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A Horizon Tour of Box-Total Dual Integrality

Emiliano Lancini,∗ Francesco Pisanu †

Abstract

A linear system is totally dual integral (TDI) if, for every linear program with in-
teger cost vector defined on it, the dual problem admits an integer optimum whenever
it is feasible. A linear system is box-totally dual integral (box-TDI) if it remains TDI
under the addition of arbitrary rational bounds on its variables. First introduced
by Edmonds and Giles in the late 1970s, box-TDIness is a central property in com-
binatorial optimization, with deep connections to polyhedral integrality, min–max
duality, and integer programming. This article provides a self-contained survey of
both classical and recent results concerning box-TDI systems and polyhedra. We
also discuss complexity aspects and examples from combinatorial optimization where
box-TDIness arises naturally. Particular attention is paid to unifying different lines
of development in the literature and clarifying the structural properties that under-
lie the theory. Throughout the paper, we highlight open questions and conjectures,
offering a perspective on ongoing and future directions of research.

1 Introduction
Many combinatorial optimization problems can be formulated as Integer Linear Programs
(ILP), which are NP-hard [70] in general. However, these problems can be solved effi-
ciently when their continuous relaxations yield integer optimal solutions [62]. According
to Schrijver [91, Preface], polyhedral combinatorics was first introduced by Edmonds, and
has led to significant algorithmic results in combinatorial optimization, revealing several
min-max relations. In this context, several properties that certify polyhedral integral-
ity have been introduced in the literature. Among those, we focus on box-total dual
integrality, a strengthening of total dual integrality that we define below.

A linear system Ax ≤ b, with A ∈ Qm×n and b ∈ Qm, is totally dual integral (TDI) if
the minimum in the linear programming duality equation

max{w⊤x : Ax ≤ b, x ≥ 0} = min{b⊤y : A⊤y ≥ w, y ≥ 0} (1)

has an integer optimal solution for all integer vectors w for which the optimum is finite.
A stronger property is box-total dual integrality. A system Ax ≤ b is box-totally dual
integral (box-TDI ) if the system Ax ≤ b, ℓ ≤ x ≤ u is TDI for all rational vectors ℓ and u,
where some of the components of ℓ and u might be unbounded. The prefix “box” comes
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from what we call box-constraints, that is the constraints of the form ℓ ≤ x ≤ u with ℓ and
u rational vectors with possibly infinite components; these constraints represent bounds
on the variables and, when ℓ ≥ 0, are also known as capacity constraints in the context
of network flows.

TDIness and box-TDIness were introduced by Edmonds and Giles [45] in the late 70’s
to generalize submodular functions. Reasons why these properties have been intensively
studied include min-max relations in linear programming duality, strong integrality prop-
erties [55], and matroid theory [15, 45]. Specifically, TDIness characterizes polyhedral
integrality [55], and box-TDIness guarantees integrality to be preserved under the addi-
tion of arbitrary integer box-constraints [21]. Further studies enriched TDIness theory:
for instance, TDI systems are characterized by Hilbert bases (see Section 3.4) and are con-
nected with linear Diophantine equations (see Section 3.4). Duality in linear programming
also has applications in game theory. Notably, von Neumann’s Minimax Theorem about
zero-sum games [98] can be restated in terms of strong duality. Recent results related to
box-TDIness in game theory are due to Del Pia et al. [35] and Kleer and Schäfer [71] for
congestion games.

The scope of this article is twofold: on one hand, we want to provide an accessible yet
rigorous introduction to box-TDIness, to clarify its geometric properties, and to discuss its
usefulness and limitations in the context of combinatorial optimization on the other hand,
we aim to review classical and recent results on box-TDIness, some recently described box-
TDI polyhedra, and several open questions. We refer to the interested reader also to other
comprehensive sources of results on (box-)TDIness, such as Chapter 22 of Schrijver’s 1986
book [90] in the context of integer linear programming, and Chen et al. [17] from 2013,
which focuses on combinatorial results. Whenever possible, we shall leverage geometrical
aspects of box-TDIness in order to unify the known results. By doing so, we aim to
integrate the framework established in the seminal work of Cook [27] with that of Chervet
et al. [21]. Many examples here summarized come from classical results mainly due to
Edmonds [44], Cunningham [32], and several more recent works such as Ding et al. [38,39],
Chervet et al. [20, 21].

Outline In Section 2, we introduce some fundamental concepts and definitions used
throughout the paper, including those of unimodularity and box-integrality. Section 3
provides an overview of TDIness, box-TDIness, and their algebraic foundations. In Sec-
tion 4, we explore key structural properties of box-TDI systems, including their matricial
characterizations. Section 5 is dedicated to the polyhedral properties of box-TDIness.
Section 6 presents key complexity results related to (box-)TDI recognition and applica-
tions in optimization. In Section 7, we analyze several classical and recent case studies
where box-TDIness plays a crucial role, including polymatroids, network flows, matchings,
and stable sets. Finally, in Section 8 we briefly discuss the connections of TDIness and
box-TDIness with dyadicness and several polyhedral properties stronger than polyhedral
integrality.

Throughout the article, we highlight several open questions of general interest. These
questions pertain to graph theory, polyhedral verification, and specialized complexity
results for box-TDIness instances.
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2 Preliminaries
Since Dantzig introduced the simplex method, many combinatorial problems have been
treated as relaxations of some ILP. As a consequence, polyhedral integrality has been
intensively studied, as well as its connection to matricial descriptions. Here, we recall
some basic definitions and foundational results.

2.1 Generalities on Polyhedra

In this section, we review some basic definitions that will be used extensively throughout
this work.

Polyhedra A polyhedron is the set of points satisfying a system of linear inequalities,
that is {x : Ax ≤ b}. A polyhedron P is bounded if for every point x of P there is no
vector u such that x+ tu belongs to P for every positive scalar t. A bounded polyhedron
is called a polytope. An inequality a⊤x ≤ β is valid for the polyhedron P if it is satisfied
by every point in P . The dimension of P equals the dimension of its affine hull and is
denoted by dim(P ).

A face of a polyhedron P is a polyhedron of the form F = P ∩ {x : a⊤x = β} where
a⊤x ≤ β is a valid inequality for P . If P = {x : Ax ≤ b}, an inequality a⊤i x ≤ bi of
the system Ax ≤ b is tight for F if F ⊆ {x : a⊤i x = bi}, and we denote with AFx ≤ bF
the inequalities from Ax ≤ b that are tight for F . Faces whose dimension is equal to
dim(P ) − 1 are called facets. A vertex is a face of dimension 0. A polyhedron having a
vertex is called pointed.

A matrix M is face-defining for a face F of P if it has full row rank and the affine
space generated by F can be written as {x : Mx = d} for some vector d of appropriate
size. If P ⊆ Rn and F is a face of P , then, we have that dim(F ) = n− rank(M), where
M is a face-defining matrix of F .

The k-dilation of a polyhedron P = {x : Ax ≤ b} is the polyhedron kP = {x : Ax ≤
kb}, where k ∈ Q>0. For a vector t the t-translation of P is t+ P = {t+ x : x ∈ P}.

(Box-)Integer Polyhedra A polyhedron is integer if all its faces contain an integer
point. Specifically, a polytope is integer if and only if it is the convex hull of integer points.
A polyhedron is box-integer if its intersection with the box {x : ℓ ≤ x ≤ u} is integer for all
integer vectors ℓ and u. Similar to the case of box-TDIness, a box is indeed the polyhedron
defined by box-constraints, and ℓ and u may have some unbounded components.

Figure 1 shows a box-integer polytope, Figure 2 shows an integer polytope that is not
box-integer.

A polyhedron is principally box-integer if all integer k-dilations are also box-integer.
For example, one can see that in R2, these polyhedra are exactly those whose interior
angles are multiples of π

4
. A polyhedron is fully box-integer if it is integer and principally

box-integer (as the example in Figure 1).

Cones A (polyhedral) cone is the set of points satisfying a linear system of the form
Ax ≤ 0. A cone C can also be described as the set of non-negative combinations of a finite
set of vectors R. That is, C = {x : x =

∑
αiR

i, αi ≥ 0}, and we say that C is generated
by R, while the elements of R are called rays. We denote by cone(R) the cone generated
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Figure 1: a) An example of an integer polytope in R2; b) A simple example showing that
the intersection with an integer box preserves integrality; c) An example showing that the
polytope P is fully box-integer.
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Figure 2: a) An example of an integer polytope in R2; b) Shows that this polytope is not
box-integer.

by R. Sometimes we will restrict ourselves to the integer non-negative combinations of a
set of finite vectors R, called the integer cone of R and denoted by int.cone(R).

A conic polyhedron is a polyhedron that is a cone up to translation, that is C =
{t+x : Ax ≤ 0}, for some t ∈ Rn. Of course, C is a conic polyhedron if C = {x : Ax ≤ At},
for some t ∈ Rn. For a given face F of a polyhedron P = {x : Ax ≤ b}, the tangent cone in
F is the conic polyhedron CF = {x : AFx ≤ bF}. Whenever F is a minimal inclusion-wise
face of P , CF is called minimal tangent cone of P . Every polyhedron is the intersection
of its minimal tangent cones.

The polar of a cone C = {x : Ax ≤ 0} is the cone C∗ = {x′ : z⊤x′ ≤ 0, for all z ∈ C}.
One can see that C∗∗ = C. Practically, C∗ is the cone generated by the columns of A⊤.
If CF is the tangent cone of a face F of a polyhedron P , and t ∈ F , then, (−t + CF )

∗ is
the set of vectors w such that max{w⊤x : x ∈ P} is achieved by all points of F . We refer
to it as the polar cone of F (note that the polar cone of a face is also referred to as the
normal cone).

2.2 Unimodularity and Generalizations

The integrality of a polyhedron can sometimes be deduced from the matrix describing
it. We start by recalling two classical definitions in combinatorial optimization and a few
well-known related results.

Unimodular Matrices A m×n integer matrix is unimodular if it has full row rank and
all determinants of its square submatrices of rank m are ±1. The following classical result
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of Dantzig and Veinnot gives a sufficient condition for the integrality of a polyhedron.

Theorem 2.1 (Dantzig and Veinnot [34]). Let A be a full row rank matrix. Then, the
polyhedron {x : Ax = b, x ≥ 0} is integer for every integer vector b if and only if A is
unimodular.

Totally Unimodular Matrices A matrix is totally unimodular (TU) if the determi-
nant of every square submatrix is in {−1, 0, 1}. For totally unimodular matrices the
following result holds.

Theorem 2.2 (Hoffman and Krustal [69]). The polyhedron {x : Ax ≤ b} is box-integer
for every integer vector b if and only if A is TU.

TU matrices have been largely studied. Schrijver [90] gives the following historical
line on the results about the recognition of TU matrices: Auslander and Trent [2, 3],
Gould [58], Tutte [96], and Bixby and Cunningham [9]. A milestone result is given by
Seymour [93], who showed a decomposition technique for regular matroids, yielding to a
polynomial-time algorithm to recognize whether a given matrix is TU, later implemented
by Truemper [95].

Different characterizations are known for TU matrices. We refer to [90, Theorem
19.3] for several of them. In this paper, we use the following one, due to Ghouila-Houri
(sometimes referred to as the equitable bicoloring of a matrix [24, Section 4.2]).

Theorem 2.3 (Ghouila-Houri [52]). A matrix is TU if and only if each subset of its rows
can be partitioned into two parts such that the sum of the rows in one part minus the sum
of the row in the other part is a 0,±1-vector.

We provide some definitions generalizing unimodularity and total unimodularity which
turn out to be useful due to recent advances (see Section 4.1).

Equimodular Matrices A m×n rational matrix is equimodular if it has full row rank
and all its square submatrices of rank m have the same determinant in absolute value. The
following theorem links equimodularity, entry-wise integrality, and total unimodularity.

Theorem 2.4 (Heller [65]). For a full row rank m×n matrix A, the following statements
are equivalent.

• A is equimodular;
• For each non-singular m×m submatrix B of A, B−1A is integer;
• For each non-singular m×m submatrix B of A, B−1A is a 0,±1-matrix;
• For each non-singular m×m submatrix B of A, B−1A is TU;
• There exists a non-singular m×m submatrix B of A such that B−1A is TU.

A combinatorial interpretation of Theorem 2.4 might be the following: if A is equimod-
ular, all columns of A are 0,±1 combinations of any maximal set of linearly independent
columns.
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Totally Equimodular Matrices A matrix is totally equimodular (TE) if every subset
of linearly independent rows is equimodular. By definition, it follows that for each row,
all non-zero entries are equal, up to the sign. Thus, one may assume TE matrices to be
0,±1 entry-wise, as we can always normalize any row of a TE matrix by dividing it by
the corresponding non-zero value. Naturally, every TU matrix is a TE matrix for which
all minors are bounded by 1 in absolute value. A simple example of TE matrix that is
not TU is: [

1 −1 1
1 1 −1

]
.

It is easy to verify that this is the smallest non-square ±1-matrix with this property.

TE matrices recently rose as a subject of interest due to their connection with box-
TDIness. In particular, Chervet et al. [22] proved three different characterizations of TE
matrices, which we report below.

Theorem 2.5 (Chervet et al. [22]). A square non-singular matrix A is TE if and only if
(A⊤)−1 is TE.

Theorem 2.5 generalizes an already known fact for TU matrices. Indeed, it is straight-
forward to see that if M is a TU matrix, then M⊤ and M−1 (whenever M is non-singular)
are TU.

Theorem 2.6 (Chervet et al. [22]). A matrix A is TE if and only if, after any sequence
of Gaussian pivots and removals of a row and a column, the resulting matrix is such that
in each row, all the nonzero entries have the same absolute value.

Theorem 2.6 extends a well-known characterization of TU matrices: indeed, a matrix
is TU if and only if any sequence of Gaussian pivots and removals of a row and a column
yields a 0,±1-matrix.

Finally, in the same work, Chervet et al. also proved that a full row rank matrix is
TE if and only if its rows can be partitioned into a TU matrix and a collection of specific
TE blocks—each not TU—such that the removal of any row from these blocks yields a
TU matrix. One can see that all minors of a TE matrix must be powers of 2 via Gaussian
elimination. Thanks to their decomposition theorem, Chervet et al. strengthened this
result and obtained the following.

