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Équipe: Algorithmes et Optimisation Combinatoire - AOC

TDIness and Multicuts
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Abstract

In this thesis we study integer total dual integral (TDI) systems and box-totally dual

integral (box-TDI) polyhedra associated with multicuts.

The first polyhedron we consider is the flow cone, that is, the cone generated by the

incidence vectors of flows and edges of a graph. This cone is box-totally dual integral

if and only if the graph series-parallel. We provide a system describing the flow cone

made of inequalities associated with the multicuts of the graph. This system has integer

coefficients, and we prove that it is totally dual integral if and only if the graph is series-

parallel. Thereafter, when G is series-parallel, we provide the Schrijver system of the flow

cone. This is the unique totally dual integral system with integer coefficients describing

the flow cone such that the removal of any redundant constraint undermines its total dual

integrality.

The second polyhedron we treat is the k-edge-connected spanning subgraph polyhedron,

that is the convex hull of the k-edge-connected spanning subgraphs of a given graph. We

first show that the connector polyhedron – corresponding to the case k = 1 – is box-

totally dual integral for all graphs. Then, we prove that the k-edge-connected spanning

subgraph polyhedron is box-totally dual integral for each k ≥ 2 if and only if the graph is

series-parallel.

The description of the k-edge-connected spanning subgraph polyhedron being depen-

dent on the parity of k, we provide two distinct totally dual integral systems describing

this polyhedron. When k is even, we provide a system with integer coefficients that is

totally dual integral whenever the graph is series-parallel. When k is odd, we prove that

the system known for describing this polyhedron for series-parallel graph is totally dual

integral if and only if the graph is series-parallel.

Keywords: totally dual integral system, box-totally dual integral polyhedron, Schri-

jver system, flow cone, k-edge-connected graph, multicut, series-parallel graph, polyhedral

study.
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Résumé

Dans cette thèse nous nous intéressons aux systèmes total dual intégraux (TDI) et aux

polyèdres total dual box-intégraux (box-TDI) en lien avec les multicoupes.

Dans un premier temps, nous considérons le cône des flots, c’est-à-dire le cône généré

par les vecteurs d’incidence des flots et des arêtes du graphe. Ce cône est box-TDI si et

seulement si le graphe associé est série-parallèle. En premier lieu, nous fournissons un

système d’inegalités associées aux multicoupes du graphe qui décrit le cône des flots. Ce

système est à coefficients entiers et il est TDI si et seulement si le graphe est série-parallèle.

En outre, lorsque le graphe est série-parallèle, nous donnons une description du cône des

flots à l’aide du système de Schrijver, qui est l’unique système TDI à coefficients entiers

dont la suppression de n’importe quelle inégalité détruit le caractère TDI.

Deuxièmement, nous étudions le polyèdre des sous-graphes k-arête-connexes Pk(G).

Nous montrons que P1(G) est un polyèdre box-TDI pour n’importe quel graphe G. Ensuite,

nous montrons que, pour chaque k fixé, Pk(G) est box-TDI si et seulement si G est un

graphe série-parallèle.

La description de Pk(G) dépendant de la parité de k, nous étudions séparément les

cas lorsque k est pair et impair. Pour k pair, nous fournissons un système à coefficients

entiers qui est TDI si le graphe G est série-parallèle. Finalement, quand k est impair, nous

montrons que le système à coefficients entiers qui décrit Pk(G) est TDI si et seulement si

G est série-parallèle.

Mots clés: système total dual intégral, polyèdre total dual box-intégral, système de

Schrijver, cône des flots, graphe k-arête-connexe, multicoupe, graphe série-parallèle, étude

polyédrale.
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Glossary

In this glossary, we assume that: S, T are sets, s is an element of S, a and b are real

numbers, i, j,m, n are integer numbers, G = (V,E) and H are graphs, u,w are vertices of

G and w′ is a vertex of H, U,W are subsets of V , {V1, . . . , Vn} is a partition of V , F is a

subset of E, v is a vector, A is a matrix, M is a multicut, x is a vector in ZE.

Sets and Numbers

• 2S - Power set of S.

• |S| - Cardinality of S.

• [a, b] - {x ∈ R : a ≤ x ≤ b}.

• (a, b) - {x ∈ R : a < x < b}.

• g.c.d.(m,n) - greatest common divisor of m and n.

