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Abstract. In this work, we introduce several Edge Coloring problems
related with scheduling and we study their computational complexity.
In particular, we prove that the Concurrent Open Shop Coloring is NP-
hard. This problem can be summarized as a unitary-time Open Shop
Problem with a hard time horizon constraint, in which the goal is to min-
imize the total processing time of the tasks. We prove that this problem
is NP-hard by reducing it to a new variant of the edge coloring problem,
named the Mono-Polychromatic Edge Coloring. We study feasibility and
hardness of this problem, both for the general case and when the under-
lying graph is bipartite. We show that the latter case is equivalent to the
Vertex Coloring Problem.
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1 Introduction

The Open Shop Scheduling problems form a class of optimization problems in
which a set of jobs, each composed by tasks, must be scheduled on a set of
machines without observing any prescribed order on the execution of the tasks.
Depending on the specific problem, several objectives are considered, such as
the minimization of the makespan, of the total tardiness, of the number of late
jobs, or other criteria commonly adopted in scheduling. Regardless of the ob-
jective function, these problems demand each task to be executed each on a
pre-specified machine, and each machine can execute at most one task at once.
The Concurrent Open Shop Scheduling problems allow different tasks of a job
to be executed in parallel. When makespan minimization is considered as the
objective function, both these problems are known to be NP-hard, as proved by
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Williamson [9] for the Open Shop Scheduling, and by Roemer [6] for the Concur-
rent Open Shop Scheduling. The Open Shop Scheduling and Concurrent Open
Shop Scheduling problems are motivated by a wide range of applications, includ-
ing product design and product assembly [1], and airplane maintenance [8]. We
refer to the monograph of Kubiak [4] for a more extensive discussion. A natural
approach to deal with scheduling problems is to transform them into coloring
problems on graphs. In particular, this approach has been used to investigate the
interactions between Concurrent Open Shop Scheduling and vertex coloring in
Ilani, Grinshpoun, and Shufan [2]. Another natural equivalence exists between
Open Shop Scheduling with Unit-time Tasks and the Edge Coloring Problem on
bipartite graphs [4].

In our work, we consider the Concurrent Open Shop Coloring (COSC), a
variant of the Concurrent Open Shop Scheduling problem where tasks have uni-
tary duration. We are given a time horizon, a set of jobs and a set of processors.
The unit-time tasks composing each job have to be processed on any order, each
task on a pre-specified processor. Processor can interact once in the time hori-
zon; this operation costs exactly one unit of time that the processors do not use
for executing tasks. Our goal is to minimize the sum of the processing times of
each job.

We show that COSC is NP-hard, by a reduction from a novel type of edge-
coloring problem on bipartite graphs, for which we first give a proof of its NP-
hardness.

Outline. In Section 2 we define the Concurrent Open Shop Coloring both in
graph-theoretical terms and as a binary linear program. We discuss basic feasi-
bility results and bounds on the objective function. In Section 3 we introduce
and study a novel edge-coloring problem which is used to prove that the Con-
current Open Shop Coloring is NP-hard and we characterize its feasibility. To
conclude, we study the computational complexity and feasibility characteristics
of this problem on a particular subfamily of instances, namely, the case when
the underlying graph is bipartite and simple.

2 Definitions and Preliminary Results

In the Concurrent Open Shop Coloring (COSC) problem, we are given a set
of jobs, a set of processors, and a time horizon of length k € Z~q. Each job is
composed by a set of distinct unit-time tasks each of which must be executed on
a pre-specified processor. No prescribed order is given on the execution of the
tasks, and the tasks can be executed in parallel, as long as these are executed in
different processors. Processors execute at most one task at the time. Moreover,
we allow processor to interact one with another once during the time span. When
present, this interaction takes one time unit during which the two processors
cannot execute any task. The processing time of a job is the number of different
(unitary) time slots in which at least one task of the job is being processed. The
goal of COSC is to minimize the sum of the processing times of each job.
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The following gives a model for COSC stating it as a graph coloring problem.
Let V be a set of vertices partitioned into subsets J and P representing the jobs
and the machines, respectively. Let G = (V, E) be the graph whose edge-set E
is such that:

— for j € J and p € P, edge jp exists if and only if the job represented by j
has a task that must be executed on the processor represented by p;

— for p,q € P, edge pq exists if and only if the two corresponding processors
must interact.

Representing each time slot with a color in the set [k] := {1,2...,k}, we want
to find an assignment of colors to the edges in E such that no two edges incident
to a same vertex in P receive the same color. The objective is to minimize the
sum over all vertices j € J of the number of distinct colors used on the edges of
0(j) :={e € E: e is incident to j}.

