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Abstract

We represent a flow of a graph G = (V,E) as a couple (C, e) with
C a circuit of G and e an edge of C, and its incidence vector is the
0/± 1 vector χC\e − χe. The flow cone of G is the cone generated by
the flows of G and the unit vectors.

When G has no K5-minor, this cone can be described by the system
x(M) ≥ 0 for all multicuts M of G. We prove that this system is box-
totally dual integral if and only if G is series-parallel. Then, we refine
this result to provide the Schrijver system describing the flow cone in
series-parallel graphs.

This answers a question raised by Chervet, Grappe, Robert, Princi-
pally box-integer polyhedra and equimodular matrices, arXiv preprint
arXiv:1804.08977 (2018).

Keywords. Total dual integrality; Box-total dual integrality; Schrijver
system; Hilbert basis; Flow cone; Multicuts; Series-parallel graphs.

1 Introduction

Total dual integral systems were introduced in the late 70’s and are strongly
connected to min-max relations in combinatorial optimization [16]. A ratio-
nal system of linear inequalities Ax ≤ b is total dual integral (TDI) if the
minimization problem in the linear programming duality:

max{cx : Ax ≤ b} = min{yb : y ≥ 0, yA = c}

admits an integer optimal solution for each integer vector c such that the
maximum is finite. Such systems describe integer polyhedra when b is in-
teger [13]. Schrijver [15] proved that every full-dimensional polyhedron is
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described by a unique minimal TDI system Ax ≤ b with A integer—its
Schrijver system [6].

A stronger property is the box-total dual integrality, where a system
Ax ≤ b is box-total dual integral (box-TDI) if

Ax ≤ b, ` ≤ x ≤ u

is TDI for all rational vectors ` and u (with possible infinite components).
General properties of such systems can be found in Cook [5] and Chap-
ter 22.4 of Schrijver [16]. Note that, although every rational polyhedron
{x : Ax ≤ b} is described by a TDI system 1

kAx ≤
1
k b, for some integer

k, not every polyhedron is described by a box-TDI system. A polyhedron
described by a box-TDI system is called a box-TDI polyhedron. As proved
by Cook [5], every TDI system describing such a polyhedron is actually
box-TDI.

In the last decade, several new box-TDI systems were exhibited. Chen,
Ding, and Zang [1] characterized box-Mengerian matroid ports. In [2], they
provided a box-TDI system describing the 2-edge-connected spanning sub-
graph polyhedron for series-parallel graphs. Ding, Tan, and Zang [10] char-
acterized the graphs for which the TDI system of Cunningam and Marsh [9]
describing the matching polytope is actually box-TDI. Ding, Zang, and
Zhao [11] introduced new subclasses of box-perfect graphs. Cornaz, Grappe,
and Lacroix [8] provided several box-TDI systems in series-parallel graphs.
Recently, Chervet, Grappe, and Robert [3] gave new geometric characteri-
zations of box-TDI polyhedra.

As mentioned by Pulleyblank [14], it is not uncommon that the minimal
integer system and the Schrijver system of a polyhedron coincide. This is
the case of the matching polytope and matroid polyhedra. However, this
does not hold in general, as shown by Cook [4] and Pulleyblank [14] for the
b-matching polyhedron, and by Sebő [18] for the T -join polyhedron.

In this paper, we are interested in TDI, box-TDI, and Schrijver systems
for the flow cone of series-parallel graphs. Given a graph G = (V,E), a
flow of G is a couple (C, e) with C a circuit of G and e an edge of C. In a
flow (C, e), the edge e represents a demand and C \ e represents the path
satisfying this demand. The incidence vector of a flow (C, e) is the 0/ ± 1
vector χC\e − χe. The flow cone of G is the cone generated by the flows of
G and the unit vectors χe of RE .

A cut δ(W ) is the set of edges having exactly one endpoint in a subset
W of V . A bond is an inclusionwise minimal nonempty cut. Note that a
nonempty cut is the disjoint union of bonds. The cut cone of G is the cone
generated by the incidence vectors of the cuts of G, or, equivalently, by the
incidence vectors of bonds of G.