• l.c.m.(m,n) - least common multiple of m and n.

• R, Q, Z - Sets of real, rational, and integer numbers.

• S∆T - symmetric difference of S and T , that is (S ∪ T ) \ (S ∩ T ).

Complexity

• Co-NP -complete - Class of hardest problems in Co-NP .

• Co-NP - Class of problems that admits a polynomial certificate for negative instances.

• NP - Class of problems that admits a polynomial certificate for positive instances.
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GLOSSARY

• NP -complete - Class of hardest problems in NP .

• NP -hard - Class optimization of problems whose decision problem is NP -complete.

• P - Class of polynomial problems.

Linear Algebra

• 0,1
2
, 1,2 - Uniform vectors with all components equals to 0, 1

2
, 1, and 2.

• χS - Incidence vector of S.

• ξs - Element of the canonical base of RS.

• v|S - Restriction of v to the elements of S.

• A>, v> - Transpose of A and v.

• A(i,j) - Minor of A obtained by removing the ith row and jth column.

• Aij - Element of A at position i, j.

• aff(S) - Affine hull of S.

• cone(S) - Conic hull of S.

• conv(S) - Convex hull of S.

• lattice(S) - Lattice of S.

• Det(A) - Determinant of A.

Graphs

• δ(U,W ) - Set of edges having one endpoint in U and the other in W .

• δ(W ) - Cut. Also, set of edges having exactly one endpoint in W .

• δ(V1, . . . , Vn) - Multicut defined by the partition {V1, . . . , Vn}.

• Ei - ith ear of an ear decomposition of a graph.

• BG, DG, MG - Sets of bonds, cuts, and multicuts of G.
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GLOSSARY

• dM - Order of the multicut M .

• G? - Planar dual graph of G.

• G[F ], G[W ] - Subgraphs of G induced respectively by F and W .

• G[x] - Graph G[x] = (V,E ′), where E ′ is the family of edges of E with multiplicity

xe for every e ∈ E.

• Gu⊕w′H - 1-Sum of G and H, obtained identifying u and w′.

• GM - The reduced graph of M .

• Kn - Complete graph on n vertices.

• Kn,m - Complete bipartite graph on n and m vertices.

• uw - Edge having u and w as endpoints.

xvii
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Introduction

One of the most difficult, and yet common, tasks we face in our life is to choose. Every mo-

ment of our life is direct consequence of our and other people’s choices. As a consequence,

we spend time elaborating pro and contra of our decisions, even for the most trivial ones.

In combinatorial optimization we study how to make optimal choices when we face a finite

number of alternatives. These kind of problems are those that naturally rise in our every-

day life. We can model the vast majority of the choices we make in terms of combinatorial

optimization problems: which clothes a traveler should put in his luggage, how a small

enterprise should plan the workers turnovers, or how an airline company should schedule

its flights.

Many combinatorial optimization problems have a graphical representation as graphs,

that allows us to concisely represent huge sets of solutions as object of the graph. The prob-

lems treated in this thesis fall in this category: indeed, we deal with problems associated

with multicuts, a structure of graphs.

The number of possible solutions to these problems is such that the extensive explo-

ration of all of them is not an option. Thus, more efficient methods should be found. This

can be done by looking to the sets of solutions as geometrical objects: we can associate a

polyhedron in a vector space to each combinatorial optimization problem. The analysis of

this polyhedron allows us to efficiently tackle problems that seem hard to solve at a first

sight. This approach, also called polyhedral combinatorial optimization (or polyhedral

combinatorics) is one of the major approaches to understand and to solve combinatorial

optimization problems: the study of the convex hull of the feasible solutions to a particular

problem opens the door to polyhedral theory and advanced techniques.

In particular, we focus on two aspects of polyhedral combinatorial optimization: totally

dual integral systems and box-totally dual integral polyhedra. The concept of total dual

integrality dates back to the works of Edmonds, Giles, and Pulleyblank in the late ’70s,

and is strongly connected to min-max relations in combinatorial optimization. Box-total

dual integrality arose thereafter as a generalization of total dual integrality, and was proved

xix



INTRODUCTION

to have strong polyhedral properties by scholars like Cook and Schrijver.

In this thesis, we deal with the totally dual integral description of the flow cone and

with the box-total dual integrality of the k-edge-connected spanning subgraph polyhedron.

