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Contenu de la séance

@ Faces, Facettes, Sommets

@ Optimisation et Polyedres
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Vocabulaire géométrique des polyedres

Soit P C R™ un polyedre.

@ Une face de P est I'intersection de P avec un hyperplan support.
@ Une facette est une face de dimension dim(P) — 1.
@ Une aréte est une face de dimension 1.

o Un sommet est une face de dimension 0.
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Interprétation algébrique des faces

Soit
P={zeR"| Az <b}.

Une face F' de P est de la forme :
F ={x e P|ajx=b; pourtoutic I},
ou les contraintes indexées par I sont dites saturées.

@ Les sommets correspondent a n contraintes linéairement
indépendantes actives.

@ Les facettes correspondent a une seule contrainte a égalité.

Les contraintes qui correspondent & une facette sont appelées
facet-defining.
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Contraintes actives et faces

Soit & un point d'un polyédre.
@ Une contrainte est dite active en z si elle est satisfaite a égalité.

@ L’ensemble des contraintes actives détermine la face contenant z.

En générale :

plus il y a de contraintes actives,

plus la dimension de la face est faible,

ceci est vrai que pour déterminer la dimension de la face
d'appartenance d'un point !

@ au contraire, on a vu que une contrainte peut déterminer une face de
dimension inférieure.
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On consideére le cube d'aréte unitaire en R?
Le cube est décrit par

{2,9,2:0<2<1,0<y<1,0< 2 <1}

Ceci est évidemment un polyédre de dimension 3.
Si on fixe par exemple la contrainte z > 0 a égalité, on se retrouve avec :
{z,y,2:0<2<1,0<y<1,2z=0}

qui est e carré unitaire en R? (on peut simplement ignorer z).

Donc une contrainte a égalité nous a donné une face de dimension 2, c'est
a dire une facette.

Si on fixe aussi la contrainte y < 1 a égalité, on obtient :

{z,y,2:0<x<1,y=1,2=0}

c'est a dire un segment, et donc un face de dimension 1.
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Contre-exemple

On considére toujours le cube d'aréte unitaire en R3
Le cube est décrit aussi par

{z,y,2:24+y<20<2x<1,0<y<1,0<z<1}
Ceci est évidemment un polyédre de dimension 3.
Si on fixe la contrainte z + y < 2 a égalité, on se retrouve avec :
{z,y,2:24+y=20<2<1,0<y<1,0<2<1}
ou, plus simplement,
{z,y,z:24+y<3,x=1y=1,0<z<1}

Donc une contrainte A égalité nous a donné une face de dimension 1.
En effet, la contrainte x + y < 2 est impliquée par x < 1 et y < 1.
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Contre-exemple (suite)

Si on prends maintenant le point (1,1, %) on peut observer que il
appartient a une face, car les inégalités :

e r <1,
o y<let
o x+y<l,

sont satisfaites a égaliteé.

On a 2 possibilités :

@ soit les inégalités sont toutes indépendantes (et donc le point est un
sommet du cube),

@ soit il y a au moins une inégalité redondante, et donc on peut pas
déduire la dimension de la face la plus petite contenant notre point.
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Combinaisons convexes et faces

Theorem (Sommets sont pointes extrémes)

Un point © € P est un sommet si et seulement s'il est extréme.
Autrement dit, si et seulement s'il ne peut pas s'écrire comme combinaison
convexe de deux points distincts de P.

Theorem (Faces sont polyédres)

Toute face non vide d'un polyédre est aussi un polyédre.

Par conséquence : toute faces d'un polyédre sont convexes.

Theorem (Faces forment un treillis)

Toute intersection de deux faces d'un polyédre est une face du méme
polyedre.
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Exemples et contre-exemples

Un point extréme n'est pas nécessairement un sommet si I'ensemble n’est
pas polyédral.
Une face peut étre :

@ un sommet,

@ une aréte,
@ une facette,
°

le polyedre tout entier.