Theorem 2.7 (Chervet et al. [22]). The absolute value of the determinant of a TE 0,±1-
matrix of size n is upper bounded by 2n.

Note that the bound given in Theorem 2.7 is tight for some matrices, for instance, for
the one given below: 

1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 1

 .

One can prove via brute-force computation that this is the smallest TE matrix with
determinant equal to 2n, where n is the number of rows. Currently, the only known TE
0,±1-matrices having this property have size 4 and 6. This leaves open the following
question, first proposed by Chervet et al. [22].

Open Question 2.8. Which are the TE 0,±1-matrices of size n whose determinant
absolute value is exactly 2n?
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3 Fundamentals
This section aims to examine the general properties of (box-)TDI systems and box-TDI
polyhedra as represented in Figure 3. A particular emphasis is devoted to their funda-
mental algebraic properties together with their connection with polyhedral integrality.
We review basic linear algebraic operations and their impact on (box-)TDIness.

Box-TDI system

Hilbert Basis

Box-Hilbert Basis

TDI system

Integer Polyhedron

Box-TDI Polyhedron

Theorem 3.8

Theorem 3.13

Theorem
3.1

Figure 3: A schematic representation of the results discussed in this section. Each arrow
indicates an equivalence between the different objects.

3.1 The Meaning of TDIness

The meaning of the definition of TDI systems, as introduced by Edmonds and Giles,
may not be evident at first sight. Their formulation may appear abstract, yet it encodes
deep structural properties that have significant implications in combinatorial optimiza-
tion. In this section, we analyze the rationale behind this definition and explore its main
consequences.

Finitness of the Optimum The Duality Theorem [63, Section 0.1] implies that if the
primal problem is unbounded, then the dual has no feasible solution. Thus, the optimum
of the maximization problem of Equation (1) has to be finite for defining an optimal
solution of the dual problem.

Integrality of the Cost Function We want to show the necessity of requiring that
the cost vector w has to be integral in Equation (1). Indeed, no system has a dual integer
solution for all rational cost vectors. To see this, consider the problem max{w⊤x : Ax ≤ b}
whose dual has an integer optimum for a given rational w. Then, there exists a k such
that kA⊤y = kw is a system with integer coefficients. If we add ε ∈ (0, 1) to the right-
hand side of the equation, we obtain that an integer combination of y equals a non-integer
value, that is, at least one component of y is not integer. Consequently, the dual problem
of max{(w + 1

k
ε)⊤x : Ax ≤ b} has no integer solution.
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Min-max Relations TDIness is strongly related to min-max relations. Many combina-
torial min-max relationships stem from the fact that certain linear programs have integer
optima (A classical example is the Max-flow Min-cut Theorem [49], that we discuss in
Section 7.2). When this happens, we can use the Duality Theorem to deduce a min-max
relationship. Indeed, we can always set up the following chain of inequalities:

max{w⊤x : Ax ≤ b, x ∈ Zn
≥0} ≤(a) max{w⊤x : Ax ≤ b, x ≥ 0} =(b)

= min{yb : yA ≥ w, y ≥ 0} ≤(c) min{yb : yA ≥ w, y ∈ Zm
≥0}.

(2)

Inequalities (2) give a bound on the value of the optimal solutions to a combinatorial
optimization problem, that is the optimal value of another optimization problem. Equal-
ity (b) is a consequence of the Duality Theorem. When the system Ax ≤ b describes an
integer polyhedron, inequality (a) is an equality. Moreover, inequality (c) is an equality
whenever Ax ≤ b is TDI. To conclude, if b is integer and Ax ≤ b is TDI, all the elements
of (2) are equal for all integer w.

Polyhedral Integrality The considerations above prove that a polyhedron is integer
whenever it is described by a TDI system with integer right-hand side. Edmonds and
Giles also proved the converse.

Theorem 3.1 (Edmonds and Giles [45]). A polyhedron P is integer if and only if there
is a TDI system Ax ≤ b such that P = {x : Ax ≤ b} and b is integer.

It is important to stress that, although every polyhedron (or, equivalently, every linear
program) can be described (formulated) using a TDI system, it is not the TDIness alone
that guarantees integrality. Instead, integrality is certified only when the corresponding
right-hand side is integral. Since recognizing whether a given polyhedron is integer is a
well-known co-NP-complete problem [83], TDIness has emerged as a property extensively
studied to establish polyhedral integrality. A notable example is the work of Weisman-
tel [99], who provided a linear description of a special case of knapsack polytopes via
TDIness.

3.2 On the Existence of TDI systems

So far, we saw why TDI systems are relevant, but how do we deal with them? Is it always
possible to find a TDI system describing a polyhedron? And if the answer is affirmative,
how can we do that? The following result addresses the fundamental question about the
existence of a TDI system.

Theorem 3.2 (Giles and Pulleyblank [55]). Every rational polyhedron can be described
by a TDI system Ax ≤ b, with A integer.

Theorem 3.2 guarantees the existence of a TDI system. However, there are essentially
two practical ways to derive a TDI system from a non-TDI one. One approach consists
in dividing the existing constraints by some integer, while the other involves adding re-
dundant constraints. Neither method modifies the feasible region, and therefore, they are
not to be seen as algorithms for computing the convex hull of a point set.

8



Division Given a system Ax ≤ b, we can always obtain a TDI system describing the
same set of points simply by dividing the inequalities by an appropriately chosen integer.

Theorem 3.3 (Giles and Pulleyblank [55]). For each rational system Ax ≤ b there exists
a natural number k such that 1

k
Ax ≤ 1

k
b is TDI.

A valid value for k is the least common multiple among the minors of the constraint
matrix. Unfortunately, finding this value is at least as hard as knowing the maximal
minor, which is an NP-hard task even in the case of the incidence matrix of a graph [61].
In particular, the case of edge-vertex incidence matrices of graphs is relevant as they are
always TE [20], and therefore related to a box-TDIness as we will see later in Section 4.1.
A purely theoretical value that one can use to ensure the TDIness of a system is f(A)!,
where f is any function giving an upper bound of the minors of the constraint matrix
A. However, this value is impractical, as it explodes even for 0,±1-matrices as in the
well-known case of Hadamard matrices [64].

Addition of Constraints The second technique that we could use to obtain a TDI
system is to add a set of redundant constraints to a non-TDI system.

Theorem 3.4 (Giles and Pulleyblank [55]). Let Ax ≤ b be a non-TDI system, then there
exists a TDI system A′x ≤ b′ obtained by adding redundant constraints to Ax ≤ b.

Depending on the objective, the two techniques have different applications. If we are
looking for a min-max relation between non-integer objects, if we are looking for the 1

k
-

integrality of a polyhedron, or if we want a bound on the gap between two combinatorial
values, dividing a system by an integer number can lead to good results. On the other
hand, for purely combinatorial applications, like proving the integrality of a polyhedron,
or describing a min-max relation between combinatorial objects, we usually look for an
integer TDI system. In this case, a valid approach to reach TDIness is to add affine
combinations of the existing constraints.

From what we saw in this section, it easily follows that a polyhedron can be gener-
ally described by several TDI systems. Schrijver [88] studied the case of minimal TDI
systems, that is TDI systems such that the removal of any constraint disrupts TDIness.
Minimal TDI systems whose constraints matrix is integer are called Schrijver systems. In
particular, he proved that, for full-dimensional polyhedra, the following result holds.

Theorem 3.5 (Schrijver [88]). A full-dimensional polyhedron admits a unique Schrijver
system describing it.

3.3 Box-Totally Dual Integral Polyhedra

Unlike TDIness, not every polyhedron admits a box-TDI description. For several years,
box-TDIness was regarded merely as a stricter version of TDIness, until Cook [26] estab-
lished the following.

Theorem 3.6 (Cook [26]). If a polyhedron can be described by a box-TDI system, then
every TDI system describing it is also box-TDI.

Theorem 3.6 highlights the first fundamental difference between TDIness and box-
TDIness: while TDIness is, by all means, a property of systems, box-TDIness is essentially
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a polyhedral property. This motivates the following definition: a polyhedron is box-TDI
if it can be described by a box-TDI system. Therefore, Theorem 3.2 cannot be restated
by replacing TDIness with box-TDIness. Furthermore, Theorems 3.2 and 3.6 justify the
study of box-TDI polyhedra instead of box-TDI systems, as Theorem 3.6 implies that box-
TDIness only depends on the polyhedron itself. Remark that as for TDIness, box-TDIness
does not imply polyhedral integrality.

Examples of box-TDI polyhedra are all those described by TU and TE matrices (see
Section 4 for more details). While the example below presents a non-box-TDI polyhedron.

Example 3.7 (A non-box-TDI polyhedron). Let us consider the polyhedron P = {x :
x1 − 2x2 = 0}. Equation x1 − 2x2 = 0 describes P and forms a TDI system. However,
the polyhedron P ′ = P ∩{x : 0 ≤ x1 ≤ 1} is not integer since it has (1, 1

2
) as a vertex. By

Theorem 3.1, the system describing P ′ is not TDI, thus, P is not box-TDI by Theorem 3.6.

Min-max Relations Compared to TDI systems, fewer efforts have been made to ex-
plore min-max relations derived from box-TDI systems. A case in which this has been
done is the well-known Max-flow Min-cut Theorem (see Section 7.2), where changing the
upper bound on the capacities over the arcs does not affect the interpretation of the dual
problem.

In general, when we add box-constraints to the primal problem, the new problem
arising is a capacitated version of the original problem, on the contrary, the dual problem
substantially differs from the original, and we often lack an explicit interpretation. Cornaz
et al. [29] proposed an interpretation of the dual of the box-TDI system describing the
multicut cone for series-parallel graphs namely the trader multiflow problem.

An analogous economic interpretation can be derived as follows. Consider the linear
problem:

max{w⊤x : Ax ≤ b, x ≥ 0}, (3)

where the linear system Ax ≤ b is box-TDI. When we introduce additional box-constraints,
the linear programming duality transforms to:

max {w⊤x : Ax ≤ b, x ≥ 0, ℓ ≤ x ≤ u} =
= min {b⊤y + u⊤zu − ℓ⊤zℓ : A

⊤y + zu − zℓ ≥ w, y ≥ 0, zu ≥ 0, zℓ ≥ 0}. (4)

By box-TDIness definition, the minimization problem of the linear programming du-
ality equation (4) admits an integer optimum for all rational ℓ and u, with 0 ≤ ℓ ≤ u,
and all integer w such that the maximization problem admits a finite optimum. To un-
derstand the nature of the minimization in (4), we compare it to the dual of Problem (3)
min{b⊤y : A⊤y ≥ w, y ≥ 0}. The variables zu allow an otherwise non-feasible solution
y to become feasible but introduce an additional cost to reach feasibility. The opposite
happens for variables zℓ: when zℓ > 0, since ℓ ≥ 0, we are improving the value of the
objective function, at the cost of tightening some constraints. In this context, the com-
ponents of the vectors zu and zℓ are the amount of resources that we exchange with a
market: when there is a deficit of the resource i, we can compensate by purchasing it at
a price ui. Similarly, if we have a surplus of the resource i, we can sell it at a value ℓi.
In conclusion, this gives another perspective to the interest in studying box-TDI systems
beyond their combinatorial structure, and motivates further investigation into classes of
polyhedra for which such interpretations can be derived.
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Figure 4: A visual representation: u and v form a Hilbert basis as every integer point in
their cone is given by some non-negative integer combination of them.

3.4 Algebraic Properties of (box-)TDI Systems

Several algebraic properties have been established for (box-)TDI systems. We present
those that characterize them.

Hilbert Bases TDI systems can be characterized in terms of Hilbert bases. A set
{v1, . . . , vk} of vectors is a Hilbert basis if each integer vector in its conic hull can be
expressed as a non-negative integer combination of v1, . . . , vk. Figure 4 provides a rep-
resentation of a Hilbert basis. If, for each face of the polyhedron, the set of row vectors
corresponding to the tight constraints forms a Hilbert basis, then any vertex of the dual
polyhedron that is an integer combination of the dual coefficients is itself integral.

The following central result was proved by Giles and Pulleyblank [55].

Theorem 3.8 (Giles and Pulleyblank [55]). A system Ax ≤ b is TDI if and only if for
every face F of P = {x : Ax ≤ b}, the rows of A associated with tight constraints for F
form a Hilbert basis.

The statement of Theorem 3.8 is still valid for TDI systems if we consider only minimal
faces, as stated by the following.

Theorem 3.9. A system Ax ≤ b is TDI if and only if for every minimal face F of
P = {x : Ax ≤ b}, the rows of A associated with tight constraints for F form a Hilbert
basis.

Theorem 3.9 gives a characterization of Hilbert bases in terms of TDIness, and, con-
versely, provides a nice result for proving TDIness of systems describing polyhedral cones.

Theorem 3.10. A system Ax ≤ 0 is TDI if and only if the rows of A form a Hilbert
basis.

Hilbert bases give an intuition on how Theorem 3.3 and Theorem 3.4 can be used
to build a TDI system. We can now show how the two techniques work, thanks to the
following example, taken from [57].
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n2

Figure 5: In orange the integer conic polyhedron defined in Example 3.11 and in green
the conic polyhedron generated by n1 and n2. The straight lines s1, s2 and s3 are defined
by x1 + 2x2 = 6, 2x1 + x2 = 6, and x1 + x2 = 4 respectively. While w = [1, 1]⊤ is the cost
vector, and n1 and n2 are the normal vectors to s1 and s2 pointed at (2, 2).

Example 3.11 (Building a TDI system). Consider the linear program

max

{
x1 + x2 :

[
2 1
1 2

]
x ≤

[
6
6

]}
, (5)

whose corresponding polytope is depicted in Figure 5. By considering the dual problem,
one may see that

argmin
{
6y1 + 6y2 :

[
2 1
1 2

]
y =

[
1
1

]
y ≥ 0

}
=

(
1

3
,
1

3

)
,

hence, the system of Problem (5) is not TDI. Indeed, the tight constraints at this vertex
solution of the maximization problem have normal vectors [1, 2]⊤ and [2, 1]⊤, and it is not
possible to express the cost vector [1, 1]⊤ as an integer combination of both of them.

