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Objectifs du cours 5

Dans les séances précédentes, nous avons établi que :
un optimum (s’il existe) est atteint en un sommet,
les solutions extrêmes correspondent aux solutions de base faisables.

Objectif de cette séance
Introduire la méthode du simplexe comme algorithme de parcours des
sommets du polyèdre faisable.
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Méthode ̸= algorithme

La dénomination méthode du simplexe désigne en réalité une famille
d’algorithmes partageant une idée commune : explorer le polyèdre faisable
en se déplaçant d’un sommet à un autre.

Il n’existe donc pas un unique simplexe, mais plusieurs variantes, différant
notamment par : le choix du sommet initial, la règle de sélection de la
direction, la gestion des dégénérescence, les stratégies numériques mises en
œuvre.

Dans ce cours, nous présentons le principe général, avant de discuter
certaines implémentations possibles.
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Pourquoi le simplexe

La méthode du simplexe est historiquement et pratiquement l’un des outils
les plus importants de l’optimisation linéaire.

Bien que sa complexité théorique puisse être défavorable dans le pire cas,
elle est extrêmement performante en pratique sur une vaste majorité
d’instances industrielles.

Elle constitue ainsi une référence centrale dans les solveurs modernes, et
demeure un algorithme incontournable pour comprendre la structure
géométrique de la programmation linéaire.
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Histoire de la méthode

Les premières idées d’optimisation linéaire apparaissent dès le XIXe siècle,
notamment avec Fourier.

La méthode du simplexe, dans sa forme algorithmique moderne, est
proposée en 1947 par George Dantzig, dans le contexte de la planification
militaire et économique d’après-guerre.

Cette contribution marque le début de l’optimisation linéaire comme champ
structuré, avec un impact majeur en recherche opérationnelle et en
économie.
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Principe : parcours des sommets

Considérons l’ensemble des solutions admissibles d’un problème linéaire.
Cet ensemble forme un polyèdre convexe dans l’espace.

Nous savons qu’un optimum, s’il existe, est atteint en au moins un
sommet. La méthode du simplexe exploite directement ce résultat.

La méthode du simplexe repose alors sur une idée simple : partir d’un
sommet initial et se déplacer progressivement vers d’autres sommets
voisins, en améliorant à chaque étape la valeur de la fonction objectif.
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Exemple

On commence par un sommet.
On suit une arête qui améliore la
fonction objectif.
On s’arrête le moment où cette
arête n’existe pas.
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Principe : mouvement long les arêtes

Le déplacement d’un sommet à un autre ne se fait pas de manière
arbitraire. Depuis un sommet donné, on s’autorise à suivre seulement les
directions correspondantes aux arêtes incidentes sur le sommet. En plus, on
prends soin de ne jamais suivre une direction qui n’améliorent pas la valeur
de la fonction objectif.

Une question essentielle est la suivante : pourquoi se déplacer le long des
arêtes plutôt que d’explorer des directions quelconques dans le polyèdre ?

Autrement dit, pourquoi on ne peut pas adapter la méthode graphique ?
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Principe : l’échec de la méthode graphique

La méthode graphique repose fortement sur la possibilité de représenter
visuellement le polyèdre des solutions et de suivre la direction
d’amélioration.

Dès que la dimension augmente, cette intuition disparaît. L’ensemble
faisable devient un polyèdre dans un espace de grande dimension,
impossible à représenter ou à explorer visuellement.

Ainsi, la méthode graphique est difficile à généraliser directement.
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Principe : l’échec de la méthode graphique

Indépendamment de la visualisation, progresser à l’intérieur du polyèdre
n’est pas une stratégie efficace.

Depuis un point intérieur, suivre une direction d’amélioration conduit à la
frontière, mais identifier la première facette rencontrée nécessite de
comparer toutes les contraintes. Et cette facette ne contient pas forcement
l’optimum.

Cela implique que on va répéter le passage sans baisser ni la dimension ni
la complexité de notre problème.
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Principe

À chaque sommet, plusieurs arêtes admissibles peuvent être disponibles.

Le choix du prochain sommet repose sur l’amélioration de la fonction
objectif. On recherche une direction le long de laquelle la valeur de
l’objectif croît strictement.