Attention : la convexité seule ne suffit pas a garantir une structure
polyédrique.
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Intersection de faces

Le dernier théoréme de la slide 10 nous dit que I'intersection de deux faces

est toujours une face du méme polyédre.
On peut en déduire que les faces d'un polyédre possédent une structure de

treillis.
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E. Lancini (Université Dauphine-PSL)



Combinaisons convexes et Polyédres

Chaque sommet d'un polyédre est un point extréme, et au méme temps, les
polyédres sont des ensembles convexes.
Par conséquence, on obtient que :

Theorem (Polytope et sommets)

Un polytope est I'enveloppe convexe de ses sommets.
Autrement dit, un polytope P est exactement I'ensemble de points qui sont
combinaisons convexes des sommets de P.

P = conv(sommets de P)
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Pourquoi ce résultat est fondamental

Le théoréme précédent implique que :
o toute l'information géométrique est contenue dans les sommets,

@ un polytope est entiérement décrit par un ensemble fini de points.

Conséquence clé :

@ optimiser une fonction linéaire revient 3 comparer un nombre fini de
valeurs.
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Double interprétation des polytopes

Un polytope admet deux descriptions équivalentes :
@ description externe : intersection de demi-espaces,

@ description interne : enveloppe convexe de ses sommets.

Ce résultat est fondamental pour |'optimisation linéaire (continue et en
nombre entiers).

Plus précisément :

Soit S un ensemble fini de points, alors leur enveloppe convexe est un
polytope.
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Exemple : description externe

Considérons le polytope :

P={zecR?|z>0,y>0, z+y<1}.

@ Description externe : intersection de trois demi-espaces.

@ P est un polytope borné de dimension 2.
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Exemple : description interne

Les sommets de P sont :

(0,0), (1,0), (0,1).

Tout point x € P s'écrit :

2 =M(0,0) + A2(1,0) + A3(0,1), D Ai=1, A > 0.

On a bien : P = conv{(0,0),(1,0),(0,1)}.
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Cas pathologiques en optimisation linéaire

Jusqu'a 13 on a parlé de polytopes (donc polyédres bornés).

En réalité, le moment ou on écrit un systéme d'inégalités linéaires on ne
sait pas si notre systéme décrit un polyédre borné, ni si ce systéme admets
une solution réalisable.

Ces deux cas correspondent a une situation pathologique (pas de solutions
réalisables) et une situation “non standard” mais potentiellement
acceptable.

Dans les applications il faut considérer si on s'est pas trompé de modéle
pour notre probléme.
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Polyédres non bornés

@ Un polyédre non borné peut admettre un optimum.

@ |l peut aussi permettre d'augmenter indéfiniment la fonction objectif.

Cela dépend de I'orientation du vecteur ¢ par rapport aux directions de
récession.
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Un brasseur souhaite produire une biére et cherche a &tre le plus efficient
possible économiquement, c'est-a-dire & maximiser son profit.

Les ingrédients disponibles sont : le houblon, le blé, I'eau, le sucre. La
quantité de biére produite (en kg) est égale a la quantité d'eau utilisée,
augmentée de la moitié de la somme des quantités des autres ingrédients.

Afin d'éviter une biére trop diluée, la quantité d'eau ajoutée ne peut pas
dépasser 50% du poids total des ingrédients utilisés. De plus, le brasseur
souhaite utiliser au moins 3 kg de houblon et au moins 5 kg de blé.
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Exercice : Brasserie et profit maximal

Un brasseur produit une biére en combinant quatre ingrédients : houblon,
blé, eau, sucre.
o Quantité de biére (kg) : Q =e+ 3 (h+b+s)
e Vente : 2/kg
e Coit des ingrédients : houblon 4/kg, blé 3/kg, eau 0.1/kg, sucre 2/kg
o Contraintes :

e Eau < 50% du poids total des ingrédients
e Houblon > 3 kg, blé > 5kg
o Toutes les quantités > 0

Question : Formuler ce probléme comme un probléme de programmation
linéaire.
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Optimisation d'une fonction linéaire

Soit f(z) = c'x.

Les ensembles de niveau de f sont des hyperplans :

C T =C{Q.