Now, consider the following problems equivalent to Problem (5):

max

{
x1 + x2 :

1

3

[
2 1
1 2

]
x ≤

[
2
2

]}
and max

x1 + x2 :

2 1
1 2
1 1

x ≤

66
4

 .

The integer optima of their corresponding dual problems

min

{
2y1 + 2y2 :

1

3

[
2 1
1 2

]
y =

[
1
1

]
, y ≥ 0

}
and

min

{
6y1 + 6y2 + 4y3 :

[
2 1 1
1 2 1

]
y =

[
1
1

]
, y ≥ 0

}
are the integer points (1, 1) and (0, 0, 1), respectively.

More generally, let H1 =
{

1
3
[2, 1]⊤, 1

3
[1, 2]⊤

}
and H2 =

{
[2, 1]⊤, [1, 2]⊤, [1, 1]⊤

}
, then

one can see that cone
(
[2, 1]⊤, [1, 2]⊤

)
∩Z2 = int.cone (H1) = int.cone (H2) . Therefore, H1

and H2 are two Hilbert bases, whose elements correspond to active constraints in (2, 2), the
only minimal face of the polyhedron. By Theorem 3.9, we deduce that the corresponding
systems to H1 and H2 are TDI.

12



We conclude the discussion about Hilbert bases by addressing a frequent source of
confusion regarding the definition of Hilbert bases. Some authors require a Hilbert basis
to be inclusion-wise minimal [18, 92], consistently with the classical notion of basis in a
linear space. Other authors define Hilbert basis as a set of vectors R such that int.cone(R)
coincides with the intersection of cone(R) with the lattice generated by R [56,73]. When
dealing with TDI systems, the definition we adopt—the one originally introduced by Giles
and Pulleyblank [55]—and the latter are not equivalent. Indeed, one can see that, when
the elements of R are integer vectors, the intersection of cone(R) with the lattice generated
by R is strictly contained in cone(R) ∩ Zn in general.

Integer Solutions and Local Unimodularity A linear Diophantine equation is a
linear equation with integer coefficients for which we consider only integer solutions. The
existence of an integer optimum of a dual problem is equivalent to the existence of a
solution to an associated system of Diophantine equations. The following theorem clarifies
this statement.

Theorem 3.12 (Corollary 4.1.c, [90]). Let A be an integer m× n matrix having full row
rank. Then the following are equivalent:

• the greatest common divisor of the non-zero minors of A of order m is 1;
• the system Ax = b has an integer solution x, for each integer vector b;
• for each vector y, if A⊤y is integer, then y is integer;
• the rows of A are linearly independent and form a Hilbert basis.

Therefore, one can see that any system with integer constraint matrix respecting the
first point of Theorem 3.12 is TDI. However, the condition is too restrictive for the general
case: we need only the rows of A corresponding to the inequalities that are tight for each
vertex to form a Hilbert basis. This motivates the following definition.

The linear system Ax ≤ b describing a polyhedron in Qm is locally unimodular in
a vertex p if the greatest common divisor of the m × m subdeterminants of Ap is 1,
where Ap are the rows of A corresponding to the inequalities that are tight at p. As
remarked by Gerards and Sebő [51], if the system Ax ≤ b is TDI, then Ax ≤ b is locally
unimodular in every vertex. Moreover, they strengthen this result as follows. A system
Ax ≤ b is locally strongly unimodular in a vertex p of P = {x : Ax ≤ b} ⊆ Qm if Ap has a
m×m submatrix with determinant ±1. Then, a TDI system describing a full-dimensional
pointed polyhedron is locally strongly unimodular at each vertex.

Box-Hilbert Bases In [27], Cook introduced an analogous definition of Hilbert bases
for box-TDI systems, to which the first known characterizations of box-TDI systems were
associated. A set of integer vectors is a box-Hilbert basis if it is a Hilbert basis that is
closed under the operation of adding any number of vectors ±ei, where ei’s are the vectors
of the canonical basis of Qn. Note that this notion came directly from the definitions of
box-TDI systems and Hilbert bases. Indeed, this requirement corresponds precisely to
preserving TDIness under the addition of a box xi ≤ ui (or xi ≥ ℓi), for some rational ui

(respectively ℓi). In contrast to Hilbert bases, box-Hilbert bases have not been studied as
extensively, as evidenced by the limited literature on the subject.

As one may expect, not all Hilbert bases are box-Hilbert bases. For example, {[1, 2]⊤,
[1, 3]⊤} is a Hilbert basis but

{
[1, 2]⊤, [1, 3]⊤,−e1

}
is not. A simple example of a box-
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Hilbert basis is
{
[1
2
, 1
2
]⊤, [1

2
,−1

2
]⊤
}
. The following result is the box-TDIness counterpart

of Theorem 3.8.

Theorem 3.13 (Cook [27]). A system Ax ≤ b is box-TDI if and only if for every face
F of P = {x : Ax ≤ b}, the rows of A associated with tight constraints for F form a
box-Hilbert basis.

Note that results on minimal faces analogous to Theorems 3.9 and 3.10 do not hold
for box-TDI polyhedra (see Section 5 for more details).

3.5 Linear Algebra Operations and (box-)TDIness

As we saw in Example 3.11, TDIness is not necessarily preserved across different systems
defining the same polyhedron. Indeed, TDIness and box-TDIness exhibit subtle behaviors
under linear algebra operations that are typically considered “safe”, as they preserve the
feasible region defined by the system. In this section, we describe several operations
that either preserve or disrupt TDIness and box-TDIness. Naturally, if an operation
disrupts TDIness, it also disrupts system box-TDIness; however, we will explicitly indicate
whenever the two properties behave differently. For all unreferenced results, we refer
to [90, Section 22.5]. Furthermore, the interested reader is referred to Cook’s work [26]
for further results.

The multiplication and the division by integers affect TDI systems differently. In fact,
multiplying (some of) the constraints defining a TDI system by an integer often disrupts
TDIness—even if it does not modify the properties of the corresponding polyhedron. This
is because multiplying a constraint by an integer k stretches the corresponding normal
vector h, which belongs to a Hilbert basis H associated with the polar cone of a certain
face. As a result, it can happen that some points of int.cone(H) = cone(H) ∩ Zm do not
belong to int.cone(H \{h}∪{kh}). On the contrary, dividing a constraint by k shrinks the
corresponding normal vector h. So if h′ = 1

k
h, we have that, for every u ∈ cone(H)∩Zm,

u = αh +
∑

hi∈H\{h} αihi = kαh′ +
∑

hi∈H\{h} αihi, where all αi and α are non-negative
integers, therefore H \ {h} ∪ {h′} is a Hilbert basis. The following elementary example
should convince the reader of this fact.

Example 3.14 (Integer Multiplication). Consider the system x1 ≤ 1, x2 ≤ 1. It is TDI
because its constraint matrix is TU. However, if we multiply one of the constraints by 2
and consider the linear programming duality equation

max{x1 + x2 : 2x1 ≤ 2, x2 ≤ 1} = min{2y1 + y2 : 2y1 = 1, y2 = 1, y ≥ 0},

we see that the unique solution for the minimization problem is
(
1
2
, 1
)
, which is not integer.

Observation 3.15 (Integer Division). Let Ax ≤ b be a (box-)TDI system, and k ∈ Z>0.
The system obtained by dividing by k both sides of any number of its constraints is (box-
)TDI.

Observation 3.16 (Multiplication of the Right-Hand Side). Let Ax ≤ b and α ∈ Q>0.
Then Ax ≤ b is (box-)TDI if and only if Ax ≤ αb is (box-)TDI.

In contrast to the previous operations, the one presented in Observation 3.16 modifies
the original feasible region, as it corresponds to a dilation of the polyhedron. Nonetheless,
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Figure 6: a) The conic polyhedron defined in Example 3.18. b) The projection of P ∩
{(x, t) : t1 = 0, t2 = 1} onto x1 and x2.

TDIness and box-TDIness are preserved by Theorems 3.8 and 3.13, since the polar cones
of the faces of a polyhedron remain invariant under dilation.

TDIness is preserved under the addition of slack variables. However, this behavior
does not hold for box-TDI systems and polyhedra. The latter disruption depends on
the fact that adding columns of the identity matrix to an equimodular matrix does not
preserve equimodularity, hence disrupting box-TDIness by Theorem 4.1.

Observation 3.17 (Adding and Removing Slack Variables). The system Ax ≤ b, ax ≤ p,
where a is an integer vector, is TDI if and only if the system Ax ≤ b, ax+ t = p, t ≥ 0,
where t is a new variable, is TDI.

Example 3.18 (Adding Slack Variables Disrupts Box-TDIness). Consider the following
system 

x1 + x2 ≤ 1,
x1 − x2 ≤ 1,
x1 ≤ 1,

(6)

whose feasible region is represented in Figure 6. This system is box-TDI by Theorem 3.13,
since

{
[1, 1]⊤, [1, 0]⊤, [1,−1]⊤

}
,
{
[1, 1]⊤

}
, and

{
[1,−1]⊤

}
are all box-Hilbert bases.

We now add the slack variables t to System (6). The corresponding polyhedron is
P = {(x, t) : x1 + x2 + t1 = 1, x1 − x2 + t2 = 1, x1 + t3 = 1, t ≥ 0}. If we add the
box-constraints t1 = 0 and t2 = 1, the only point of P ∩ {(x, t) : t1 = 0, t2 = 1} is
p = (1

2
, 1
2
, 0, 1, 1

2
) (see Figure 6). Thus, the system describing P ∩ {(x, t) : t1 = 0, t2 = 1}

is not TDI by Theorem 3.1, since p is not integer, and hence, the system describing P is
not box-TDI.

Moreover, adding the slack variables to System 6 preserves TDIness by Observa-
tion 3.17. However, the resulting system is not box-TDI as proved above. Therefore,
P is not box-TDI by Theorem 3.6.

Other operations slightly changing the system that preserve (box-)TDIness are the
following.

Observation 3.19 (Column Duplication). Let Ax ≤ b be a system, and let α be a column
of A. Then the system Ax+αy ≤ b, where y ∈ R is a new variable, is TDI if and only if
Ax ≤ b is.

Chervet et al. [21] proved that all box-integer polyhedra can be represented by box-
integer polyhedra with only vertices with non-negative coordinates. This result can be
easily extended to box-TDI polyhedra.

15



TU Constraint
Matrix

Box-TDI
System

TE Constraint
Matrix

Box-TDI
Polyhedron

Equimodular
Face-defining

Matrices

Integer
ESP System

Definition

Definition Definition

Defin
itio

n

Theorem 4.1

Theorem 4.11 Theorem 4.8

Theorem 4.6

Theorem
4.7

Figure 7: A schematic representation of the results connecting box-TDIness and matrices.
Each arrow indicates an implication between the different objects.

Observation 3.20 (Splitting Variables). Let P = {x : Ax ≤ b} be a box-TDI polyhe-
dron. The polyhedron obtained by replacing any unbounded variable xi with x+

i −x−
i , with

x+
i , x

−
i ≥ 0 is box-TDI.

On a different direction, Cook [26, 27] proved that the Fourier-Motzkin elimination
procedure preserves (box-)TDIness for systems that have 0,±1 coefficients.

Theorem 3.21 (Fourier-Motzkin Elimination). Let Ax ≤ b be a (box-)TDI system. If
each coefficient of the variable xi is in {−1, 0,+1}, then the system obtained by eliminating
xi via Fourier-Motzkin is also (box-)TDI.

We conclude this section with the following.

Observation 3.22. Let Ax ≤ b be a (box-)TDI system. Then, the system of A(x− t) ≤ b
is (box-)TDI for any rational vector t. In particular, rational translations preserve box-
TDIness of polyhedra.

Proof. Let F be a face of the polyhedron described by the (box-)TDI system Ax ≤ b, and
F ′ be the face corresponding to F of the polyhedron described by A(x − t) ≤ b. Then,
the tight rows of A to F are the same as those of F ′. So, they form a (box-)Hilbert basis,
and hence the system is (box-)TDI by Theorem 3.8 (Theorem 3.13).

4 Systems and Matrices
Establishing that a system is TDI is one way to certify the integrality of a given poly-
hedron. Many proofs of integrality and (box-)TDIness rely on the total unimodularity
of the defining matrix. This is particularly true for box-TDI systems, largely because no
matricial characterization of box-TDI polyhedra was available until recently. This section
focuses on matricial properties of box-TDIness (see Figure 7).

16



4.1 Matricial Characterization

We open this section by introducing a characterization of box-TDI polyhedra in terms of
matrices. This result, due to Chervet et al. [21], is considered both an operative tool for
box-TDIness proofs and a generalization of previously known results on the topic.

Theorem 4.1 (Chervet et al. [21]). For a polyhedron P , the following statements are
equivalent:

• P is box-TDI;
• every face-defining matrix of P is equimodular;
• every face of P can be described by an equimodular matrix;
• every face of P can be described by a TU matrix;
• the linear space of every face of P is generated by the columns of a TU matrix.

Note that the fourth statement of Theorem 4.1 does not imply that every face-defining
matrix of a box-TDI polyhedron is TU. In fact, the fourth statement is a direct conse-
quence of Theorem 2.4, which involves a linear transformation applied to the columns of
a face-defining matrix. For example, consider the vertex (1, 0) of the cone described in

Example 3.18. A face-defining matrix for this vertex is A =

[
1 1
1 −1

]
. By Theorem 2.4,

follows that I2x = A−11 =

[
1
0

]
, where I2 is the identity matrix of size 2, describes (1, 0).

However, the corresponding polyhedral cone {x : I2x ≤
[
1
0

]
} does not contain the original

set of points, and therefore does not allow a valid formulation for the original problem.
It remains unclear whether box-TDI polyhedra always allow a description for which

the face-defining matrix of each of their faces is TU. We will return to this point later in
this section, in light of a classical result by Schrijver.

Theorem 4.1 leads to another drastic differentiation between TDIness and box-TDIness.
Specifically, Theorem 4.1 states that a polyhedron is P box-TDI if and only if every face
of P can be described by a minimal system whose corresponding matrix is equimodular,
in contrast with one of the main techniques used to obtain TDIness, which is adding
redundant constraints. Moreover, Theorem 4.1 provides a matrix-based proof that every
face of a box-TDI polyhedron is also box-TDI, as previously observed by Edmonds and
Giles.

