le vecteur des coefficients de la fonction objectif,

A ∈ Rm×n, A =

 A1

A2

A3

, est la matrice des coefficients,

b ∈ Rm est le vecteur des constantes,
I+ et I− sont deux sous-ensembles disjoints de {1, . . . , n}.
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Forme canonique

Un programme linéaire est en forme canonique (où forme normale selon
les auteurs) s’il s’écrit :

max c⊤x

s.t. Ax ≤ b

x ≥ 0

Théorème : mise ne forme canonique
Tout programme linéaire peut être écrit en une forme canonique
équivalente.
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Contexte du Théorème

Théorème : mise ne forme canonique
Tout programme linéaire peut être écrit en une forme canonique
équivalente.

Qu’est ce que ça veut dire “une forme canonique équivalente” ?

Soient P1 et P2 l’ensemble des solutions (inétendus comme espaces de
variables) de deux programmes linéaire.
Les deux sont équivalents s’il existe une fonction f : P1 → P2 telle que :

x est réalisable si et seulement si f(x) est réalisable,
x est réalisable et optimale si et seulement si f(x) est réalisable et
optimale,
la fonction objectif en x est égal à celle en f(x) après une
transformation affine,

et inversement, une fonction f ′ : P2 → P1 avec les mêmes propriétés.
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Preuve du Théorème

Étapes :
transformation de la fonction objectif,
transformation des contraintes d’égalité en inégalité,
transformation des contraintes ≥ en ≤,
transformation des variables libres en signe en variables non négatives,
transformation des variables non positives en variables non négatives.
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Transformation de la f.o.

L’ensemble des solutions optimales pour une fonction objectif

min c⊤x

est le même que celui de la fonction objectif :

(max−c⊤x)

Cette transformation de la fonction objectif est une transformation affine et
par conséquence, on peut toujours transformer un problème de
minimisation en un problème de maximisation équivalent.
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Transformation des égalités

Toute contrainte d’égalité peut être remplacée par deux inégalités :

ax = b ⇐⇒

{
ax ≤ b

ax ≥ b

Cette opération ne change ni l’ensemble de variables ni celui des solutions.

On peut donc transformer un problème avec des contraintes à égalité en un
problème avec que des inégalités.
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Transformation des ≥ en ≤

Toute contrainte ≥ peut être remplacée par une contrainte ≤ :

ax ≥ b ⇐⇒ −ax ≤ −b

Cette opération ne change ni l’ensemble de variables ni celui des solutions.

Ainsi, sans perte de généralité, on peut se ramener à des contraintes de
type ≤.
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Variables à signe libre

Rappel : une variable es à signe libre s’il n’existe pas une contrainte de
non-négativité/non-positivité associée à cette variable.

Toute variable xi à signe libre peut être réécrite comme

xi = x+i − x−i

où x+i et x−i sont deux variables non-négatives.

Donc, à condition de doubler les variables libres en signe, on peut supposer
que toutes les variables soient à signe fixe.

Cette opération n’est pas une bijection !
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Variables non positives

Toute variable xi non positive peut être substituée par une variable x′i non
négative,

x′i = −xi

Donc, on peut supposer que toutes les variables soient non négatives.

Et donc on a prouvé notre résultat
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Forme standard

Un PL est en forme standard s’il s’écrit :

max c⊤x

s.t. Ax = b

x ≥ 0

Toutes les contraintes sont des égalités.
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Passage à la forme standard

Toute contrainte d’inégalité peut être transformée en égalité en
introduisant une variable d’écart (slack variable) :

ax ≤ b ⇐⇒ ax+ s = b, s ≥ 0

Les variables d’écart mesurent les ressources non utilisées.

Important : on a besoin d’une variable d’écart pour chaque contrainte
d’inégalité.
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Intérêt des formes canoniques

Ces formes :
simplifient l’analyse théorique,
sont nécessaires pour certains algorithmes,
facilitent l’implémentation informatique.

En particulier, l’algorithme du simplexe repose sur la forme standard.
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Exemple : programme linéaire en forme générique

Considérons le programme linéaire suivant :

min 3x1 − x2 + 2x3

s.t. x1 + 2x2 − x3 = 4

− x1 + x2 + x3 ≥ 1

x2 − x3 ≤ 2

x1 ≥ 0, x3 ≤ 0

Ce problème n’est ni en forme canonique ni en forme standard.
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Étape 1 : passage à un problème de maximisation

On transforme le problème de minimisation en maximisation :

min 3x1 − x2 + 2x3 ⇐⇒ max −3x1 + x2 − 2x3

L’ensemble des solutions optimales est inchangé.
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Étape 2 : élimination des égalités

La contrainte
x1 + 2x2 − x3 = 4

est remplacée par : {
x1 + 2x2 − x3 ≤ 4

x1 + 2x2 − x3 ≥ 4

On obtient un problème avec uniquement des contraintes d’inégalité.
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Étape 3 : contraintes de type ≥

Toute contrainte de type ≥ est multipliée par −1.

Exemple :

−x1 + x2 + x3 ≥ 1 ⇐⇒ x1 − x2 − x3 ≤ −1

Ainsi, toutes les contraintes sont désormais de type ≤.
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Étape 4 : variable à signe libre

La variable x2 est à signe libre.

On pose :
x2 = x+2 − x−2 ,

x+2 , x
−
2 ≥ 0.

Les contraintes et la f.o. sont réécrites en fonction de x+2 et x−2 .
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Étape 5 : variable non positive

La variable x3 est non positive.

On pose :
x′3 = −x3

x′3 ≥ 0

Toutes les variables du problème sont désormais non négatives.
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Programme linéaire en forme canonique

Le programme obtenu s’écrit :

max − 3x1 + x+2 − x−2 + 2x′3

s.t. x1 + 2(x+2 − x−2 ) + x′3 ≤ 4

− x1 − 2(x+2 − x−2 )− x′3 ≤ −4

x1 − (x+2 − x−2 ) + x′3 ≤ −1

x+2 − x−2 + x′3 ≤ 2

x1, x
+
2 , x

−
2 , x

′
3 ≥ 0

Il s’agit d’un programme linéaire en forme canonique, équivalent au
problème initial.
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Programme linéaire en forme standard

Le programme obtenu s’écrit :

max − 3x1 + x+2 − x−2 + 2x′3

s.t. x1 + 2(x+2 − x−2 ) + x′3 + s1 = 4

− x1 − 2(x+2 − x−2 )− x′3 + s2 = −4

x1 − (x+2 − x−2 ) + x′3 + s3 = −1

x+2 − x−2 + x′3 + s4 = 2

x1, x
+
2 , x

−
2 , x

′
3 ≥ 0

s1, s2, s3, s4 ≥ 0

Il s’agit d’un programme linéaire en forme standard, équivalent au
problème initial.
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Programme linéaire en forme standard

On peut se rendre compte que on peut simplifier le problème :

max − 3x1 + x+2 − x−2 + 2x′3

s.t. x1 + 2(x+2 − x−2 ) + x′3 = 4

x1 − (x+2 − x−2 ) + x′3 + s1 = −1

x+2 − x−2 + x′3 + s2 = 2

x1, x
+
2 , x

−
2 , x

′
3 ≥ 0

s1, s2 ≥ 0
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