Optimiser f sur un polyédre revient a translater ces hyperplans jusqu'au
dernier point de contact avec le polyédre réalisable.
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Intuition en 2D
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Intuition en 2D

max(z + 4y)
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Intuition en 2D

max(z + 4y)

L e
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Intuition en 2D

max(z + 4y)

4 /\ r+4y =8
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Intuition en 2D

max(z + 4y)

4 /\ x4+ 4y =12
T
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Intuition en 2D

max(z + 4y)

74\§<\ z+4y =16
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Intuition en 2D

max(z + 4y)

z+4y =19
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Théoreme fondamental de la programmation linéaire

Theorem (Théoréme fondamental de la programmation linéaire)

Si un programme linéaire admet une solution optimale, alors I'ensemble de
solutions optimales est une face du polyédre.

Donc soit P un polyédre et f une fonction linéaire. Si le maximum de f
existe sur P, alors :

o il est atteint sur une face de P,

@ en particulier, il existe un sommet optimal (si P admets des sommets).

Pour un polytope non vide il existe toujours un sommet qui atteint
I'optimum d'une fonction linéaire.
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ldée de la preuve

Soit f la fonction objectif et P le polyédre décrit par le systéme linéaire.
On suppose que f présente un maximum sur P, disons t.

Alors, f(x) <t est une inégalité linéaire valide.

Donc, {x € P | f(xz) =t} est une face de P.

Fin de la preuve.
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Conséquences du théoréeme fondamental

@ L'ensemble des solutions optimales est convexe.
o |l peut contenir :

@ un unique sommet,
@ une aréte,
e une facette entiére.

Un optimum non unique correspond toujours a une face de dimension > 1.
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Optimisation et polyédres

Conséquence fondamentale : il “suffit” d'examiner les sommets pour
résoudre un PL.

Question : combien de sommets peut avoir un polyédre ?
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Optimisation et polyédres

Conséquence fondamentale : il “suffit” d'examiner les sommets pour
résoudre un PL.

Question : combien de sommets peut avoir un polyédre ?

Question : combien de sommets peut avoir au maximum un polygone
(dimension 2) défini par m contraintes linéaires ?
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Optimisation et polyédres

Conséquence fondamentale : il “suffit” d'examiner les sommets pour
résoudre un PL.

Question : combien de sommets peut avoir un polyédre ?

Question : combien de sommets peut avoir au maximum un polygone
(dimension 2) défini par m contraintes linéaires?

Question : combien de sommets peut avoir au maximum un polyédre en
dimension 3 défini par m contraintes linéaires ?
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Optimisation et polyédres

Conséquence fondamentale : il “suffit” d'examiner les sommets pour
résoudre un PL.

Question : combien de sommets peut avoir un polyédre ?

Question : combien de sommets peut avoir au maximum un polygone
(dimension 2) défini par m contraintes linéaires?

Question : combien de sommets peut avoir au maximum un polyédre en
dimension 3 défini par m contraintes linéaires ?

Question : combien de sommets a un hypercube de dimension n ?
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Optimisation et polyédres

Conséquence fondamentale : il “suffit” d'examiner les sommets pour
résoudre un PL.

Question : combien de sommets peut avoir un polyédre ?

Question : combien de sommets peut avoir au maximum un polygone
(dimension 2) défini par m contraintes linéaires ?

Question : combien de sommets peut avoir au maximum un polyédre en
dimension 3 défini par m contraintes linéaires ?

Question : combien de sommets a un hypercube de dimension n ?

Question : combien de sommets peut avoir au maximum un polyédre en
dimension n défini par m contraintes linéaires ?

E. Lancini (Université Dauphine-PSL) Programmation linéaire



Quelles méthodes de résolution existent ?

Le Théoréme fondamental de la PL nous donne des indices sur comment
résoudre un programme linéaire.

Il existent plusieurs algorithmes, chacun avec sont objectif.
Méthode du Simplexe,

Méthode de I'Ellipsoide,

Méthode Graphique,

Algorithme de Karmarkar,
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Méthode énumérative.
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