Observation 4.2 (Edmonds and Giles [45]). Every face of a box-TDI polyhedron is box-
TDI.

Another straightforward consequence of Theorem 4.1, a full-dimensional box-TDI
polyhedron can be described by a 0,±1-matrix, since each facet is described by a unique
inequality, up to scalar multiplication. Nonetheless, even this fact was already known.

Theorem 4.3 (Edmonds and Giles [45]). Any box-TDI polyhedron can be described by a
0,±1-matrix.

Surprisingly, box-TDI systems can have coefficients that are not in {−1, 0,+1}, as we
show in the following example originally appearing in [90, Section 22.5]. A key remark in
this context is that, while all descriptions of a box-TDI polyhedron adhere to Theorem 4.1,
this characterization provides no information about their TDIness.
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Example 4.4 (A Minimal Box-TDI System with non-Unitary Coefficients). Consider the
following matrices:

A =


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
2 1 1 1

 and A′ =


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


We want to show that the system Ax ≤ 0 is box-TDI, while A′x ≤ 0 is not. First, note
that the last row of A corresponds to a redundant inequality, that is, the two systems
above describe the same cone. Since A′ is a TE matrix, by definition of TE matrix
and Theorem 4.1, this cone is box-TDI. Secondarily, the vector [2, 1, 1, 1]⊤ belongs to the
cone generated by the rows of A′, and it cannot be obtained by a non-negative integer
combination of them. That is, the rows of A′ do not form a Hilbert basis. However,
since the least common multiple of the minors of A′ is 2, the system 1

2
A′x ≤ 0 is TDI

as seen in Section 3.2. Since [2, 1, 1, 1]⊤ is the only integer vector that one can obtain by
non-negative combination with coefficients at most 1

2
of the rows of A′, this is sufficient

to prove that the rows of A form a Hilbert basis.

In [90, Section 22.5], Schrijver also notes that no TU matrix can describe the cone given
in Example 4.4, implying (as was implicit until now) that not every box-TDI polyhedron
can be described by a TU matrix.

4.2 Sufficient Conditions for Box-TDIness

Different sufficient conditions for box-TDIness have been given over the years. For a long
time, most of the systems were proved to be box-TDI by showing that the corresponding
constraint matrix was TU. In the following section, we present some fundamental results
connecting TU matrices with box-TDI systems. We then provide a more recent result on
box-TDI polyhedra and TE matrices. Lastly, we present a relatively peculiar approach
first proposed by Ding and Zang [40], the ESP property.

4.2.1 Total Unimodularity

The characterization provided in Theorem 3.13 is not the only tool we can use to prove
the box-TDIness of a linear system. In fact, the following result of Schrijver provides
suitable sufficient conditions for proving it.

Theorem 4.5 (Schrijver [91], Theorem 5.35). Let Ax ≤ b be a linear system. Suppose
that for any vector c, max{c⊤x : Ax ≤ b} has (if finite) an optimal dual solution y ≥ 0
such that the rows of A corresponding to positive components of y form a TU submatrix
of A. Then, Ax ≤ b is box-TDI.

The hypotheses of Theorem 4.5 are too restrictive to characterize box-TDIness, as one
can see in Example 4.4. From a historical point of view, Theorem 4.5, is a consequence
Theorem 3.13 and the following classical result of Hoffman and Kruskal.

Theorem 4.6 (Hoffman and Kruskal [69]). An integer matrix A is TU if and only if the
system Ax ≤ b is box-TDI for every rational b.
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The TDIness guaranteed by Theorem 4.6 stems from Theorem 3.8. Indeed, the volume
spanned by any subset of rows of a TU matrix is either 0 or 1. Thus, all integer points in
the cone generated by these rows are achieved by the integer sum of them.

As TU matrices are well-characterized and recognizable in polynomial time, Theo-
rem 4.6 is one of the principal instruments used in the literature for proving (box-)TDIness
of systems.

4.2.2 Total Equimodularity

Despite the fundamental theoretical tool provided by Theorem 4.1, testing the equimod-
ularity of every face-defining matrix may be impractical. Indeed, building on this result,
Chervet et al. [20] proved that recognizing whether a given polyhedron is box-TDI is co-
NP-complete. This further motivates the study of TE matrices. By Theorem 4.1, every
polyhedron whose constraint matrix is TE is box-TDI. It turns out that this characterizes
TE matrices.

Theorem 4.7 (Chervet et al. [21]). A matrix A of Qm×n is TE if and only if the polyhe-
dron {x : Ax ≤ b} is box-TDI for all b ∈ Qm.

Theorem 4.7 shows a parallelism to Theorem 4.6, indeed, TE matrices are to box-TDI
polyhedra what TU matrices are to box-TDI systems.

4.2.3 Equitable Subpartitionability

In [40], Ding and Zang characterize the graphs with the min–max relation on packing
and covering cycles by defining a property for 0, 1-matrices. Later on, this property has
been extended for the case of box-Mengerian hypergraphs in [16]. To suit our purposes,
we present the matricial version of this property as given in [39], which generalizes the
Ghouila-Houri criterion (Theorem 2.3).

Consider a rational linear system Ax ≤ b, x ≥ 0, with A of size n × m. Let [n] =
{1, . . . , n} and [m] = {1, . . . ,m}. For any family Λ (with possibly repeated elements) of
elements of [n] and for any element c of [m], define b(Λ) :=

∑
r∈Λ br and dΛ(c) :=

∑
r∈Λ Arc.

An equitable subpartition of Λ is a couple of families Λ1 and Λ2 of elements of [n] such
that:

(E1) b(Λ1) + b(Λ2) ≤ b(Λ);

(E2) dΛ1(c) + dΛ2(c) ≥ dΛ(c) for all c ∈ [m];

(E3) min{dΛ1(c), dΛ2(c)} ≥ ⌊dΛ(c)/2⌋ for all c ∈ [m].

The system Ax ≤ b, x ≥ 0 is equitably subpartitionable (ESP) if every family Λ of elements
of [n] admits an equitable subpartition.

Theorem 4.8 (Ding et al. [39]). Every ESP system Ax ≤ b, x ≥ 0, with A integer, is
box-TDI.

In the same paper, the authors state that Theorem 4.8 can be extended by testing the
ESP property of every subset of inequalities tight for a face, in analogy with Theorem 4.5.

Interestingly, even though the nature of box-TDI systems relies on optimization prob-
lems, the ESP property provides a purely combinatorial tool for proving box-TDIness.
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Example 4.9 (Non-Integer ESP Systems are not Box-TDI). Consider the following sys-
tem: {

x1 − 1
2
x2 ≤ 0

x1, x2 ≥ 0

By Theorem 4.1, this system describes a cone that is not box-TDI, therefore, it is not a
box-TDI system. A simple computation shows that it is ESP with Λ1 = {1} and Λ2 = ∅.

The ESP property has resulted in characterizing the box-TDIness of some classes of
polyhedra [39]. On the other hand, there is no known counterexample showing that the
ESP property does not characterize box-TDIness in general. Thus, we leave the following
open question concerning ESP systems.

Open Question 4.10. Can every box-TDI polyhedron be described by an ESP system?

We answer this question for a few specific cases. Namely, we prove that the answer is
affirmative for systems associated with a TU matrix and for box-TDI affine spaces.

Theorem 4.11. Let A be a totally unimodular matrix, then the system Ax ≤ b, x ≥ 0 is
ESP.

Proof. We first observe that properties (E1) and (E2) hold whenever we take Λ1 and Λ2

that partition the elements of Λ. Moreover, taking Λ as a family with some elements
taken multiple times is no different than considering a system with some rows repeated.
As repeating rows of a TU matrix preserves the total unimodularity, we prove that for
every set Λ, there exists a partition of Λ respecting property (E3).

Since A is TU, by Theorem 2.3, for any set of rows Λ there exist Λ+ and Λ− that
partition Λ such that:

σ(c) = dΛ+(c)− dΛ−(c) ∈ {−1, 0, 1}, for all c ∈ [m].

As Λ+ and Λ− partition Λ properties (E1) and (E2) hold.
Property (E3) holds for the columns c such that σ(c) = 0: for these columns dΛ+(c) =

dΛ−(c) = dΛ(c)/2. On the other hand, when σ(c) = 1, we have that dΛ−(c) = dΛ+(c)− 1,
that implies dΛ−(c) = (dΛ(c) − 1)/2. The case where σ(c) = −1 is the same if we swap
the roles of Λ+ and Λ−.

Corollary 4.12. Every box-TDI polyhedron P = {x : Ax = b, x ≥ 0} admits an ESP
system describing it.

Proof. Suppose that P is non-empty and that A has full row rank. By Theorem 4.1, A is
an equimodular matrix. Hence, by Theorem 2.4, there exists a TU matrix A′ such that
P = {x : A′x = b′, x ≥ 0}. Thus, the system A′x = b′, x ≥ 0 is ESP by Theorem 4.11 and
the statement follows.

5 Polyhedra and Efficiency
In this section, we explore the geometric aspects of box-TDI polyhedra. In particular,
we explore the role played by tangent and polar cones in box-TDI characterizations.
Moreover, we discuss the diameter of box-TDI polyhedra, as it is known to be relevant in
optimization.
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As a consequence of Observation 3.16, one can see that the dilation of a box-TDI
polyhedron is still box-TDI. Thus, whenever the dilation of a box-TDI polyhedron is inte-
ger, integrality is preserved under intersection with integer boxes thanks to Theorems 3.1
and 3.6. Chervet et al. [21] provided a purely geometrical characterization of box-TDI
polyhedra in these terms.

Theorem 5.1 (Chervet et al. [21]). A polyhedron is box-TDI if and only if it is principally
box-integer.

Corollary 5.2 (Chervet et al. [21]). An integer polyhedron is box-TDI if and only if it is
fully box-integer.

5.1 Cones

Let C ⊆ Qn be a cone. Then, C has the box-property if for any vector r in C and any
partition {U,L} of {1, . . . , n}, there exists an integer vector r′ in C such that: r′i = ri
for any i for which ri is integer, ⌊ri⌋ ≤ r′i for any i ∈ L, and r′i ≤ ⌈ri⌉ for any i ∈ U .
Schrijver [90, Section 22.4] used an equivalent formulation: a cone C has the box-property
if, for any vector r in C, C contains a vertex of the integer box {x : ⌊r⌋ ≤ x ≤ ⌈r⌉}.
Theorem 5.3 (Schrijver [90], Theorem 22.9). A polyhedron P is box-TDI if and only if
the polar cone of each face of P has the box-property.

This result can be equivalently restated in terms of box-Hilbert bases. Indeed, any
polyhedron P can be described by a TDI system by Theorem 3.2. Hence, for each face F
of P , there exists a Hilbert basis generating the polar cone of F . Thus, P is box-TDI if
and only if every such Hilbert basis is indeed a box-Hilbert basis. This gives the following.

Theorem 5.4 (Cook [27]). Let H be a Hilbert basis and let C = cone(H). Then H is a
box-Hilbert basis if and only if C has the box-property.

Theorems 5.3 and 5.4 imply that verifying box-TDIness is a co-NP problem. In fact,
one can check in polynomial time if a given cone has the box-property [27]. Several other
results involving polyhedral operations like projections and dominants stem from this
result.

Since cones are invariant under dilations, the following stronger characterization holds.

Corollary 5.5 (Chervet et al. [21]). A cone is box-TDI if and only if it is box-integer.

Moreover, the generators of box-integer cones are 0,±1-vectors.

Observation 5.6 (Schrijver [90] Remark 22.2). Every box-TDI cone can be generated by
0,±1-vectors.

It is important to remark that the converse does not hold, as shown by the following
example due to Murota and Tamura [79]:

Example 5.7 (A non-box-TDI 0,±1-cone). Consider the following cone:

C = cone



1
1
0
1

 ,


0
1
1
1

 ,


1
0
1
1


.

One can see that intersecting C with {x : x1 = x2 = x3 = 1} gives the point (1, 1, 1, 3
2
)

which is not integer. Therefore, C is not box-integer.
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The intersection of all minimal tangent cones of a polyhedron gives the polyhedron
itself. Thus, Theorem 5.1 gives the following.

Theorem 5.8 (Chervet et al. [21]). A polyhedron is box-TDI if and only if every minimal
tangent cone is box-TDI.

We now can show that we cannot replace TDI with box-TDI in Theorem 3.9. In
particular, it is not sufficient to check if the rows associated with tight constraints for
every minimal face form a box-Hilbert basis to prove box-TDIness of a polyhedron. For
example, consider the cone C described by 2x1 + x2 ≤ 0 and x1 + x2 ≤ 0, and let D be
the cone in Figure 4. One can see that C and D are not box-TDI since they are not box-
integer, by Theorem 5.5. The unique minimal face of C is (0, 0), whose tight constraints
are 2x1 + x2 = 0 and x1 + x2 = 0. The vectors of these two rows are respectively u and v
generating D, and {u, v} is a box-Hilbert basis.

5.2 Polyhedral Operations and box-TDIness

This segment is dedicated to polyhedral operations and their interactions with box-
TDIness. We start with a trivial observation that follows from the definitions.

Observation 5.9 (Box Intersection). Box-TDIness is preserved under intersection with
rational boxes. Box-integrality is preserved under intersection with integer boxes.

Minkowski Sum The Minkowski sum of two polyhedra P and Q is the polyhedron
P + Q := {x : x = y + z, y ∈ P, z ∈ Q}. The dominant of a polyhedron P , denoted by
dom(P ), is the polyhedron {y : y ≥ x, x ∈ P}. By definition, dom(P ) is the Minkowski
sum of P with the cone {x : x ≥ 0}. Similarly, the submissive of a polyhedron, denoted
sub(P ), is the set of points obtained by the Minkowski sum of P with {x : x ≤ 0} (see
Figure 8).

