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Contenu de la séance

@ Hypothéses de linéarité et de divisibilité
© Forme canonique et forme standard

© Exemple

E. Lancini (Université Dauphine-PSL) Programmation linéaire



Rappel : Programmation Linéaire

Un programme linéaire (PL) est un probléme d'optimisation sous
contraintes ou :

@ la fonction objectif est linéaire,
@ les contraintes sont linéaires,

@ les variables sont continues.

Dans cette séance, nous formalisons précisément ce cadre.
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Hypothese de linéarité

L'hypothése de linéarité implique :
@ proportionnalité des effets,
@ additivité des contributions,

@ absence d'interactions non linéaires.

Exemple : produire deux unités coiite exactement deux fois plus que
produire une unité.
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Conséquences de la linéarité

La linéarité permet :
@ une modélisation simple,
@ une interprétation géométrique claire,

o l'existence d'algorithmes efficaces.

Limite : de nombreux phénoménes réels sont intrinséquement non linéaires.
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Hypotheése de divisibilité

L'hypothése de divisibilité suppose que :
@ les variables peuvent prendre des valeurs réelles,

o des fractions sont autorisées.

Exemple :
x = 2.37 est une valeur admissible
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Divisibilité et modélisation

Cette hypothése est raisonnable lorsque :
@ les quantités sont grandes,
o la granularité est fine,

@ une approximation continue est acceptable.

Sinon, il est nécessaire d'utiliser des variables entiéres.
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Forme générale d'un programme linéaire

min /max ¢

st. Az <b
Aoz = by
Asx > b
z; >0 sitely
z; <0 sijel_

x € R™ est le vecteur des variables décisionnelles,

@ c € R™ est le vecteur des coefficients de la fonction objectif,

A

e AcR™*" A= A; , est la matrice des coefficients,
As

@ b € R™ est le vecteur des constantes,

o I, et I_ sont deux sous-ensembles disjoints de {1,...,n}.
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Forme canonique

Un programme linéaire est en forme canonique (ou forme normale selon
les auteurs) s'il s'écrit :

max ¢!
st. Az <b
x>0
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Forme canonique

Un programme linéaire est en forme canonique (ou forme normale selon
les auteurs) s'il s'écrit :

max ¢!
st. Az <b
x>0

Théoréme : mise ne forme canonique

Tout programme linéaire peut étre écrit en une forme canonique
équivalente.
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Contexte du Théoréme

Théoréme : mise ne forme canonique

Tout programme linéaire peut &tre écrit en une forme canonique
équivalente.

Qu'est ce que ca veut dire “une forme canonique équivalente” 7
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Contexte du Théoréme

Théoréme : mise ne forme canonique

Tout programme linéaire peut &tre écrit en une forme canonique
équivalente.

Qu'est ce que ca veut dire “une forme canonique équivalente” 7

Soient P, et P2 I'ensemble des solutions (inétendus comme espaces de
variables) de deux programmes linéaire.
Les deux sont équivalents s'il existe une fonction f : P — P» telle que :

@ z est réalisable si et seulement si f(x) est réalisable,

@ x est réalisable et optimale si et seulement si f(z) est réalisable et
optimale,

@ la fonction objectif en = est égal a celle en f(z) aprés une
transformation affine,

et inversement, une fonction f’ : P, — P; avec les mémes propriétés.
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Preuve du Théoréme

Etapes :
@ transformation de la fonction objectif,
@ transformation des contraintes d'égalité en inégalité,
@ transformation des contraintes > en <,
@ transformation des variables libres en signe en variables non négatives,

@ transformation des variables non positives en variables non négatives.
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Transformation de la f.o.

L’ensemble des solutions optimales pour une fonction objectif

mine'z
est le méme que celui de la fonction objectif :

(max —c' z)

Cette transformation de la fonction objectif est une transformation affine et
par conséquence, on peut toujours transformer un probléme de
minimisation en un probléme de maximisation équivalent.
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Transformation des égalités

Toute contrainte d'égalité peut &tre remplacée par deux inégalités :

ar=b <+—

Cette opération ne change ni I'ensemble de variables ni celui des solutions.

On peut donc transformer un probléme avec des contraintes a égalité en un
probléme avec que des inégalités.
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Transformation des > en <

Toute contrainte > peut étre remplacée par une contrainte < :
ar>b <— —ar<-b

Cette opération ne change ni |I'ensemble de variables ni celui des solutions.

Ainsi, sans perte de généralité, on peut se ramener a des contraintes de
type <.
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Variables a signe libre

Rappel : une variable es a signe libre s'il n'existe pas une contrainte de
non-négativité/non-positivité associée a cette variable.