Flows are classical objects in combinatorial optimization that model theoretical-oriented

problems and have real-life applications. We characterize for which graphs a system based

on multicuts describing the flow cone is totally dual integral. Then, we give the minimal

totally dual integral system with integer coefficients that describes this cone.

The k-edge-connected spanning subgraph problem arises in the design of resistant net-

works. These networks are typical of transportation science and telecommunications. We

characterize when the polyhedron of the k-edge-connected spanning subgraphs is box-TDI

and we provide TDI systems based on multicuts that describe this polyhedron.

Overview of the Document

This thesis is structured in four chapters. In the first two chapters we present fundamental

concepts and classical results of mathematical programming and total dual integrality. The

last two chapters are dedicated to original results on total dual integrality of systems and

polyhedra related with multicuts.

In Chapter 1, we give the fundamental definitions and notation used in this thesis,

including those concerning mathematical programming, linear programming duality, ma-

trices, and graph theory.

In Chapter 2, we formalize the concepts of total dual integrality and box-total dual

integrality, and we present classical and recent results on these topics, focusing on those

exploited in the rest of the thesis.

In Chapter 3, we study the flow cone. We provide a system with integer coefficients

describing this cone that is TDI if and only if it is associated with a series-parallel graph.

Moreover, we characterize the multicuts that are not disjoint union of two multicuts, and

we provide the minimal totally dual integral system having integer coefficients for the flow

cone of series-parallel graphs. The results of this chapter appear in [5].

In Chapter 4, we study the k-edge-connected spanning subgraph problem. We first

analyze the connector polyhedron, corresponding to the case k = 1, and we prove that

this polyhedron is box-TDI. Then, we show that the k-edge-connected spanning subgraph

polyhedron is box-TDI if and only if the graph is series-parallel. We conclude by analyzing

two systems describing the k-edge-connected spanning subgraph polyhedron. When k is

even, we give a system that is TDI for series-parallel graphs. When k is odd, we show that

xx



INTRODUCTION

the system given by Chopra [31] and Didi Biha and Mahjoub [50] is TDI for series-parallel

graphs.

At the end of Chapters 3 and 4 we give an overview the results achieved, and we propose

some questions and problems that could represent some future developments.

We conclude this thesis by summarizing the results achieved and by giving some per-

spectives of the work done.

xxi





Chapter 1

Preliminaries, Definitions, and

Notation

This chapter provides the notations and basic definitions used throughout the thesis. In

this thesis we study mathematical and geometrical properties of systems related with graph

problems. Thus, we fix the notation and the definitions for linear algebra, mathematical

programming, and graph theory.

Forewords. It is of great importance, for mathematics as known today, the correct

definition of every concept. Sets, numbers, and relations are mathematical notions of

common use in real life. However, a correct and formal definition of those objects is less

trivial than it could appear.

Since a rigorous axiomatic treat on the true nature of these objects is out of our scope,

we will assume as known the fundamental notions of the classical naive set theory. During

our work we will pay attention not to use the notion of “set of all the sets” and similar

problematic concepts.

We will try to highlight when the definitions and notations we use are non-standard or

disputed.

1.1 Sets and Numbers

Let S be a set, we usually define S as S = {x : x has the property P}. To say that x

belongs to S, we write x ∈ S. To say that T is a subset of S, we write T ⊆ S; it holds that

S ⊆ S, and we will denote that a T is a proper subset of S – that means T is not empty

and has strictly less elements than S – by T ( S. We denote the empty set by ∅, and we

1
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assume that ∅ ⊆ S for every set S. The term collection is a synonym of set, but will be

used to denote sets whose elements are sets. The power set of a set S is the collection of

subsets of S, denoted by 2S. The cardinality of S, denoted by |S|, is the number (possibly

infinite) of elements belonging to S. Given two sets S and T , their cartesian product S×T
is the set of ordered pairs {(s, t) : s ∈ S, t ∈ T}.

A family F of elements of a set S is a set where the elements of S may occur more

than once. The multiplicity of an element s in F is the number of times s occurs in F .

A set S is inclusionwise minimal in a collection if there is no set T in the collection such

that T ( S. A partition of a set S is a collection C of subsets of S such that each element

of S belongs to exactly one set in C . Given two sets S and U we define their symmetric

difference by S∆U = (S ∪ U) \ (S ∩ U).