In general, the Minkowski sum of two box-TDI polyhedra is not box-TDI, as shown
by the cone in Example 5.7, that is the Minkowski sum of the box-TDI cones generated
by each vector. Indeed, the Minkowski sum can disrupt box-TDIness by generating a
new face that is not box-TDI. At the same time, the Minkowski sum of two non-box-TDI
polyhedra can be a box-TDI polyhedron. For example, Q2

≥0 = {x : x1 − 2x2 ≥ 0, x ≥
0}+ {x : x1 − 2x2 ≤ 0, x ≥ 0} is box-TDI, while the two addends of the Minkowski sum
are not.

The Minkowski sum of a box-TDI polyhedron and an orthant gives a box-TDI poly-
hedron. In particular, we have the following result by Cook [27].

Theorem 5.10 (Cook [27]). The dominant and the submissive of a box-TDI polyhedron
are box-TDI polyhedra.

This result leads to the following.

Observation 5.11 (Boxes of Dominants). Let P be a polytope and ℓ and u such that
P ⊆ {x : ℓ ≤ x ≤ u}. Then, dom(P ) (resp. sub(P )) is box-TDI if and only if {x : ℓ ≤
x ≤ u} ∩ dom(P ) (resp. {x : ℓ ≤ x ≤ u} ∩ sub(P )) is box-TDI.

Proof. Since the non-empty intersection of two boxes is a box, if dom(P ) is box-TDI,
then, of course, also {x : ℓ ≤ x ≤ u}∩dom(P ) is. Conversely, if {x : ℓ ≤ x ≤ u}∩dom(P )
is box-TDI, then dom({x : ℓ ≤ x ≤ u} ∩ dom(P )) = dom(P ). By Theorem 5.10, dom(P )
is box-TDI.
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Figure 8: a) An example of a (box-TDI) polytope in R2; b) The dominant of this polypote;
c) The submissive of this polytope
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Projections Theorem 3.21 implicitly leverages the following result.

Theorem 5.12 (Cook [27]). The projection onto a subset of variables of a box-TDI poly-
hedron is box-TDI.

Characteristic Cones For a polyhedron P , the characteristic cone (often called re-
cession cone) is the set char.cone(P ) = {y : x + y ∈ P, for all x ∈ P}. Equivalently, if
P = {x : Ax ≤ b}, then char.cone(P ) = {y : Ay ≤ 0}. In [79], Murota and Tamura give
the following interesting results on characteristic cones of box-integer polyhedra.

Theorem 5.13 (Murota and Takamura [79]). The characteristic cone of a box-integer
polyhedron is box-integer, and can be generated by 0,±1-vectors.

Theorem 5.14 (Murota and Takamura [79]). Every box-integer polyhedron can be repre-
sented as the Minkowski sum of a box-integer polytope and a box-integer cone.

Grappe [59] independently extended Theorem 5.13 to box-TDI polyhedra.

Theorem 5.15 (Grappe [59], Consequence 3.20). The characteristic cone of a box-TDI
polyhedron is box-TDI.

As a direct consequence of Observation 5.6 and Theorem 5.15, we have the following.

Corollary 5.16. The characteristic cone of a box-TDI polyhedron is generated by 0,±1-
vectors

As a consequence, we can give an equivalent of Theorem 5.14 for box-TDI polyhedra.

Corollary 5.17. Every box-TDI polyhedron can be represented as the Minkowski sum of
a box-TDI polytope and a box-TDI cone.

Proof. Let P ⊆ Rn be a box-TDI polyhedron. Let k be an integer such that all vertices
of P are contained in the hypercube [−k, k]n. Then, by definition of char.cone(P ) and
Minkowski sum, P = char.cone(P ) + (P ∩ [−k, k]n). The polytope P ∩ [−k, k]n is box-
TDI by Observation 5.9, and char.cone(P ) is box-TDI by Theorem 5.15, therefore P is
the Minkowski sum of a box-TDI polytope and a box-TDI cone.

Polar Cones For cones, box-TDIness is preserved under cone polarity.

Theorem 5.18 (Chervet et al. [21]). A cone C is box-TDI if and only if C∗ is.

By Theorems 5.3, 5.8, and 5.18 we have the following.

Corollary 5.19. For a polyhedron P the following statements are equivalent:
• P is box-TDI;
• the polar cone of each face of P is box-TDI;
• the polar cone of each face of P has the box-property.
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5.3 Efficiency and Diameters

The performance of the simplex algorithm is lower bounded by the polyhedral diameter,
that is the maximum, over all pairs of vertices, of the shortest edge-path between them.
Nöbel and Steiner [80] recently showed that computing this diameter is NP-hard even
when the polytope arises from a TU matrix.

We present several results concerning diameters and introduce different natural ques-
tions linking box-TDI polyhedra and diameters, in particular for the case of polyhedra
described by TE matrices. Indeed, several known upper bounds on diameters depend on
the subdeterminants of the matrix used to describe a polyhedron.

Let P = {x : Ax ≤ b} ⊆ Qm
≥0, where A is a m × n TE 0,±1-matrix, and ∆ is the

maximum absolute value of the minors of A. Note that ∆ ≤ 2s, where s = min{n,m},
by Theorem 2.7. Bonifas et al. [10] results imply that the diameter of P is bounded by
O(22sn4 log 2sn), that is an exponential bound on s. In particular, they prove that the
diameter of polyhedra described by TU matrices is bounded by O(n4 log n).

Suppose that P is full-dimensional and define b0 = max{bi}. In [36], Deza and Pournin
proved that the diameter of an n-dimensional polytope with vertices of integer coordinates
ranging between 0 and k is bounded by kn−⌈2

3
n⌉. Since translations and dilations preserve

the diameter of a polytope, this result can be adapted to find a bound for any polytope.
The vertices of the dilation ∆P are component-wise bounded by ∆b0. Thus, n∆b0−⌈2

3
n⌉

is an upper bound for the diameter of ∆P , and consequently for P . Hence, Deza and
Pournin’s result provides another exponential bound on the diameter of P with respect
to s.

Following the TU case, it is legitimate to ask whether the diameter of any box-TDI
polyhedron defined by a TE matrix is polynomially bounded. We therefore leave the
following question open.

Open Question 5.20. Is the diameter of a polyhedron defined by TE matrix polynomially
bounded?

A notable case is given by the edge relaxation of the stable set polytope (see Section 7.5
for more details). Chervet et al. [21], proved that the edge relaxation of the stable set
polytope is box-TDI by showing that the edge-vertex incidence matrix of a graph is always
TE. Michini and Sassano [77] show that the diameter of the edge relaxation of the stable
set polytope of a graph is at most the number of its vertices. Subsequently, they show
that the well-known Hirsch conjecture1 holds for this family of polytopes.

A last interesting result in this topic is the one of Topkis [94], stating that the diameter
of polymatroids—that are a class of box-TDI polyhedra [45]—of dimension n is bounded
by min{2n, n

2
(n− 1) + 1}.

6 Complexity results
The recognition of TDI systems is a topic that interests many academics. Let Ax ≤ b
be a rational system with A integer, how complex is to determine whether it is TDI or
box-TDI?

Generally, the problems “Does the linear system Ax ≤ b describe an integer polyhe-
dron?", “Is the linear system Ax ≤ b TDI?", and “Is the linear system Ax ≤ b box-TDI?"

1We recall that the Hirsch conjecture [100, Section 3.3] has been disproved by Santos [87]. However,
the validity of the Hirsch conjecture is still an object of study for several classes of polytopes.
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belong to co-NP [90, Section 22.9]. Cook [27] showed that the problem “Does the lin-
ear system Ax ≤ b describe a box-TDI polyhedron?" is in co-NP too. Papadimitriou
and Yannakakis [83] proved that deciding whether a given system describes an integer
polyhedron is a co-NP-complete problem. The recognition of TDI and box-TDI systems
has been proved to be co-NP-complete by Ding et al. [38]. Similarly, Chervet et al. [20]
proved that deciding whether a given linear system describes a box-TDI polyhedron is
co-NP-complete. In particular, both works focus on the dominants of a class of polytopes
contained in the hypercube (see Section 7.4 for more details). Thus, by Observation 5.11,
their complexity results on box-TDIness can also be extended to polytopes. Pap [82]
proved that the decision problem is co-NP-complete for TDIness even under the assump-
tion that the system has only binary coefficients and that the defined polyhedron is a
cone.

If we assume the rank of A as fixed, Cook et al. [28] proved that we can decide whether
Ax ≤ b is TDI in polynomial time; their work extended previous results of Chandrasekaran
and Shirali [13]. Starting from a characterization of Hilbert bases of Sebő [92], Dueck et
al. [42] proved that can be decided in polynomial time whether the linear system Ax ≤ b
is TDI, if we assume that the codimension of the described polyhedron is fixed.

By Theorem 3.10, we deduce equivalent results for Hilbert bases. Complementary
results on Hilbert bases can be found in [66–68]. Chervet al. [21] showed that the following
problems belong to co-NP.

Open Question 6.1. Given a matrix A, what is the complexity of deciding if the system
Ax ≤ 0 is box-TDI?

Open Question 6.2. Given a matrix A, what is the complexity of deciding if the cone
C = {x : Ax ≤ 0} is box-TDI?

Recognizing equimodularity can be done in polynomial time by Theorem 2.4. However,
it is not clear if TE matrices can be recognized in polynomial time. Currently, Chervet
et al. [21] proved that the recognition of TE matrix is co-NP, leaving open the following
question.

Open Question 6.3. Given a matrix A, what is the complexity of deciding if A is TE?

The recent decomposition theorem on full row rank TE matrices, due to Chervet et
al. [22], is not sufficient to answer the previous question. The authors also state that it
is challenging to understand how to extend their decomposition theorem to non-full row
rank matrices.

Chervet et al. [20] proved that integer programming over box-TDI polyhedra is NP-
hard as a consequence of the fact that the edge-vertex incidence matrix of a graph is
always TE. Specifically, they proved that the edge-relaxation of the stable set polytope is
box-TDI for every graph; therefore, finding an integer optimal solution remains NP-hard
even in the case there exists a box-TDI relaxation whose integral vertices encode the
feasible solutions of a combinatorial problem. Finally, Nöbel and Steiner [80] proved that
it is NP-hard to find the diameter of the perfect matching polytope of certain bipartite
graphs. This implies that finding the diameter of a polyhedron described by a TU matrix
is NP-hard.

In Table 1, we summarize all known complexity results related to the main objects
introduced so far.
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Problem Class Reference
Does the system Ax ≤ b describe an integer polyhedron? co-NP-complete [83]
Is Ax ≤ b TDI? co-NP-complete [38]
Is the system Ax ≤ 0 TDI? co-NP-complete [82]
Is the system Ax ≤ b box-TDI? co-NP-complete [38]
Is the system Ax ≤ b describing a polytope box-TDI? co-NP-complete Observation 5.11
Is {x : Ax ≤ b} a box-TDI polyhedron? co-NP-complete [20]
Is {x : Ax ≤ b} a box-TDI polytope? co-NP-complete Observation 5.11
Is {x : Ax ≤ 0} a box-TDI cone? co-NP [21]
Is A an equimodular matrix? P [21]
Is A a TU matrix? P [93]
Is A a TE matrix? co-NP [21]
Integer programming on box-TDI polyhedra. NP-hard [20]
Finding the diameter of P = {x : Ax ≤ b}, with A TU. NP-hard [80]

Table 1: Hardness of some fundamental problems related to (box-)TDIness.

Here we give two open questions that are related to each other. Indeed, on one hand, if
the answer to the first question is “there exists a polynomial-time algorithm whose output
is an integer TDI system describing a given polyhedron” so it would be for the second.
On the other hand, if the answer to the last one is “co-NP-complete", then the answer to
the first would be “NP-hard".

Open Question 6.4. Given a box-TDI polyhedron, what is the complexity of finding an
integer TDI system describing it?

Open Question 6.5. Given a box-TDI polyhedron P , what is the complexity of deciding
whether P is integer?

7 On the Box-TDIness of Classical Packing and Cover-
ing Problems

This section examines various classes of box-TDI systems and polyhedra, highlighting both
classic and recent results. Many examples were already presented in Schrijver’s work [89].
We present these results as well as subsequent developments and generalizations from the
literature. The notations and common vocabulary used here follow [91].

The vast majority of classical results on box-TDIness are related to TU matrices.
These matrices were often used to prove the integrality of the polyhedron described by
a linear system. Therefore, the list of box-TDI polyhedra associated with these matrices
cannot be exhaustive as the first known studies of TU matrices date back to Poincaré’s
work on 0,±1-matrices [85]. Some notable examples of TU matrices include the incidence
matrix of bipartite graphs [69], incidence matrix of directed graphs [33,69], network matri-
ces [97], adjacency matrices of bipartite graphs with no Eulerian tour of length congruent
2 mod 4 [81], and edge coloring matrices of trees [75].

7.1 Polymatroids

The content of this section is largely derived from Chapters 44-46 of Schrijver’s book [91].
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Let X be a finite set, a set function f defined on the parts of X is submodular if for
all S, T ⊆ X we have:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Similarly, f is supermodular if for all S, T ⊆ X we have:

f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ).

A function is modular if it is both supermodular and submodular.
Let X ̸= ∅ be a finite set and let f be a submodular set function on X. The polyhedron

EPf := {x ∈ Q|X| : x(U) ≤ f(U), ∀U ⊆ X} is called the extended polymatroid associated
with f . The polytope EPf ∩ {x : x ≥ 0} is called the polymatroid associated with f .

Let g be a supermodular function, the polyhedron EQg := {x ∈ Q|X| : x(U) ≥
g(U),∀U ⊆ X} is called the extended contrapolymatroid associated with g. The polyhe-
dron EQg ∩ {x : x ≥ 0} is called the contrapolymatroid associated with g.

Polymatroids are particularly important for their interaction with matroids:

Observation 7.1. Let M be a matroid on the ground set X, with rank function r. The
polyhedron {x ∈ Q|X| : x ≥ 0, x(U) ≤ r(U),∀U ⊆ X} is a polymatroid.

We denote by M(X) the family of all polymatroids, contrapolymatroids, and their
extended counterparts on the set X, and we refer to the systems given above as their
canonical descriptions. The following results stem from Theorem 4.5.

Theorem 7.2 (Edmonds and Giles [45]). Let P ∈ M(X), with X ̸= ∅ a finite set. Then,
the canonical description of P is box-TDI.

Interestingly, the intersection of any two of these objects preserves box-TDIness.