When G has no K5-minor, the flow cone of G is the polar of the cut cone
and is described by x(C) ≥ 0, for all cuts C of G [19]. Chervet, Grappe, and
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Robert [3] proved that the flow cone is a box-TDI polyhedron if and only if
the graph is series-parallel. Moreover they provided the following box-TDI
system:

1

2
x(B) ≥ 0 for all bonds B of G. (1)

Quoting them, they “leave open the question of finding a box-TDI system
with integer coefficients, which exists by [16, Theorem 22.6(i)] and [5, Corol-
lary 2.5].”

Contribution The goal of this paper is to answer the question of [3] men-
tioned above. Throughout, the main concept that we use is that of Hilbert
basis, whose definition and connection with TDIness are given at the end of
the introduction.

We first prove that

x(M) ≥ 0 for all multicuts M of G, (2)

is a TDI system describing the flow cone if and only if the graph is series-
parallel. As the flow cone is a box-TDI polyhedron for such graphs, this
implies that System (2) is a box-TDI system if and only if the graph is
series-parallel. We then refine this result by providing the corresponding
Schrijver system, which is composed of the so-called chordal multicuts—see
Corollary 3.4.

This completely answers the question of [3].

Outline In the next paragraph, we provide definitions and notation. In
Section 2, we first characterize the graphs for which multicuts form a Hilbert
basis. It follows that System (2) is box-TDI precisely for series-parallel
graphs. In Section 3, we provide a minimal integer Hilbert basis for multicuts
in series-parallel graphs. This gives the Schrijver system for the flow cone
in series-parallel graphs.

Definitions Given a finite set S and a subset T of S, we denote by χT ∈
{0, 1}S the incidence vector of T , that is χTs equals 1 if s belongs to T and
0 otherwise, for all s ∈ S. Since there is a bijection between sets and their
incidence vectors, we will often use the same terminology for both.

Let G = (V,E) be a loopless undirected graph. Given a subset U of V ,
the cut δ(U) is the set of edges having exactly one endpoint in U . A bond is
a cut containing no other nonempty cut. Given a partition {V1, . . . , Vk} of
V , the set of edges having endpoints in two distinct Vi’s is called multicut
and is denoted by δ(V1, . . . , Vk). A set of edges M is a multicut if and only
if |M ∩ C| 6= 1 for all circuits C of G—see e.g. [7]. The reduced graph of a
multicut M is the graph GM obtained by contracting all the edges of E \M .
Note that a multicut of GM is also a multicut of G. We denote respectively
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by MG and BG the set of multicuts and the set of bonds of G. A subset of
edges of G is called a circuit if it induces a connected graph in which every
vertex has degree 2. Given a circuit C, an edge of G is a chord of C if its
endpoints are two nonadjacent vertices of C. A graph is 2-connected if it
remains connected whenever a vertex is removed.

A graph is series-parallel if its 2-connected components can be con-
structed from the circuit of length two C2 by repeatedly adding edges paral-
lel to an existing one, and subdividing edges, that is, replacing an edge by a
path of length two. Series-parallel graphs are those having no K4-minor [12].
A graph is chordal if every circuit of length 4 or more has a chord.

The cone C generated by a set of vectors {v1, . . . ,vk} of Rn is the set of

nonnegative combinations of v1, . . . ,vk, that is, C =
{∑k

j=1 λjvj : λ1, . . . , λk ≥ 0
}

.

A set of vectors {v1, . . . ,vk} is a Hilbert basis if each integer vector in their
cone can be expressed as a nonnegative integer combination of v1, . . . ,vk.
A Hilbert basis is integer if it is composed of integer vectors, and it is a
minimal integer Hilbert basis if it has the smallest number of vectors among
all integer Hilbert basis generating the same cone. Each pointed rational
cone has a unique minimal integer Hilbert basis [15, Theorems 16.4]. The
link between Hilbert basis and TDIness is in the following result.

Theorem 1.1 (Corollary 22.5a of [16]). A system Ax ≥ 0 is TDI if and
only if the rows of A form a Hilbert basis.

2 When Do Multicuts Form a Hilbert Basis?

2.1 A Characterization

The following result characterizes the graphs for which the multicuts form
a Hilbert basis.

Theorem 2.1. The multicuts of a graph form a Hilbert basis if and only if
the graph is series-parallel.