We denote respectively the sets of real, rational, and integer numbers by R, Q, and Z.

Moreover, R+, Q+, and Z+ indicate respectively the sets {x ∈ R : x ≥ 0}, {x ∈ Q : x ≥ 0},
and {x ∈ Z : x ≥ 0}. We will say that a number x is half-integer when 2x ∈ Z.

Given a set of integer numbers S = {s1, . . . , sn} the greatest common divisor (g.c.d.)

is the biggest integer positive number d such that si
d
∈ Z for all i = 1, . . . , n. The least

common multiple (l.c.m.) is the smallest integer positive number d such that d
si
∈ Z for all

i = 1, . . . , n.

Given two real numbers a and b, we denote by [a, b] the set {x ∈ R : a ≤ x ≤ b}.
Similarly, we denote1 by (a, b) the set {x ∈ R : a < x < b}.

1.2 Computational Complexity

In this thesis we treat problems of combinatorial optimization. These problems can be

seen as “find the maximum value of a function among a finite set of solutions”. Those who

pursued higher education in mathematics may think of combinatorial optimization prob-

lems as being “trivial”: when the number of solutions is finite, we can find the optimum by

simply enumerating all the solutions. The challenge posed by these problems is not “if” we

can find an optimal solution, but rather “how long will it take” to find it. The branch of

theoretical computer science treating the computability is known as computational com-

plexity theory. In this section, we informally present the basic concepts of this branch of

computer science.

The complexity theory is based on the work of Cook [33], Edmonds [60], and Karp [103].

The aim of this field is to define whether a given problem is solvable in an “efficient way”

1Sometimes, this set is denoted by ]a, b[.
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or not. In this context, we have to stress the difference between a problem and an instance

of it. A problem is a question having some input parameters, to which we want answer.

A problem is defined by giving a general description of its parameters and by listing the

properties that must be satisfied by a solution. An instance is obtained by giving a specific

value to all its input parameters.

An algorithm is a set of rules for carrying out the calculation that finds the solution

of every instance of a given problem. Each rule implies the execution of a certain number

of operations one or more times, depending on the status of the computation. We infor-

mally say that an operation is elementary if its execution time is bounded by a constant.

Some examples of operations we usually consider elementary are arithmetical operations,

exchange of two data, and comparison between two objects of fixed size. The execution of

an algorithm will result in a sequence of elementary operations. The size of an instance is

the amount of data required to describe the instance itself.

Example 1.1: Problem, instance, and dimension.

A problem could be “Given a set of names, sort them in alphabetical order”, while

an instance of this problem can be the list of students of a class. The size of this

instance will be the total number of characters in the list.

An algorithm solves a given problem in a certain number of elementary operations,

depending on the size n of the instance. An algorithm is said to be O(f(n)) if the number

of elementary operations necessary to solve an instance is upper bounded by cf(n) for

some real number c. When f is a polynomial in n we say that the algorithm is polynomial.

Similarly, if f(n) is a linear function, we say that the algorithm is linear.

We say that a problem belongs to the class P (Polynomial) if there exists a polynomial

algorithm resolving every instance of the problem. A decision problem is a problem that

has two possible answers: yes and no. Let P be a decision problem. The Y-instances and

the N-instances of P are the sets of its instances having answer respectively yes and no. A

certificate for a Y-instance (resp. N-instance) is an algorithmic proof that yes (resp. no) is

the correct answer for that instance. We say P belongs to the class NP (nondeterministic

polynomial) if all its Y-instances admit a certificate whose correctness can be verified in

polynomial time. It is immediate to see that the class P is contained in NP . In the

class NP , we distinguish some problems that seem to be harder to solve than others,

this particular set of problems is called NP -complete. To determine whether a problem

3
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PCo-NP NPCo-NP
-complete

NP -complete

NP -hard

Figure 1.1: Some complexity classes. Note: we assume that P 6= NP .

is NP -complete, we need the notion of polynomial reducibility. A decision problem P1

can be polynomially reduced to another decision problem P2, if there exists a polynomially

computable function f such that for every instance I of P1, the answer is yes if and only if

the answer of instance f(I) for P2 is yes. A problem is NP -complete if every other problem

in NP can be polynomially reduced to it.