Theorem 7.3 (Schrijver [91], Chapter 46). Let P and Q be two polyhedra in M(X), with
X ̸= ∅ finite set. Then, the system obtained by concatenating the canonical descriptions
of P and Q is box-TDI.

7.2 Flows and Edge-Connectivity

Several results presented in this section can be found in [89].

7.2.1 Flows

A classical result concerning both connectivity and flows is the following theorem of
Menger.

Theorem 7.4 (Menger [76]). Let G be a graph, and let s, t be two vertices. Then, the
maximum number of pairwise edge-disjoint s− t paths is equal to the minimum size of an
s− t cut.

Theorem 7.4 was later independently generalized by Elias, Feinstein, and Shannon [48]
and by Ford and Fulkerson [49].

Theorem 7.5 (Max-Flow Min-Cut Theorem). Let s and t be two vertices of a directed
graph G, the maximum s− t flow is equal to the minimum capacity of an s− t cut.
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This result is one of the most used examples to show a case of min-max relation among
combinatorial objects that can be obtained through the TDIness of a system. Moreover,
one can generalize Theorems 7.4 and 7.5 in terms of box-TDIness as follows:

Theorem 7.6 (Schrijver [89]). Let D = (V,A) be a digraph. Then, the system:

x(δ+(v))− x(δ−(v)) = 0 ∀v ∈ V, (7)

is box-TDI.

Proof. By Theorem 2.3, the constraint matrix is TU, as each column contains exactly one
+1 and one −1. Thus, System 7 is box-TDI by Theorem 4.6.

One can deduce Theorem 7.5 from Theorem 7.6 by removing the constraints associated
to s and t, and fixing to 0 all variables associated to arcs in δ+(s) or to δ−(t). Thus, it
suffices to remark that the capacity constraints on the edges are just box-constraints. Once
these constraints are added, the dual of the maximization problem of a linear function
over the polyhedron defined by System (7) corresponds to the minimum cut problem.

7.2.2 Edge-Connectivity

One classical result we can achieve by the application of Theorem 7.2 concerns the span-
ning tree polytope, that is the convex hull of all spanning trees of a graph. More precisely,
one can prove that the spanning tree polytope, the forest polytope, and the connector
polyhedron are all box-TDI. These results are considered folklore by the community, nev-
ertheless, we provide a proof for the sake of completeness.

Theorem 7.7 (Folklore). The spanning tree polytope, the forest polytope, and the con-
nector polyhedron are box-TDI for all graphs.

Proof. Let G = (V,E) be a graph. The forest polytope is a polymatroid, hence, it is
box-TDI by Theorem 7.2. The spanning tree polytope is a face of the forest polytope,
namely the one obtained by setting to equality the constraint x(E) ≤ |V | − 1. Therefore,
by Theorem 4.5, it is box-TDI. The connector polyhedron is the dominant of the spanning
tree polytope, thus it is box-TDI as well thanks to Theorem 5.10.

In the case of directed graphs, we have that the r-arborescence polytope, that is the
convex hull of all arborescences rooted in r, is box-TDI, as proved by Schrijver [91,
Corollary 52.4]. Note that it is not possible to derive the box-TDIness of the arborescence
polytope from this result, as the convex hull of two or more box-TDI polyhedra is not
necessarily box-TDI.

Further results with respect to the Menger’s Theorem 7.4 highlight a natural connec-
tion between series-parallel graphs and box-TDIness of polyhedra associated with flows
and edge-connectivity. We summarize subsequent advancement in this topic due to Bar-
bato et al. [4], Chen et al. [14], Chervet et al. [21], and Cornaz et al. [29] in the following
theorem.

Theorem 7.8. Let G be a graph and k ∈ Z, k ≥ 2. Then, each of the following polyhedra
is box-TDI if and only if G is series-parallel.

• the flow cone of G;

• the cone of conservative functions of G;
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• the cycle cone of G;

• the cut cone of G;

• the cut polytope of G;

• the multicut polytope of G;

• the k-edge-connected spanning subgraph polyhedron of G.

A remark about the last point of Theorem 7.8 is the fact that this was the first
instance of a polyhedron proved to be box-TDI without using a TDI system describing
it. Moreover, in [4] the authors prove that the classical system for this problem, given by
Didi Biha and Mahjoub [37] is TDI for series-parallel graphs.

7.3 Matchings

One of the first min-max results between combinatorial objects is the well-known Kőnig’s
Theorem [72], generalized by Egerváry [47] to the weighted case.

Theorem 7.9 (Kőnig’s Theorem). Let G be a bipartite graph. Then, the size of a maxi-
mum matching equals the size of the smallest vertex cover.

This result can be seen as a particular case of the Max-flow Min-cut Theorem, and it
is also one of the most classic examples of duality in combinatorial optimization. In fact,
Theorem 7.9 celebrates TDIness as shown in the next section.

For the completeness of this compendium, we introduce the matching polytope along
with two special cases: the perfect matchings and the extendable matchings.

7.3.1 The Matching Polytope

Let G = (V,E) be a graph. The matching polytope of G is the convex hull of the incidence
vectors of all matchings in G. The system

x(E(U)) ≤ |U |−1
2

, for each U ⊆ V with |U | ≥ 3 odd,
x(δ(u)) ≤ 1, for each u ∈ V,

x ≥ 0,

(8)

describes the matching polytope of G [43] and it is known as Edmonds system. When G
is bipartite, the inequalities x(E(U)) ≤ (|U | − 1)/2 are redundant for each U ⊆ V with
|U | ≥ 3 and odd cardinality. Moreover, in this case, the incidence matrix is TU [69] and
the matching polytope is box-TDI. This is sufficient to prove Theorem 7.9. Interestingly,
Cunningham and Marsh [32] proved that System (8) is TDI for any graph G. Thus,
System (8) is box-TDI if and only if the matching polytope is. Ding et al. [39] characterize
the graphs for which this polytope is box-TDI, in terms of odd subdivision. A fully odd
subdivision of a graph is a graph obtained by replacing an edge with a path composed of
an odd number of edges.

Theorem 7.10 (Ding et al. [39]). The matching polytope of a graph G is box-TDI if and
only if G does not include any fully odd subdivision of G1, G2, G3, and G4 as a subgraph.

Theorem 7.10 was proved by showing when System (8) is ESP.
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G1 G2
G3 G4

Figure 9: Forbidden subgraphs for the box-TDIness of the matching polytope.

7.3.2 Capacitated b-matching

Given a graph G = (V,E) and two vectors c ∈ ZE
≥0 and b ∈ ZV

≥0, a c-capacitated b-
matching is an integer point of the system x(δ(u)) ≤ bu, 0 ≤ x ≤ c. Clearly, c-capacitated
b-matchings are a generalization of matchings.

In his Ph.D. thesis, Cook [25] provides a TDI system for the convex hull of the c-
capacitated b-matchings, generalizing a previous result due to Pulleyblank [86]. We report
the result as stated in Schrijver’s book [91].

Theorem 7.11 (Schrijver [91], Theorem 32.3). Let G = (V,E) be a graph, b and c be a
rational vector over the edges of G. Then, the system

x(E(U)) + x(F ) ≤
⌊
b(U)+c(F )

2

⌋
, for each U ⊆ V and F ⊆ δ(U),

x(δ(u)) ≤ bu, for each u ∈ V,

0 ≤ x ≤ c,

(9)

is TDI system and describes the c-capacitated matching polytope of G.

We remark that Theorem 7.11 gives a TDI system for each fixed c. However, since its
right-hand side depends on the capacity constraints, this result does not provide informa-
tion about the box-TDIness of the system. This leaves open the following question.

Open Question 7.12. When is System (9) box-TDI?

7.3.3 The Perfect Matching Polytope

Let G = (V,E) be a graph. The perfect matching polytope of G is the convex hull of the
incidence vectors of all perfect matchings in G. The system

x(δ(U)) ≥ 1, for each U ⊆ V with |U | ≥ 3 odd,
x(δ(u)) = 1, for each u ∈ V,

x ≥ 0,

(10)

describes the perfect matching polytope of G as proved in [43]. Moreover, in the same
work Edmonds also showed that System (10) is not TDI when G is non-bipartite.

It is straightforward to see that the perfect matching polytope is a face of the match-
ing polytope. Thus, by Theorem 4.1, Theorem 7.10 gives sufficient but not necessary
conditions for the box-TDIness. In fact, contrary to what happens for matchings, the
forbidden graph G1 of Figure 9 has only one perfect matching polytope, and hence the
corresponding perfect matching polytope is box-TDI. Indeed, integer points are box-TDI
polytopes by Theorem 5.2).
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Grappe et al. [60], proved that if the perfect matching polytope of a graph G is box-
TDI, then it is described by the compact formulation x(δ(U)) = 1, for each tight cut δ(U),
and x ≥ 0, where a cut is tight if |δ(U)∩M | = 1 for each perfect matching M of G. This
result leads to the following geometrical characterization.

Theorem 7.13 (Grappe et al. [60]). The perfect matching polytope of a graph G is box-
TDI if and only if its affine hull is box-TDI.

In the same work, the authors characterize the box-TDIness of the perfect matching
polytope in terms of forbidden structure for bicritical graphs and some other special
classes of graphs. Where a graph is bicritical if the removal of any couple of vertices gives
a graph that has a perfect matching.

To complete the characterization of the box-TDIness of the perfect matching polytope
in terms of forbidden structures, the case of barrier cuts—a fundamental class of tight
cuts—still needs to be settled. In a graph G, a barrier is a set of vertices U of G such
that G \ U has exactly |U | odd connected components. A barrier cut of G is a cut such
that one of the node sets defining it is an odd component left from removing a barrier.
Thus, Grappe et al. [60] also let the following problem open.

Open Question 7.14. When does the presence of barrier cuts prevent the perfect match-
ing polytope from being box-TDI?

7.3.4 The Extendable Matching Polytope

A matching is extendable if it is included in a perfect matching. The extendable matching
polytope is the convex hull of the incidence vectors of the extendable matchings. Cun-
ningham and Green-Krotki [31], gave a description of this polyhedron.

Theorem 7.15. The extendable matching polytope is box-TDI if and only if the perfect
matching polytope is box-TDI.

Proof. The extendable matching polytope is the submissive of the perfect matching poly-
tope intersected with the positive orthant. Therefore, if the perfect matching polytope is
box-TDI so is the extendable matching polytope by Theorem 5.10.

Since the perfect matching polytope is a face of the extendable matching polytope,
whenever the latter is box-TDI, so is the first, thanks to Theorem 4.1.

7.4 Edge Covers

The edge cover polytope of G, denoted by EC(G), is the convex hull of the edge covers of
G. Edmonds [46] gives the following description of EC(G):{

x(E(U) ∪ δ(U)) ≥
⌈
|U |
2

⌉
, for each U ⊆ V,

0 ≤ x ≤ 1.
(11)

The characterization of the box-TDIness of the edge cover polytope is not known, thus
we have the following.

Open Question 7.16. When is System (11) box-TDI?
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A partial answer to Open Question 7.16 has been given by Ding et al. [38], who studied
the box-TDIness of the linear system{

x(δ(u)) ≥ 1, for each u ∈ V,

x ≥ 0,
(12)

describing the dominant of the edge relaxation of the edge cover polytope, for a given graph
G of vertex-set V . We denote this polyhedron by DEC(G).

A graph is quasi-bipartite if the removal of the vertex-set of any odd cycle gives a
graph having an isolated vertex.

Theorem 7.17 (Ding et al. [38]). For a simple graph G the following are equivalent:
• G is quasi-bipartite and different from K4;
• System (12) is TDI;
• System (12) is box-TDI.

Theorem 7.18 (Chervet et al. [20]). Let G be a simple graph. Then, DEC(G) is box-TDI
if and only if G is either a circuit or a quasi-bipartite different from K4.

By Theorem 7.17, if G ̸= K4 is quasi-bipartite, then EC(G) = DEC(G)∩{x : x ≤ 1}.
In this case, EC(G) is box-TDI by Observation 5.11. However, this is not a character-
ization since there exist graphs outside of this class for which EC(G) is box-TDI. For
example, EC(K3) is box-TDI, since System (11) is box-TDI for this graph.

7.5 Stable Sets

The stable set polytope of a graph G is the convex hull of all stable sets of G. The following
system describes the edge relaxation of the stable set polytope:{

xu + xv ≤ 1, for each uv ∈ E,

x ≥ 0.
(13)

Chervet et al. [20] showed that the edge-vertex incidence matrix of a graph is always
TE, thus proving the following, thanks to Theorem 4.7.

Theorem 7.19 (Chervet et al. [20]). The edge relaxation of the stable set polytope is
box-TDI.

Note that the above result does not give information about the integrality of the
polytope, since System (13) is not TDI in general. When G is bipartite, the edge-vertex
incidence matrix is TU. Thus, System 13 is box-TDI by Theorem 4.6, and describes the
stable set polytope by Theorem 3.1.

Karp [70] proved that finding a maximum stable set for a given graph is NP-hard in
general. Thus, by Theorem 7.19 finding an integer optimal solution over a non-integer
box-TDI polyhedron is NP-hard [20].

A graph is perfect if, for every node-induced subgraph, the chromatic number equals
the size of the largest clique. Perfect graphs have been introduced by Berge [8]. For a
given graph G the clique-vertex matrix of G is the matrix whose rows correspond to the
characteristic vectors of maximal cliques of G. A clutter is a hypergraph such that every
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hyperedge is inclusion-wise maximal. Let M be the hyperedge-vertex incidence matrix of
a clutter. Chvátal [23] proved that the polytope {x : Mx ≤ 1, x ≥ 0} is integral if and
only if M is the clique-vertex matrix of a perfect graph. That is, the stable set polytope
of G is described by {x : Mx ≤ 1, x ≥ 0} if and only if G is perfect. Verifying whether a
given matrix is the clique-vertex of a graph can be done in polynomial time [30, Corollary
3.10]. These facts are related to TDIness by the following.

Theorem 7.20 (Lovász [74]). Let M be the clique-vertex matrix of a graph G. Then, G
is perfect if and only if the linear system x ≥ 0,Mx ≤ 1 is TDI.