Using the above graph-theoretical representation, COSC can be formalized
as a binary linear program as follows. Let z.. be a binary variable equal to 1 if
and only if color ¢ € [k] is assigned to edge e € E, and, for all j € J, let y;. be a
binary variable equal to 1 if and only if color ¢ is assigned to at least one edge
of 6(j). With these definitions, COSC amounts to solve:

min Z Z Yje (1)

J€J celk]

st Tee=1 Ve € E, (2)
celk]
Tee < Yje Ve € 6(5),Vj € J,Vc € [k], (3)

> e <1 Vp € P,Vec € [K], (4)

e€d(p)
yie € {0,1} Vj € J, Ve € [k], (5)
zee € {0,1} Ve € E,Vc € [k]. (6)

A straightforward lower bound for COSC is |J|. Moreover, the problem is
clearly NP-hard, as it contains as a special case the edge-coloring problem (when
J = (). This link motivates the following observation.

Proposition 1. The following hold:

1. COSC admits a feasible solution whenever k > A(P)+1, where A(P) denotes
the maximum degree of the vertices in P.

2. If every vertex in P is adjacent to at least one vertez in J, then COSC admits
a feasible solution if and only if k > A(P), and we can build such a solution
in polynomial time.

Proof. We first observe that if k& < A(P), then COSC is infeasible.
Let G be the graph underlying COSC, and let G’ be the graph built by
removing each vertex j in J, adding one vertex t for each task ¢ of the job
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associated to j, and joining this vertex with the vertex associated to the processor
that must execute that task. Then, finding a feasible solution to COSC on G is
equivalent to finding a proper edge-coloring in G'. By Vizing’s theorem [7], we
need at most A(G’) + 1 colors to do so. Since all the vertices outside P in G’
have degree 1, A(G’') = A(P), and this proves 1.

For 2, let G be the subgraph of G’ induced by P. Since every vertex in P is
adjacent to at least one vertex outside P, we have that A(G') > A(G”)+1. We
can properly edge-color G” with A(G"”)+1 colors in polynomial time using Misra
and Gries algorithm [5]. Then, we can extend such coloring to G’ by greedily
coloring the remaining edges. Since each of these edges is incident to a vertex of
degree 1, the resulting edge-coloring uses exactly A(G') = A(P) colors. O

Proposition 1 states that a feasible solution to COSC can be found in poly-
nomial time if either £ > A(P)+1 or if each processor executes at least one task.
Consequently, one might initially surmise that COSC can be solved in polyno-
mial time under these circumstances. However, contrary to this expectation, we
demonstrate that COSC remains NP-hard, even when these conditions are met.
This holds true even when there are no edges connecting vertices in P, in which
case the underlying graph is bipartite.

3 The Mono-Polychromatic Edge Coloring Problem

We prove that the COSC with k > A(P) + 1 is NP-hard by considering an
auxiliary edge-coloring problem defined as follows.

Let G = (V, E) be graph, with V partitioned into two subset of vertices, M
and P. The Mono-Polychromatic Edge Coloring (MPEC) asks to minimize the
number of colors assigned to the edges of G so that for every vertex v € P, all
edges incident to v are assigned distinct colors, and for every vertex w € M,
all edges incident to w receive the same color. The vertices in P are called
polychromatic, those in M are called monochromatic. To simplify the proofs
below we assume that E may contain parallel edges.

A graph is said to be k-MP-colorable if there exists a solution to MPEC that
uses at most k colors. Even for k arbitrarily large, not all graphs admit such a
coloration, as it is depicted with the example in Figure 1: edges wiv and wsv
must have different colors, however both edges must have the same color as the
edge wyws, which is a contradiction. We say that a graph is MP-colorable if it
is k-MP-colorable for some k& > 0.

To characterize MP-colorable graphs we define the following operation: an M-
contraction consists in contracting an edge e incident to two vertices in M, and
assigning to M the resulting vertex. This operation possibly produces parallel
edges.

Observation 2 Deleting edges between vertices in P and/or M-contracting edges
do not affect MP-colorability.

From this observation we reach the following result.
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Fig. 1. A graph that does not admit a k-MP-coloring, for any k € Z.

Proposition 3. A graph G is MP-colorable if and only if it has no circuit con-
taining exactly one polychromatic vertex.

Proof. First suppose that G is MP-colorable and has a circuit C' composed by
only monochromatic vertices except for one polychromatic vertex v. Then, by
repeatedly contracting all edges connecting monochromatic vertices in C, we
obtain a circuit of length 2 {v,w}, with v € P and w € M. By the condition on
the polychromatic vertex v, the two parallel edges of the M-contracted circuit
must have different colors, but this contradicts the condition on the monochro-
matic vertex w. Therefore, this contracted instance is not MP-colorable and, by
Observation 2, neither is G.

On the other hand, suppose that G has no circuit containing exactly one
polychromatic vertex. Let G’ be the graph obtained by applying all possible
M-contractions and deleting all edges between polychromatic vertices. By Ob-
servation 2, if G’ is MP-colorable, then so is G. We have that G’ is bipartite, as
there are no edges between vertices in M (resp. in P).

We have that G is MP-Colorable if and only if G’ is simple, as we now
show. If G’ has two parallel edges, then it is not MP-colorable, hence the same
holds for G. If G’ is simple, let v1,vs,...,v, be the monochromatic vertices
of G’; assigning color 4 to all edges in §(v;), for all ¢ = 1,2,...,m yields an
MP-coloring that uses m colors.