With every combinatorial optimization problem is associated a decision problem. Fur-

thermore, each optimization problem whose decision problem is NP -complete is said to be

NP -hard. The complementary class of NP is Co-NP : we say that a problem P belongs to

the class Co-NP if all its N-instances admit a certificate whose correctness can be verified

in polynomial time. Similarly to NP , a problem is Co-NP -complete if every other problem

in Co-NP can be reduced to it in polynomial time. In Figure 1.1, we represent the classes of

complexity we named in this section, under the assumption that P 6= NP . For an in-depth

analysis of computational complexity theory and a wide collection of P and NP problems

we refer to the landmark book of Garey and Johnson [78].

1.3 Linear Algebra

In this section we fix notation and give fundamental definitions for vectors, matrices, and

all the fundamental concepts relative to linear algebra that we will use in the rest of the

thesis.

4
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1.3.1 Vectors and Vector Spaces

A vector is a finite ordered tuple of numbers disposed in a row (row vector) or in a column

(column vector). The elements of a vector are called entries or components. We will denote

the ith component of a vector v by vi. A vector with real entries is an element of Rn, and

we define the vector space of dimension n is the set of vectors of Rn. When dealing with

vectors, we sometimes refer to numbers as scalar.

We define three operations on vectors: sum, multiplication, and transposition. Given

two vectors v, w ∈ Rn, their sum is the vector z = v+w ∈ Rn whose ith entry zi = vi +wi,

for all i = 1, . . . , n. Given a row vector v and a column vector w with the same number of

entries n, their scalar product2 is the number

v × w =
n∑
i=1

viwi.

Given a vector v ∈ Rn and a scalar k, we denote by kv the vector of Rn having each

component multiplied by k. The transpose of a row (respectively column) vector v is the

column (resp. row) vector v> with the same elements in the same order. Unless differently

specified, we assume that all vectors we treat are column vectors.

Given a finite set S and the vector space R|S|, we will often consider the elements of

R|S| as indexed by the elements of S. Thus, we will write that a vector v belongs to RS,

and we will denote its component associated with the element s ∈ S by vs. Given the

set T ⊆ S, we denote by χT ∈ {0, 1}S the incidence vector of T , that is χTs equals 1 if s

belongs to T and 0 otherwise, for all s ∈ S. Given the set RS, the canonical base is the set

of vectors χ{s} for all s ∈ S, we denote3 this set of vectors as ξs for all s ∈ S.

Let S be a set and T ⊆ S, and let v ∈ RS. We define the restriction of c to T the

vector v|T ∈ RT , that is

v|T s = vs for all s ∈ T.

1.3.2 Linear Functions and Linear Systems

Given a vector space Rn, a linear function f : Rn → Rm is a function such that, for all

v, w ∈ Rn and a ∈ R:

• f(av) = af(v),

2we will usually omit the multiplication symbol ×.
3This notation is not standard, we decided to use the symbol ξ instead of the more common e or e to

avoid confusion with the symbol used for the edges of a graph.
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• f(v + w) = f(v) + f(w).

We are interested in linear functions with real values, these functions are all of the form

f(v) = c>v for a given vector c.

We call linear inequality every inequality of the form α>x ≤ β, where x ∈ Rn is a

variable, and α ∈ Rn and β ∈ R are given. Analogously, for a linear equality. A set

of linear equalities and inequalities is called linear system. A linear system is rational if

all the coefficients and the right-hand sides of the inequalities composing it are rational

vectors and numbers. During the rest of the thesis, we will assume that all systems will

be rational.

We will often deal with linear inequalities for which α ∈ RS is the incidence vector of

a subset T of S. Formally, the inequality would be∑
s∈T

xs ≤ β,

however, we will use the compact notation:

x(T ) ≤ β.

1.3.3 Linear Independence and Bases

Given a set of vectors {v1, . . . , vm} ⊆ Rn, a linear combination of these vectors is the

weighted sum: λ1v1 + · · · + λmvm, for some scalars λ1, . . . , λm. A vector is the linear

combination of a set of vectors S if it can be obtained as linear combination of elements

of S.

A set of vectors {v1, . . . , vm} is linearly independent if λ1v1 + · · · + λmvm = 0 implies

λi = 0 for all i = 1, . . . ,m. Equivalently, v1, . . . , vm are linearly independent if none of them

is linear combination of the others. A set of vectors v1, . . . , vm generates a subspace V ⊆ Rn

if all vectors in V are linear combinations of v1, . . . , vm. A set of linearly independent vectors

that generates a space is a basis of this space. The following proposition is well-known:

Proposition 1.1. The dimension of a vector space equals the cardinality of a basis of the

space.