A graph is box-perfect if it is perfect and its stable set polytope is box-TDI. Edmonds
and Cameron [12] posed the following open question which turned out to be seminal for
some research streams.

Open Question 7.21. When is a given graph box-perfect?

Cameron [11] proved that the removal and the duplication of vertices of a box-perfect
graph result in a box-perfect graph. Moreover, Cameron proved that the comparability
and incomparability graphs are box-perfect. Ding et al. [41] proved that a graph such that
for any couple of vertices all induced paths between them have the same parity is box-
perfect. Chervet and Grappe [19] characterize the problem in terms of complementary
graphs. Precisely, they proved that a graph G and its complement G are both box-perfect
if and only if G+ is box-perfect, where G+ is obtained by adding a universal vertex to G.

7.6 Integrally Convex Sets

Box-TDI polyhedra play a role in the theory of discrete convex sets and functions. A
set of integer points S is integrally convex if its convex hull can be expressed as the
union of the convex hulls of its integer points within small local regions around every
point. More precisely, for every x ∈ Rn, define its integer neighborhood IN(x) as the
set of integer points {z ∈ Zn : ⌊xi⌋ ≤ zi ≤ ⌈xi⌉}. Then, a set S is integrally convex
if conv.hull(S) =

⋃
x∈Rn

conv.hull(S ∩ IN(x)), where conv.hull(X) denotes the convex hulls

of a set of points X. Integrally convex sets play an important role in discrete convexity.
The interconnection between integrally convex set and polyhedral theory is shown by

different results. First, it is easy to prove (see for instance, Murota and Takamura [79])
the following property:

Observation 7.22. The convex hull of an integrally convex set is a box-integer polyhedron.
Conversely, the set of integer points of a box-integer polyhedron is integrally convex.

Thus, we have a correspondence between integrally convex sets and box-integer poly-
hedra. As an immediate consequence, one can see that:

Corollary 7.23. The set of integer points of an integer box-TDI polyhedron is integrally
convex.

These sets are also called box-TDI sets in the literature. Not all integrally convex sets
arise from box-TDI polyhedra, however, some key classes of integrally convex sets do, as
shown in the remainder of this section.
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L-Convex Sets A set S is L-convex if it satisfies two properties:

• for all x, y ∈ S both x∧y and x∨y belong to S, where ∧ and ∨ represent respectively
the component-wise minimum and the component-wise maximum,

• for all x ∈ S, x± 1 ∈ S.

A set S is L
^-convex if it can be obtained as the intersection of an L-convex set with

some coordinated hyperplanes. Finally, a set is L2-convex (respectively L2̂-convex ) if it
is given by the intersection of two L-convex (respectively L

^-convex) sets.
The relation between L-convex sets and box-TDI polyhedra is highlighted by the

following results.

Theorem 7.24 (Moriguchi and Murota [78]). The convex hull of a L2̂-convex set is box-
TDI.

Since the class of L2̂-convex sets contains strictly L
^-convex sets, L2-convex sets, and

L-convex sets, we can derive the following.

Corollary 7.25. The convex hulls of L^-convex sets, L2-convex sets, and L-convex sets
are box-TDI.

M-Convex Sets A set of integer vectors S ⊆ Zn is M-convex if for every pair of distinct
vectors x, y ∈ S, and for every index i ∈ [n] such that xi > yi, there exists an index j ∈ [n]
such that:

• xj < yj and

• x− ei + ej belongs to S.

A set S is M
^-convex if it is the projection of an M -convex set along a coordinate

axis. Similarly to what happened for L-convex sets, a set is M2-convex (respectively
M2̂ -convex ) if it is given by the intersection of two M -convex (respectively M

^-convex)
sets.

These sets are closely related to polymatroids, and this relation can be exploited to
prove that the convex hull of any of these sets is box-TDI.

Theorem 7.26 (Moriguchi and Murota [78]). The convex hull of a M2̂ -convex set is box-
TDI. Moreover, so are the convex hulls of M ^-convex sets, M2-convex sets, and M-convex
sets.

8 Beyond the Core Theory
This section is devoted to analyzing the connection between box-TDIness and several
other properties present in the literature.
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Discrete Convex Functions A function ϕ : Z → Z is discrete convex if, for all z ∈ Z
we have that ϕ(z − 1) + ϕ(z + 1) ≥ 2ϕ(z). A function Φ : Zn → Z is separable discrete

convex if Φ(z) =
n∑

i=1

ϕi(zi), ∀z ∈ Zn, where ϕi are discrete convex functions and zi are

the components of z.
Frank and Murota [50] give a min-max theorem for minimizing separable integer-

valued convex functions over box-TDI polyhedra. Indeed, they show that the minimum
of such a function over the integer points of a box-TDI polyhedron can be characterized
by a dual optimization problem, where optimality is certified by the existence of a dual
vector satisfying a discrete subgradient condition. Notably, their work provides a novel
application of box-TDI polyhedra to nonlinear combinatorial optimization.

Dyadicness A vector is p-adic if each of its entries is of the form a/pk for some integers
a, k with k ≥ 0 and p prime. When p = 2, we call the vector dyadic. A system is
totally dual p-adic if whenever min{b⊤y : A⊤y = w, y ≥ 0} for w integer, has an optimal
solution, it has a p-adic optimal solution. A vector x is half-integer if 2x is integer. A
system is totally dual half-integral if whenever min{b⊤y : A⊤y = w, y ≥ 0} for w integer,
has an optimal solution, it has a half-integer optimal solution. Of course, totally dual
half-integral systems are totally dual dyadic. Despite this fact, totally dual half-integral
systems are a notable class deserving a mention due to their connection with the matching
polytope [32].

Dyadic and half-integral vectors present an intriguing relation with TDI systems as
stated in the following.

Theorem 8.1 (Section 22.7, [90]). A system Ax ≤ b is TDI if and only if:

• for each vector y ≥ 0 with A⊤y integer, there exists a dyadic vector y′ ≥ 0 with
A⊤y′ = A⊤y;

• for each {0, 1
2
}-vector y with A⊤y integer, there exists an integer vector y′ ≥ 0 with

A⊤y′ = A⊤y and b⊤y′ ≤ b⊤y.

Abdi et al. [1] have shown that TDI systems Ax ≤ b, with A and b entry-wise integer,
describing a pointed polyhedron are totally dual p-adic for all prime numbers p.

Similarly, suppose that P = {x : Ax ≤ b} is a pointed polyhedron, with A and b entry-
wise integer. If Ax ≤ b is totally dual p-adic and totally dual q-adic, for two distinct
prime numbers p and q, then P is an integer polyhedron.

Dyadic Polyhedra A polyhedron is p-adic for some prime number p if every non-
empty face contains a p-adic point. As integer TDI systems certify polyhedral integrality,
total dual p-adic systems certify polyhedral p-adicness [1]. Moreover, TE 0,±1-matrices
define dyadic polyhedra [22, 84]. Thus, every negative complexity result holding for TE
matrices immediately transfers to dyadic polyhedra. For instance, Chervet et al. [20]
hardness result on TE matrices implies that integer programming over dyadic polyhedra
is NP-hard.
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Integer Rounding Property A system Ax ≤ b has the integer rounding property if,
for every integer vector c, its dual problem respects

min{y⊤b : y⊤A = c, y ∈ Zn
≥0} = ⌈min{y⊤b : y⊤A = c, y ≥ 0}⌉,

whenever the optimum of the right-hand side of the equality is finite.
This notion is related to TDIness by the following.

Theorem 8.2 (Giles and Orlin [54]). Let Ax ≤ b be a feasible system and x′ be a variable
that differs from every component of x. Then, Ax ≤ b has the integer rounding property
if and only if the system Ax− bx′ ≤ 0, x′ ≥ 0 is TDI.

By Theorems 3.8 and 8.2, the system Ax ≤ b has the integer rounding property if

and only if the rows of the matrix
[
A b
0 1

]
form a Hilbert basis [54]. If a system has the

integer rounding property then one can solve any ILP over it in polynomial time [7].

Integer Decomposition Property A polyhedron P has the integer decomposition
property if for each integer positive k and every x′ ∈ kP ∩Zn, there exists a proper integer
decomposition, that is a set of points x1, . . . , xk ∈ P ∩ Zn such that x′ = x1 + . . .+ xk.

In general, box-TDIness and integer decomposition property are mutually independent
properties as shown in Section 6.3 of [21] and Section 5 of [60]. Nevertheless, when a
polyhedron is described by a TU matrix, the following holds.

Theorem 8.3 (Baum and Trotter [5]). A polyhedron described by a TU matrix has the
integer decomposition property. Moreover, it is possible to find a proper integer decompo-
sition in polynomial time.

Later the same authors extended this result to polymatroids [6]. In [60], Grappe et
al. remark that the same result holds when the perfect matching polytope is box-TDI.
These results lead to the following.

Open Question 8.4. Let P be a box-TDI polyhedron having the integer decomposition
property. Is it possible to find in polynomial time a proper integer decomposition every
x ∈ kP ∩ Zn, with k ∈ Z>0?

Another open question about the integer decomposition property of box-TDI smooth
polytopes is presented in [21, Section 6.3].

Open Question 8.5. Do smooth fully box-integer polyhedra have the integer decomposi-
tion property?

Integer Carathéodory Property A polyhedron P has the integer Carathéodory prop-
erty if for each integer positive k, every x′ ∈ kP ∩Zn is such that x′ = α1x1+ . . .+αmxm,
where x1, . . . , xm ∈ P ∩ Zn are affinely independent and αi ∈ Z≥0 for all i. One can
check that α1 + . . . + αm = k, thus, the integer Carathéodory property implies the inte-
ger decomposition property. In particular, Theorem 8.3 can be extended to the integer
Carathéodory property thanks to the results of Baum and Trotter [5].

Several results connect box-TDI polyhedra with the integer Carathéodory property. In
particular, a large class of polyhedra having the integer Carathéodory property has been
introduced by Gijswijt and Regts [53], which are box-TDI, as remarked in [21]. Moreover,
Gijswijt and Regts raise the following.
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Open Question 8.6. Does the r-arborescence polytope have the integer Carathéodory
property?

Recently, Chervet et al. [22] proved that the box-TDI cones generated by a set of
linearly independent non-negative vectors have the integer Carathéodory property.

Conclusions
From its origins in the work of Edmonds and Giles [45] to recent characterizations via
equimodular and TE matrices [21], box-TDIness offers structural properties of algorith-
mic and polyhedral interest. Beyond summarizing the main developments, we have high-
lighted several open questions, ranging from structural characterizations to algorithmic
recognition. These questions reflect both the maturity of the field and its openness to
new directions of research.

We reviewed box-TDIness by highlighting its deep theoretical foundations, geometric
interpretations, and connections to classical combinatorial optimization. A discussed key
point is that box-TDIness is not only a strengthening of TDIness, but a fundamentally dif-
ferent property with polyhedral and algebraic characterizations. Discussed examples show
that several polyhedra arising in classical combinatorial problems—such as polymatroids,
network flows, and matchings—are box-TDI even in non-trivial cases. The connections
between polyhedral integrality, Hilbert bases, and equimodularity also indicate several
directions that can be further studied.

Although the matricial criteria by Chervet et al. [21] offer a new way for understanding
box-TDIness and help unify different strands of the literature, most of the recognition
problems related to box-TDIness remain hard to solve. This suggests that, unless P =
NP , efficient recognition algorithms are likely to exist only in restricted cases.

Finally, we have emphasized the role of box-TDIness in ensuring strong min-max
relations, robust duality under variable bounds, and the preservation of integrality in
bounded relaxations. This interpretation makes box-TDIness interesting in the theoretical
context as well as in the applied one.

Acknowledgements
We are grateful to Professors Daniele Catanzaro and Roland Grappe for their careful
reading of the manuscript, as well as for their insightful comments and suggestions, which
helped us improve the quality of this work.

References
[1] Ahmad Abdi, Gérard Cornuéjols, Bertrand Guenin, and Levent Tunçel. Total dual

dyadicness and dyadic generating sets. Mathematical Programming, 206(1):125–143,
2024.

[2] Louis Auslander and Horace M. Trent. Incidence Matrices and Linear Graphs.
Journal of Mathematics and Mechanics, 8(5):827–835, 1959.

38



[3] Louis Auslander and Horace M. Trent. On the Realization of a Linear Graph
Given its Algebraic Specification. Journal of the Acoustical Society of America,
33(5):1183–1192, 1961.

[4] Michele Barbato, Roland Grappe, Mathieu Lacroix, and Emiliano Lancini. Box-
total dual integrality and edge-connectivity. Mathematical Programming, 197:307–
336, 2023.

[5] Stephen Baum and Leslie E. Trotter. Integer Rounding and Polyhedral Decom-
position for Totally Unimodular Systems. In Rudolf Henn, Bernhard Korte, and
Werner Oettli, editors, Optimization and Operations Research, pages 15–23, Berlin,
Heidelberg, 1978. Springer Berlin Heidelberg.

[6] Stephen Baum and Leslie E. Trotter. Integer Rounding for Polymatroid and Branch-
ing Optimization Problems. SIAM Journal on Algebraic Discrete Methods, 2(4):416–
425, 1981.

[7] Stephen Baum and Leslie E. Trotter. Finite checkability for integer rounding proper-
ties in combinatorial programming problems. Mathematical Programming, 22:141–
147, 1982.

[8] Claude J. Berge. Färbung von graphen deren sämtliche bzw. Wissenschaftliche
Zeitschrift, Martin Luther Universität HalleWittenberg, Mathematisch-
Naturwissenschaftliche Reihe, pages 114–115, 1961.

[9] Robert E. Bixby and William H. Cunningham. Converting Linear Programs to
Network Problems. Mathematics of Operations Research, 5(3):321–357, 1980.

[10] Nicolas Bonifas, Marco Di Summa, Friedrich Eisenbrand, Nicolai Hähnle, and Mar-
tin Niemeier. On Sub-determinants and the Diameter of Polyhedra. Discrete &
Computational Geometry, 52:102–115, 2011.

[11] Kathie Cameron. A Min-Max Relation for the Partial q-Colourings of a Graph. Part
II: Box perfection. Discrete Mathematics, 74:15–27, 1989.