Therefore to conclude the proof, we suppose by contradiction that there are
two parallel edges ¢ and f in G’ incident to a vertex v € P. Graph G has no
parallel edges between a monochromatic and a polychromatic vertex as otherwise
it would be a circuit with exactly one polychromatic vertex. Hence, there are two
vertices in M, say v and w, that are endpoints of e and f respectively. Since v and
w are identified in the same vertex in G’ and this vertex represents a connected
subgraph of monochromatic vertices in G. Hence, in this subgraph there is a
path u,vq,...,vs, w in G such that all v; are monochromatic vertices. But then,
vV, U, V1, - .., Vp, W,V is a circuit with exactly one vertex in P, a contradiction. O
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As byproduct of the proof of Proposition 3, we have that bipartite simple
graphs with shores M and P where M (resp. P) contains precisely the monochro-
matic (resp. polychromatic) vertices are always MP-colorable. Nonetheless we
now show that finding the minimum k for which such a graph is k-MP-colorable
is theoretically difficult. In the following we denote by b-MPEC the latter prob-
lem.

In our proof we show that the b-MPEC is equivalent to the vertex coloring
problem (VCP) on general graphs, that is, the problem of assigning the minimum
number of colors to the vertices of a graph so that adjacent vertices are assigned
distinct colors.

Proposition 4. The two following reductions hold true:

1. Every instance V of the VCP admits one instance M of the b-MPEC such
that M and V have the same value.

2. Every instance M of the b-MPEC' admits one instance V of the VCP such
that M and V have the same value.

Moreover, in each reduction the solution of one problem can be constructed from
the solution of the other problem in polynomial time with respect to the size of
the instance.

Proof. We first prove point 1. Let G = (V, E) be the graph defining instance V
of the VCP. We subdvide every edge e € E with a new vertex. Let P and F
respectively be the sets of new vertices and edges generated by the subdivision.
Let us consider the instance M of the b-MPEC defined over B = (P UV, F).
An optimal solution to V gives a feasible solution for M: for every v € V assign
to every edge f € 0(v) the color assigned to v in the optimal solution to V.
This solution is feasible because a vertex w € P is incident to precisely the
two edges f1, fo € F obtained by subdividing e € F; since the endpoints of
e have distinct colors, also f; and fo have distinct colors and the condition
on vertices in P is satisfied. The condition on the vertices of V (which are
monochromatic) is also fulfilled by definition. Conversely, an optimal solution
to M is feasible for V by assigning to each vertex v € V the color assigned
to its incident edges in that optimal solution. Such a color is unique because
the vertices in V' are monochromatic, by definition of B, and thus satisfy the
condition on monochromatic vertices. Moreover, by the condition on P, adjacent
vertices of G receive distinct colors. Therefore point 1 holds.

Point 2 can be proved similarly after replacing with an edge (v1,v2) each
2-path (v1,w,vq) linking two polychromatic vertices v1,ve € P of the bipartite
graph B = (P, M; E). These operations transform an instance of the b-MPEC
into an instance of the VCP. a

Proposition 4 implies that the Mono-Polychromatic Edge Coloring is NP-
hard even when k > A(P)+1, or when the underlying graph is bipartite: indeed,
we can reduce a vertex coloring problem on a graph with large chromatic number
to an instance of b-MPEC where A(P) = 2. These facts contrast with classical
results on edge coloring problems such as Kénig’s [3], or Vizing’s [7].

Finally, we prove that the COSC is also NP-hard as it implies the b-MPEC.
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Fig. 2. Equivalence of vertex coloring problem (left-hand graph) and b-MPEC (right-
hand graph) via edge subdivision. The gray vertices in the right-hand graph are poly-
chromatic, the black vertices are monochromatic.

Proposition 5. The COSC is NP-hard, even when there exists no edge between
Processors.

Proof. 1t is enough to prove the result on the case where there exists no edge
between processors. In particular, the underlying graph is bipartite. Let B =
(M, P; E) be a bipartite graph, and let ¥ > 0 be an integer. If B is k-MP-
colorable, then the corresponding coloring is also a solution of value exactly |M|
to the COSC instance defined on B and k. Since this is the minimum possible
value of a solution to COSC, then that solution is optimal.

On the other hand, let = be an optimal solution to COSC on the graph B
with at most k colors. If « has value exactly |M]|, then B is k-MP-colorable,
since the edges incident to each vertex v € M use exactly one color, and hence
v is monochromatic. This proves that the problem of deciding whether MPEC
admits a solution on B = (M, P; E) of value less or equal than k is equivalent
to the problem of deciding whether the COSC defined by B = (M, P; E) and k
admits a solution of value exactly |M|. Therefore, as MPEC is NP-hard, then
also COSC is. O

To conclude we remark that the previous proof states that COSC is NP-
hard also when there are no interactions between processors, hence we have this
concluding result:

Corollary 1. Minimizing the sum of the processing times of the jobs in the
Concurrent Open Shop Problem with tasks of unitary duration, is NP-Hard.
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