Proof. First, let us show that the incidence vectors of the multicuts of a non
series-parallel graph do not form a Hilbert basis. Suppose that G = (V,E)
has K4 as a minor. Then, V can be partitioned into four sets {V1, . . . , V4}
such that Vi induces a connected subgraph and at least one edge con-
nects each pair Vi, Vj for i, j = 1, . . . , 4. We subdivide δ(V1, V2, V3, V4) into
E1, . . . , E6 as in Figure 1.

Let Ê = {e1, . . . , e6} where ei ∈ Ei for all i = 1, . . . , 6, and let w ∈ ZE
be as follows:

we =


2 if e ∈ E1,
1 if e ∈ E2, . . . , E6,
0 otherwise.
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Figure 1: Edges in the figure represent sets of edges of G having endpoints
in distinct Vi’s.

Since w = 1
2δ(V1) + 1

2δ(V2) + 1
2δ(V1 ∪V3) + 1

2δ(V1 ∪V4), it belongs to the

cut cone of G. Moreover, w>χÊ = 7. Any conic combination of multicuts
yielding w involves only multicuts contained in δ(V1, . . . , V4). Each of these
multicuts contains between 3 and 6 edges of Ê. Hence, if w is an integer
combination of such multicuts, it is the sum of two multicuts containing 3
and 4 edges of Ê, respectively. This means that w is the sum of δ(Vi) and
δ(Vi, Vj) for some i 6= j. Since we1 = 2, we have i ∈ {1, 2} and j ∈ {3, 4}.
But then δ(Vi)∩δ(Vi, Vj) contains an edge among e2, . . . , e5, a contradiction
with we2 = we3 = we4 = we5 = 1.

Therefore, w is not an integer combination of multicuts, implying that
the set of multicuts of G is not a Hilbert basis.

For the other direction, remark that each multicut of a series-parallel
graph is the disjoint union of multicuts of its 2-connected components. Since
they belong to disjoint spaces, if the set of multicuts of each 2-connected
component forms a Hilbert basis, then so does their union. Hence, it is
enough to prove that the multicuts of a 2-connected series-parallel graph
form a Hilbert basis. From now on, assume the graph to be 2-connected.

We prove the result by induction on the number of edges of G. When
G = ({u, v}, {e, f}) is the circuit of length two, the only nonempty multicut
is {e, f}, and its incidence vector forms a Hilbert basis.

Now, let G̃ = (Ṽ , Ẽ) be obtained from a 2-connected series-parallel graph
G = (V,E) by either adding a parallel edge or subdividing an edge. By the
induction hypothesis, MG is a Hilbert basis.

Suppose first that G̃ is obtained from G by adding an edge f parallel
to an edge e of E. A subset of edges M of G containing (respectively not
containing) e is a multicut if and only if M∪f (respectively M) is a multicut
of G̃. Thus, the incidence vector of each multicut of G̃ is obtained by copying
the component associated with e in the component of f . Since the incidence
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vectors of the multicuts of G are a Hilbert basis, so are the incidence vectors
of the multicuts of G̃.

Suppose now that G̃ is obtained from G by subdividing an edge ē ∈ E.
We denote by u the new vertex and by f and g the edges adjacent to it.
A multicut M of G̃ can be expressed as the half-sum of the bonds of G̃.
Moreover, as each bond is a multicut, bonds and multicuts of G̃ generate
the same cone: the cut cone. Since System (1) is TDI in series-parallel
graphs [3, end of Section 6.4], the set of vectors {1

2χ
B : B ∈ BG̃} forms a

Hilbert basis.
Let v be an integer vector in the cut cone. There exist λB ∈ 1

2Z+ for all
B ∈ BG̃ such that v =

∑
B∈BG̃

λBχ
B. The vector v is an integer combination

of multicuts of G̃ if and only if v−bλδ(u)cχδ(u) is, thus we may assume that

λδ(u) ∈ {0, 1
2}. Define w ∈ ZE by:

we =

{
vf + vg − 2λδ(u) if e = ē,

ve otherwise.