Cette contrainte nous assure deux choses :
On va jamais revenir sur le même point (En réalité dans les
réalisations algébriques cette éventualité est possible).
On doit pas forcement parcourir tous les sommets pour obtenir
l’optimum.
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Cas possible à chaque étape

À chaque itération, la méthode du simplexe conduit nécessairement à l’un
des trois scénarios suivants.

Premier cas : aucune amélioration n’est possible, et le sommet courant est
optimal.

Deuxième cas : une direction d’amélioration existe, mais aucune contrainte
ne limite le déplacement ; le problème est alors non borné.

Troisième cas : une amélioration est possible et un sommet adjacent est
atteint ; l’algorithme poursuit son parcours.

Ainsi, la méthode fournit toujours une conclusion cohérente avec la
géométrie du problème.
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Terminaison

L’algorithme s’arrête avec succès lorsque aucune arête ne permet
d’améliorer la fonction objectif.

Theorem (Terminaison simplexe ⇒ optimum)
Soit f : Rn → R une fonction linéaire et soit v un sommet d’un polyèdre
P ⊆ Rn. Si aucun arête de P incidente à v è améliorante pour f , alors v
est optimum pour f en P .
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Cas non borné
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Problème de choix de la direction

Le simplexe repose sur une règle de pivot, c’est-à-dire un critère permettant
de choisir l’arête à suivre à chaque étape.

Certaines règles privilégient une amélioration rapide de l’objectif, d’autres
visent à éviter les cycles ou la dégénérescence.

Par exemple, une des règles proposée pour des raisons théoriques est celle
d’établir un “ordre” entre les directions améliorantes et de le suivre.

Le choix de la direction peut influencer fortement les performances
pratiques.
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Exemple dégénéré
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Complexité

Le nombre d’itérations du simplexe est au moins aussi grand que la
longueur du plus court chemin entre deux sommets dans le graphe du
polyèdre faisable.

Cette quantité est liée au diamètre du polyèdre, c’est-à-dire au nombre
maximal d’arêtes qu’il faut parcourir pour lier deux sommets.

Le diamètre dépend indirectement de la taille du problème, notamment du
nombre de contraintes actives et de facettes.
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Complexité II

Un résultat fondamental est que la méthode du simplexe n’est pas
polynomiale dans le pire cas : il existe des familles d’instances où le nombre
de pivots croît exponentiellement.

Cependant, cet écart entre complexité théorique et comportement pratique
reste l’un des aspects fascinants de l’optimisation linéaire.

En pratique, le simplexe est souvent extrêmement rapide, ce qui explique sa
domination historique dans les solveurs industriels.
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Principes de réalisation

Dans ce cours on présentera la méthode du Simplexe Primale.
Le premier défi est traduire en information numérique notre principe.

Question. Si on considère le PL :

max c⊤x

s.t. Ax ≤ b

x ≥ 0

Comment on peut reconnaître un sommet ? E une arête ?

Question. Comment on peut écrire ces conditions avec an algorithme ?
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Principes de réalisation

Avec un problème en forme quelconque où même canonique, la réalisation
numérique est assez complexe.
Heureusement, on a déjà étudié la forme standard !

max c⊤x

s.t. Ax = b

x ≥ 0

Chaque contrainte est maintenant liée à une variable d’écart.
La valeur de la variable d’écart représente (entre autre choses) une forme
de “distance” entre la solution actuelle et la contrainte associée.

Les sommets correspondent aux solutions du système qui présentent le bon
nombre (souvent n) variables égales à 0.
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Exemple

On peut considérer le polyèdre en R3 défini par :

{x, y, z | x+ y + z ≤ 1;x, y, z ≥ 0}

Qui peut se réécrire en forme standard :

{x, y, z, s1 | x+ y + z + s1 = 1;x, y, z, s1 ≥ 0}

Un point sur la facette “non triviale” du polyèdre est caractérisé par s1 = 0.
Les autres points sur les facette respectent une entre x = 0, y = 0, et
z = 0.
Les sommets ont besoin de 3 de ces variables à 0.
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Principes de réalisation

Donc les sommets sont les points qui ont “assez de variables = 0”.
On parle de variable en base.

Mais en réalité on peut aller plus loin.
Car une arête est identifié par n− 1 variables en base.
Donc deux sommets différent liés par une arête ont n− 1 variables en
commun égaux à 0.

Passer d’un sommet à l’autre se réduit à faire des “échanges” entre
variables en base et variables hors base.

C’est le sujet de la prochaine séance !
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