Toute variable z; a signe libre peut &tre réécrite comme

R R
T, =x; —xy

oul x:r et z; sont deux variables non-négatives.

Donc, a condition de doubler les variables libres en signe, on peut supposer
que toutes les variables soient a signe fixe.
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Variables a signe libre

Rappel : une variable es a signe libre s'il n'existe pas une contrainte de
non-négativité/non-positivité associée a cette variable.

Toute variable z; a signe libre peut &tre réécrite comme

R R
T, =x; —xy

oul x:r et z; sont deux variables non-négatives.

Donc, a condition de doubler les variables libres en signe, on peut supposer
que toutes les variables soient a signe fixe.

Cette opération n’est pas une bijection !
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Variables non positives

Toute variable x; non positive peut étre substituée par une variable 2/ non
négative,

Donc, on peut supposer que toutes les variables soient non négatives.
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Variables non positives

Toute variable x; non positive peut étre substituée par une variable 2/ non
négative,
i — i

Donc, on peut supposer que toutes les variables soient non négatives.

Et donc on a prouvé notre résultat
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Forme standard

Un PL est en forme standard s'il s'écrit :

max c¢'z
st. Azx =19
x>0

Toutes les contraintes sont des égalités.
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Passage a la forme standard

Toute contrainte d'inégalité peut &tre transformée en égalité en
introduisant une variable d’écart (slack variable) :

ar<b <= ar+s=0b,s>0

Les variables d’écart mesurent les ressources non utilisées.

Important : on a besoin d'une variable d'écart pour chaque contrainte
d'inégalité.
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Intérét des formes canoniques

Ces formes :
o simplifient |'analyse théorique,
@ sont nécessaires pour certains algorithmes,

o facilitent I'implémentation informatique.

En particulier, I'algorithme du simplexe repose sur la forme standard.
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Exemple : programme linéaire en forme générique

Considérons le programme linéaire suivant :

min 3x; — T2 + 273

st. x1+2x0—23=4
—x1+r2t+w3>1
To —x3 < 2
120, 23<0

Ce probléme n’est ni en forme canonique ni en forme standard.
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Etape 1 : passage a un probléme de maximisation

On transforme le probléme de minimisation en maximisation :

min 3z — xo 4+ 2x3 <= max —3x] + r9 — 223

L'ensemble des solutions optimales est inchangé.
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Etape 2 : élimination des égalités

La contrainte
1+ 2x9 —x3 =4

est remplacée par :
T1+ 210 —23 < 4
1+ 2w — 23 > 4

On obtient un probléme avec uniquement des contraintes d'inégalité.
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Etape 3 : contraintes de type >

Toute contrainte de type > est multipliée par —1.

Exemple :
—r1+x0ta3>1 <= 11 —x9—23<—1

Ainsi, toutes les contraintes sont désormais de type <.
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Etape 4 : variable a signe libre

La variable x5 est a signe libre.

On pose :
-
Ty =Ty — Ty,
Jr —
Ty, Ty > 0.

Les contraintes et la f.o. sont réécrites en fonction de 3 et x5 .
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Etape 5 : variable non positive

La variable x3 est non positive.

On pose :

Th=—x3

a:gZ()

Toutes les variables du probléme sont désormais non négatives.
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Programme linéaire en forme canonique

Le programme obtenu s'écrit :

max — 3z +af —x; + 2%

st a1 +2(xf —xy)+ah <4
—x1— 2] —wy) —ah < —4
1 — (2f —wy) +ah < -1
Ty —xy +ah <2

+ =
T1,Ty , Ty, T3 >0

Il s’agit d'un programme linéaire en forme canonique, équivalent au
probléme initial.
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Programme linéaire en forme standard

Le programme obtenu s'écrit :

max — 3z + a3 — x5 + 2%

st. z1+2(x) —xy)+a5+s1=4
— a1 =25 —xy) —ah+sa=—4
1 — (25 —3y) +ah+s3=—1

x3 —xy +ah+ sy =2
— 1
xl,x;,xz,xz)’zo

51,82,83,84 > 0

Il s'agit d'un programme linéaire en forme standard, équivalent au
probléme initial.
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Programme linéaire en forme standard

On peut se rendre compte que on peut simplifier le probléme :

max — 371 + x5 — 75 + 224
st. oz +2(x) —xy) +x5=4
1 — (25 —my) +ah+s=—1

T3 — 3y + G+ s =2
— /
xl,x;,xQ,xg >0

51,82 >0
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