Remark that (B \ ē) ∪ f and (B \ ē) ∪ g are bonds of G̃ whenever B is a
bond of G containing ē. Moreover, a bond B of G which does not contain
ē is a bond of G̃. Since δ(u) is the unique bond of G̃ containing both f and
g, we have:

w =
∑

B∈BG:ē∈B
(λ(B\ē)∪f + λ(B\ē)∪g)χ

B +
∑

B∈BG:ē6∈B
λBχ

B.

Thus, w belongs to the cut cone of G. Moreover, as λδ(u) is half-integer, w
is integer. By the induction hypothesis, MG is a Hilbert basis, hence there
exist µM ∈ Z+ for all M ∈ MG such that w =

∑
M∈MG

µMχ
M . Consider

the family N of multicuts of G where each multicut M of G appears µM
times.

Suppose first that λδ(u) = 0. Then, vf + vg multicuts of N contain ē.
Let P be a family of vf multicuts of N containing ē and Q = {M ∈ N : ē ∈
M} \ P. Then, we have

v =
∑

M∈N :ē /∈M

χM +
∑
M∈P

χ(M\ē)∪f +
∑
M∈Q

χ(M\ē)∪g,

hence v is a nonnegative integer combination of multicuts of G̃.
Suppose now that λδ(u) = 1

2 . Then, vf + vg − 1 multicuts of N contain
ē. Let P be a family of vf −1 multicuts of N containing ē, let Q be a family
of vg − 1 multicuts in {M ∈ N : ē ∈ M} \ P, and denote by N the unique
multicut of N containing ē which is not in P ∪Q. Then, we have

v =
∑

M∈N :ē /∈M

χM +
∑
M∈P

χ(M\ē)∪f +
∑
M∈Q

χ(M\ē)∪g + χN\ē∪{f,g}.

Hence v is a nonnegative integer combination of multicuts of G̃. This proves
that MG̃ is a Hilbert basis.
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2.2 An Integer Box-TDI System for the Flow Cone in Series-
Parallel Graphs

Combining the box-TDIness of the flow cone and Theorems 1.1 and 2.1
yields a box-TDI system for the flow cone of a series-parallel graph with
only integer coefficients. This provides a first answer to the question of [3].

Corollary 2.2. The following statements are equivalent:

i. G is a series-parallel graph,

ii. System (2) is TDI,

iii. System (2) is box-TDI.

Proof. (i.⇔ii.) This equivalence follows by combining Theorems 1.1 and 2.1.
(ii.⇔iii.) If G is series-parallel, then System (1) is box-TDI [3, end of

Section 6.4]. Hence, the flow cone of G is box-TDI. Since a TDI system
describing a box-TDI polyhedron is a box-TDI system [5], point ii. implies
point iii.. A box-TDI system being TDI by definition, point iii. implies
point ii..

3 Which Multicuts Form Hilbert Basis?

3.1 A Minimal Integer Hilbert Basis

Theorem 2.1 provides the set of graphs whose multicuts form a Hilbert basis.
The following theorem refines this result by characterizing the multicuts
which form the minimal Hilbert basis.

A multicut is chordal when its reduced graph is 2-connected and chordal.
Note that bonds are chordal multicuts.

Theorem 3.1. The chordal multicuts of a series parallel graph form a min-
imal integer Hilbert basis.

Proof. Let G = (V,E) be a series-parallel graph. By Theorem 2.1, the
multicuts of G form an integer Hilbert basis. Hence, the minimal integer
Hilbert basis is composed of the multicuts which are not disjoint union of
other multicuts. These multicuts are characterized in the following lemma,
from which stems the desired theorem.

Lemma 3.2. A multicut of a series-parallel graph G is chordal if and only
if it can not be expressed as the disjoint union of other nonempty multicuts.

Proof. Let M be a multicut of G. Recall that every multicut of GM is a
multicut of G. Beside, since the disjoint union of multicuts is a multicut,
a disjoint union of nonempty multicuts is actually the disjoint union of two
nonempty multicuts.
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We first prove that, if GM is 2-connected and chordal, then M is not
the disjoint union of two nonempty multicuts. By contradiction, suppose
that GM is 2-connected and chordal, and M = M1 ∪M2 where M1,M2 are
disjoint multicuts of GM . If C is a circuit of length at most three in GM ,
then C ⊆ Mi for some i = 1, 2. Indeed, the edges of C are partitioned by
M1 and M2, and a multicut and a circuit intersect in either none or at least
two edges.