[12] Kathie Cameron and Jack Edmonds. Coflow polyhedra. Discrete Mathematics,
101(1):1–21, 1992.

[13] Ramaswamy Chandrasekaran. Polynomial algorithms for totally dual integral sys-
tems and extensions. In North-Holland Mathematics Studies, volume 59, pages
39–51. Elsevier, 1981.

[14] Xujin Chen, Zhibin Chen, and Wenan Zang. Total Dual Integrality in Some Facility
Location Problems. SIAM Journal on Discrete Mathematics, 26(3):1022–1030, 2012.

[15] Xujin Chen, Guoli Ding, and Wenan Zang. A Characterization of Box-Mengerian
Matroid Ports. Mathematics of Operations Research, 33:497–512, 05 2008.

[16] Xujin Chen, Guoli Ding, and Wenan Zang. The box-TDI system associated with 2-
edge connected spanning subgraphs. Discrete Applied Mathematics, 157(1):118–125,
2009.

39



[17] Xujin Chen, Xiaodong Hu, and Wenan Zang. Dual integrality in combinatorial
optimization. Handbook of Combinatorial Optimization, pages 995–1063, 2013.

[18] Patrick Chervet and Roland Grappe. personal communication. to appear.

[19] Patrick Chervet and Roland Grappe. A weak box-perfect graph theorem. Journal
of Combinatorial Theory, Series B, 169:367–372, 2024.

[20] Patrick Chervet, Roland Grappe, Mathieu Lacroix, Francesco Pisanu, and Roberto
Wolfler Calvo. Hard problems on box-totally dual integral polyhedra. Discrete
Optimization, 50:100810, 2023.

[21] Patrick Chervet, Roland Grappe, and Louis-Hadrien Robert. Box-total dual in-
tegrality, box-integrality, and equimodular matrices. Mathematical Programming,
188(1):319–349, 2021.

[22] Patrick Chervet, Roland Grappe, and Mathieu Vallée. Totally equimodular matri-
ces: decomposition and triangulation. 2025.

[23] Václav Chvátal. On certain polytopes associated with graphs. Journal of Combi-
natorial Theory, Series B, 18(2):138–154, 1975.

[24] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming.
Springer, 2014.

[25] William J. Cook. On some aspects of totally dual integral systems. PhD thesis,
University of Waterloo, 1983.

[26] William J. Cook. Operations that preserve total dual integrality. Operations Re-
search Letters, 2(1):31–35, 1983.

[27] William J. Cook. On box totally dual integral polyhedra. Mathematical Program-
mming, 34(1):48–61, 1986.

[28] William J. Cook, László Lovász, and Alexander Schrijver. A polynomial-time test
for total dual integrality in fixed dimension. In Mathematical programming at Ober-
wolfach II, pages 64–69. Springer, 1984.

[29] Denis Cornaz, Roland Grappe, and Mathieu Lacroix. Trader multiflow and box-TDI
systems in series-parallel graphs. Discrete Optimization, 31(1), 2019.

[30] Gerard Cornuéjols. Combinatorial Optimization: Packing and Covering. CBMS-
NSF Regional Conference Series in Applied Mathematics. SIAM, 2001.

[31] William H. Cunningham and Jan Green-Krotki. Dominants and submissives of
matching polyhedra. Mathematical Programming, 36:228–237, 1986.

[32] William H. Cunningham and A. B. Marsh. A primal algorithm for optimum match-
ing, pages 50–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 1978.

[33] George B. Dantzig and Delbert R. Fulkerson. On the max-flow min-cut theorem of
networks. In H. W. Kuhn and A. W. Tucker, editors, Linear inequalities and related
systems, volume 38, pages 215–221, 1955.

40



[34] George B. Dantzig and Arthur F. Veinott. Mathematics of the decision sciences,
volume 11. American Mathematical Society, 1968.

[35] Alberto Del Pia, Michael Ferris, and Carla Michini. Totally Unimodular Congestion
Games. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 577–588. SIAM, 2017.

[36] Antoine Deza and Lionel Pournin. Improved bounds on the diameter of lattice
polytopes. Acta Mathematica Hungarica, 154:457–469, 2016.

[37] Mohamed Didi Biha and Ali Ridha Mahjoub. The k-edge connected subgraph
problem i: Polytopes and critical extreme points. Linear algebra and its applications,
381:117–139, 2004.

[38] Guoli Ding, Li Feng, and Wenan Zang. The complexity of recognizing linear systems
with certain integrality properties. Mathematical Programming, 114(2):321–334,
2008.

[39] Guoli Ding, Lei Tan, and Wenan Zang. When is the matching polytope box-totally
dual integral? Mathematics of Operations Research, 43(1):64–99, 2018.

[40] Guoli Ding and Wenan Zang. Packing cycles in graphs. Journal of Combinatorial
Theory Series B, 86:381–407, 2002.

[41] Guoli Ding, Wenan Zang, and Qiulan Zhao. On box-perfect graphs. Journal of
Combinatorial Theory, Series B, 128:17–46, 2018.

[42] Pierre Dueck, Serkan Hoşten, and Bernd Sturmfels. Normal toric ideals of low
codimension. Journal of Pure and Applied Algebra, 213(8):1636–1641, 2009.

[43] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal
of research of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[44] Jack Edmonds. Matroids and the greedy algorithm. Mathematical programming,
1(1):127–136, 1971.

[45] Jack Edmonds and Rick Giles. A min-max relation for submodular functions on
graphs. Annals of discrete mathematics, 1:185–204, 1977.

[46] Jack Edmonds and Ellis L Johnson. Matching: A well-solved class of integer linear
programs. In Combinatorial Optimization—Eureka, You Shrink! Papers Dedicated
to Jack Edmonds 5th International Workshop Aussois, France, March 5–9, 2001
Revised Papers, pages 27–30. Springer, 2003.

[47] Jeno Egerváry. Matrixok kombinatorius tulajdonságairól. Matematikai és Fizikai
Lapok, 38(1931):16–28, 1931.

[48] Peter Elias, Amiel Feinstein, and Claude Shannon. A note on the maximum flow
through a network. IRE Transactions on Information Theory, 2(4):117–119, 1956.

[49] Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Cana-
dian Journal of Mathematics, 8:399–404, 1956.

41



[50] András Frank and Kazuo Murota. A Discrete Convex Min-Max Formula for Box-
TDI Polyhedra. Mathematics of Operations Research, 47:1026–1047, 2020.

[51] Bert Gerards and András Sebö. Total dual integrality implies local strong unimod-
ularity. Mathematical Programming, 38:69–73, 1987.

[52] Alain Ghouila-Houri. Caractérisation des matrices totalement unimodulaires.
Comptes Redus Hebdomadaires des Séances de l’Académie des Sciences (Paris),
254:1192–1194, 1962.

[53] Dion Gijswijt and Guus Regts. Polyhedra with the Integer Carathéodory Property.
J. Comb. Theory B, 102:62–70, 2010.

[54] Frederick R. Giles and James B. Orlin. Verifying total dual integrality. manuscript,
1981.

[55] Frederick R. Giles and William R. Pulleyblank. Total dual integrality and integer
polyhedra. Linear algebra and its applications, 25:191–196, 1979.

[56] Luis Goddyn, Tony Huynh, and Tanmay Deshpande. On Hilbert bases of cuts.
Discrete Mathematics, 339(2):721–728, 2016.

[57] Michael Goemans. Lecture notes on combinatorial optimization. 2009.

[58] Roderick Gould. Graphs and vector spaces. Journal of Mathematics and Physics,
37(5):193–214, 1958.

[59] Roland Grappe. Polyhedra: some matricial perspectives. HDR Dissertation, Uni-
versité Sorbonne Paris Nord, 2021.

[60] Roland Grappe, Mathieu Lacroix, and Francesco Pisanu. On strong integrality
properties of the perfect matching polytope. Dial.pr, pages 1–20, 2025.

[61] Jerrow W. Grossman, Devadatta M. Kulkarni, and Irwin E. Schochetman. On the
minors of an incidence matrix and its smith normal form. Linear Algebra and its
Applications, 218:213–224, 1995.

[62] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[63] Martin Grötschel, László Miklós Lovász, and Alexander Schrijver. Geometric algo-
rithms and combinatorial optimization. In Algorithms and Combinatorics, 1988.

[64] Jacques Hadamard. Résolution d’une question relative aux déterminants. Bulletin
des sciences mathématiques, 2:240–246, 1893.

[65] Isidore Heller. On linear systems with integral valued solutions. Pacific Journal of
Mathematics, 7, 09 1957.

[66] Raymond Hemmecke. On the computation of Hilbert bases of cones. In Mathemat-
ical software, pages 307–317. World Scientific, 2002.

[67] Martin Henk and Robert Weismantel. On Hilbert bases of polyhedral cones. Konrad-
Zuse-Zentrum für Informationstechnik Berlin: Preprint SC, 1996.

42



[68] Martin Henk and Robert Weismantel. The height of minimal Hilbert bases. Results
in mathematics, 32(3-4):298–303, 1997.

[69] Alan J. Hoffman and Joseph B Kruskal. Integral boundary points of convex poly-
hedra. Linear inequalities and related systems, 38:223–246, 1956.

[70] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer
Computations, pages 85–103. Springer US, Boston, MA, 1972.

[71] Pieter Kleer and Guido Schäfer. Computation and efficiency of potential func-
tion minimizers of combinatorial congestion games. Mathematical Programming,
190:523–560, 2021.

[72] Dénes König. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116–119, 1931.

[73] Monique Laurent. Hilbert bases of cuts. Discrete Mathematics, 150(1):257 – 279,
1996.

[74] László Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete
Mathematics, 2(3):253–267, 1972.

[75] Odile Marcotte and Paul D. Seymour. Extending an edge-coloring. Journal of graph
theory, 14(5):565–573, 1990.

[76] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–
115, 1927.

[77] Carla Michini and Antonio Sassano. The Hirsch conjecture for the fractional stable
set polytope. Mathematical Programming, 147(1):309–330, 2014.

[78] Satoko Moriguchi and Kazuo Murota. Note on the polyhedral description of the
Minkowski sum of two L-convex sets. Japan Journal of Industrial and Applied
Mathematics, 40(1):223–263, 2023.

[79] Kazuo Murota and Akihisa Tamura. Decomposition of an integrally convex set into
a Minkowski sum of bounded and conic integrally convex sets. Japan Journal of
Industrial and Applied Mathematics, 41(2):987–1011, 2024.

[80] Christian Nöbel and Raphael Steiner. Complexity of polytope diameters via perfect
matchings. In ACM-SIAM Symposium on Discrete Algorithms, pages 2234–2251,
2024.

[81] Manfred W. Padberg. Total unimodularity and the Euler-subgraph problem. Op-
erations Research Letters, 7:173–179, 1988.

[82] Júlia Pap. Recognizing conic TDI systems is hard. Mathematical Programming,
128(1-2):43–48, 2011.

[83] Christos H. Papadimitriou and Mihalis Yannakakis. On recognizing integer polyhe-
dra. Combinatorica, 10(1):107–109, 1990.

[84] Francesco Pisanu. On box-total dual integrality and total equimodularity. PhD thesis,
Université Sorbonne Paris Nord, 2023.

43



[85] Henri Poincaré. Second complément à l’analysis situs. Proceedings of the London
Mathematical Society, 1(1):277–308, 1900.

[86] William R Pulleyblank. Total dual integrality and b-matchings. Operations Research
Letters, 1(1):28–30, 1981.

[87] Francisco Santos. A counterexample to the Hirsch conjecture. Annals of mathemat-
ics, pages 383–412, 2012.

[88] Alexander Schrijver. On total dual integrality. Linear algebra and its applications,
38:27–32, 1981.

[89] Alexander Schrijver. Total dual integrality from directed graphs, crossing families,
and sub- and supermodular functions. In Progress in Combinatorial Optimization,
pages 315–361. Elsevier, 1984.

[90] Alexander Schrijver. Theory of linear and integer programming. In Wiley-
Interscience series in discrete mathematics and optimization, 1986.

[91] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume
A-B-C. Springer Berlin, 01 2003.

[92] András Sebő. Hilbert bases, Carathéodory’s theorem and combinatorial optimiza-
tion. In Proceedings of the 1st Integer Programming and Combinatorial Optimization
Conference, pages 431–455. University of Waterloo Press, 1990.

[93] Paul D. Seymour. Decomposition of regular matroids. Journal of Combinatorial
Theory. Series B, 28(3):305–359, june 1980.

[94] Donald M Topkis. Paths on polymatroids. Mathematical programming, 54:335–351,
1992.

[95] Klaus Truemper. A decomposition theory for matroids. V. Testing of matrix total
unimodularity. Journal of Combinatorial Theory, Series B, 49(2):241–281, 1990.

[96] William T. Tutte. An algorithm for determining whether a given binary matroid is
graphic. Proceedings of the American Mathematical Society, 11:905–917, 1960.

[97] William T. Tutte. Lectures on matroids. Journal of Research of the National Bureau
of Standards Section B Mathematics and Mathematical Physics, 69B:1–47, 1965.

[98] Jhon von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen,
100(1):295–320, 1928.

[99] Robert Weismantel. Hilbert bases and the facets of special knapsack polytopes.
Mathematics of Operations Research, 21:886–904, 1996.

[100] Günter M Ziegler. Lectures on polytopes. volume 152. Springer Science & Business
Media, 1994.

44


	cover
	coververso CORE_DP copie
	Simple_box_TDI_horizon_tour
	Introduction
	Preliminaries
	Generalities on Polyhedra
	Unimodularity and Generalizations

	Fundamentals
	The Meaning of TDIness
	On the Existence of TDI systems
	Box-Totally Dual Integral Polyhedra
	Algebraic Properties of (box-)TDI Systems
	Linear Algebra Operations and (box-)TDIness

	Systems and Matrices
	Matricial Characterization
	Sufficient Conditions for Box-TDIness

	Polyhedra and Efficiency
	Cones
	Polyhedral Operations and box-TDIness
	Efficiency and Diameters

	Complexity results
	On the Box-TDIness of Classical Packing and Covering Problems
	Polymatroids
	Flows and Edge-Connectivity
	Matchings
	Edge Covers
	Stable Sets
	Integrally Convex Sets

	Beyond the Core Theory