Since GM is 2-connected and Mi is nonempty for i = 1, 2, there exists at
least a circuit containing edges of both M1 and M2. Let C be such a circuit,
of smallest length. Then, C has length at least 4, as otherwise it would be
contained in one of M1 and M2. Since GM is chordal, there exists a chord c
of C. Denote by P1 and P2 the two paths of C between the endpoints of c.
For i = 1, 2, the circuit Pi ∪ {c} is strictly shorter than C. Since C is the
shortest circuit intersecting both M1 and M2, we get that Pi ∪{c} ⊆Mi for
i = 1, 2. But then c ∈M1 ∩M2, a contradiction.

To prove the other direction, first suppose that GM is not 2-connected.
Then, the set of edges of each 2-connected component of GM is a multicut
of G, and M is the disjoint union of these multicuts. Now, suppose that
GM is not chordal, that is, GM contains a chordless circuit C of length at
least 4. We will apply the following.

Claim 3.3. Let C be a circuit of length at least 4 in a series-parallel graph G.
Then, there exists a pair of vertices nonadjacent in G[V (C)] whose removal
disconnects G.

Proof. We can assume that there are two nonadjacent vertices u and v of
G[V (C)] such that there exists a path P between u and v that has no internal
vertex in C. Indeed, otherwise, removing any two nonadjacent vertices of
G[V (C)] would disconnect G.

Let us show that removing u and v disconnects G. Denote by Q and
R the two paths of C between u and v. By contradiction, suppose that
G\{u, v} is connected. Then, there exists a path containing neither u nor v
between an internal vertex of R and an internal vertex of either P or Q. Let
S be a minimal path of this kind. Then, no internal vertex of S belongs to
P , Q, or R, and the subgraph composed of P , Q, R and S is a subdivision
of K4. This contradicts the hypothesis that G is series-parallel.

By Claim 3.3 there exist two vertices u and v of C, nonadjacent in
G[V (C)], whose removal disconnects G. Denote by V1, . . . , Vk the sets of
vertices of the connected components ofG\{u, v}, and letGi = G[Vi∪{u, v}],
for i = 1, . . . , k. Note that, since C is chordless, E(Gi) ∩ E(Gj) = ∅ for all
distinct i and j. Thus, M is the disjoint union of E(G1), . . . , E(Gk)

Let us prove that E(Gi) is a multicut of GM , for i = 1, . . . , k. Consider
a circuit D of GM . If D is contained in one of the Gi’s, then |D ∩Gj | 6= 1
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for j = 1, . . . , k. Otherwise, D is the union of two paths from u to v, these
paths being contained in two different Gi’s. Without loss of generality, let
these paths be P1 ∈ G1 and P2 ∈ G2. Then, we have D∩Gi = Pi if i = 1, 2,
and ∅ otherwise. Since C has no chord, the shortest path from u to v in
each Gi is of length at least two, hence |Pi| ≥ 2. Therefore |D ∩Gi| 6= 1 for
i = 1, . . . , k.

Therefore, E(Gi) is a multicut of GM , and hence of G, for i = 1, . . . , k.
Hence, M is the disjoint union of multicuts of G.

3.2 The Schrijver System of the Flow Cone in Series-Parallel
Graphs

Theorem 2.2 provides an integer box-TDI description of the flow cone in
series-parallel graphs. However, this box-TDI description is not minimal:
there are redundant inequalities whose removal preserves box-TDIness.
Here, we provide the minimal integer box-TDI system for this cone. This
completely answers the question of [3, end of Section 6.4].

Corollary 3.4. The Schrijver system for the flow cone of a series-parallel
graph G is the following:

x(M) ≥ 0 for all chordal multicuts M of G. (3)

Moreover, this system is box-TDI.

Proof. By Theorems 1.1 and 3.1, System (3) is TDI. Since every bond is
a chordal multicut, this system describes the flow cone for series parallel
graphs. Therefore, by [5, Corollary 2.5] and by the flow cone being box-TDI
for series-parallel graphs, System (3) is box-TDI.

We mention that, by planar duality, Corollary 3.4 provides the Schrijver
system for the cone of conservative functions [17, Corollary 29.2h] in series-
parallel graphs.
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