1.3.4 Affine Spaces

When studying polyhedra, it is natural to use the concept of affine hull. An affine com-

bination of S = {v1, . . . , vn} ⊆ Rn is the weighted sum λ1v1 + · · · + λmvm such that

6
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λm + · · · + λm = 1. One point v̄ is affinely independent to a set S if there is no affine

combination of elements of S that gives v̄. Equivalently, the points v1, . . . , vm are affinely

independent if and only if

m∑
i=1

λivi = 0,
m∑
i=1

λi = 0,

implies that λi = 0 for all i = 1, . . .m.

An affine space of Rn is a set closed under affine combinations, its dimension is one

less than the cardinality of a maximal set of affinely independent points. Let A and B ⊆ A

be two affine spaces, then B is an affine subspace of A. If A and B ⊆ A have the same

dimension, then A = B. Given a set of points S, its affine hull aff(S) is the set of affine

combinations of elements of S.

1.3.5 Conic, Convex, and Integer Combinations

A convex combination of the vectors v1, . . . , vm is an affine combination λ1v1 + · · ·+ λmvm

such that λi ≥ 0 for all i = 1, . . . ,m. A set S ⊆ Rn is convex if it is closed under convex

combinations of its elements. The convex hull of S is the smallest convex set containing S

and it is denoted by conv(P ). Not surprisingly, the convex hull of a set coincides with the

set of points {x ∈ Rn : x is a convex combination of points of S}.

A conic combination of v1, . . . , vm is a linear combination λ1v1 + · · ·+ λmvm such that

λi ≥ 0 for all i = 1, . . . ,m. We say that a set C ⊆ Rn is a cone, if there exists a t ∈ Rn,

and a set S ⊆ Rn closed under conic combinations, such that C = {x ∈ Rn : x = t + s,

for some s ∈ S}. In a similar way, we define the conic hull of a set S ⊆ Rn as the

smallest set containing S closed under conic combinations, or equivalently as the set of

points cone(S) = {x ∈ Rn : x is conic combination of points of S}. If C is the conic hull

of S then we say that C is generated by S, and we say that C is finitely generated when

there exists a finite set T such that C = cone(T ). Given C conic hull of a set S, we call

polar cone of C the cone Co = {x ∈ Rn : x>y ≤ 0, for all y ∈ C}.

An integer combination of v1, . . . , vm is a linear combination λ1v1 + · · · + λmvm such

that λi ∈ Z for all i = 1, . . . ,m. We define the lattice of S, as the set of points that are

integer combinations of v1, . . . , vm.
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1.3.6 Matrices

A matrix is a disposition of real numbers4 in a rectangular array with a finite number

of rows and columns. The elements of the matrix are called entries. The element of the

matrix A arranged in the ith row and jth column is denoted by Aij. A matrix with r rows

and n columns is said to belong to Rr×n. We say that r×n is the dimension of the matrix5.

In this context, we can see row and column vectors as matrices with respectively one row,

and one column. A matrix is square if it has the same number of rows and columns. A

square matrix A ∈ Rn×n is diagonal if Aij = 0 whenever i 6= j, for all i, j = 1, . . . , n.

The fundamental unary operation we can apply to a matrix is the transposition. Given

A ∈ Rr×n, the transpose of A, denoted by A>, is the matrix of Rn×r defined element-wise

A>ij = Aji for all i = 1, . . . , n , j = 1, . . . , r.

Matrices of the same dimension are equipped with the operation of sum: let A and B

belong to Rr×n. Then C = A + B is the matrix of Rr×n such that Cij = Aij + Bij for

all i = 1, . . . , r , j = 1, . . . , n. Given a scalar k ∈ R and a matrix A ∈ Rr×n, kA ∈ Rr×n

(rarely Ak) will denote the matrix whose ijth entry is kAij for i = 1, . . . , r and j = 1, . . . , n.

Another important operation defined on matrices is the matricial product denoted by ×.

Given two matrices A ∈ Rr×n and B ∈ Rn×`, we can multiply them. Hence, C ∈ Rr×` =

A×B is a matrix given by:

Cij =
n∑
h=1

AihBhj for all i = 1, . . . , r and j = 1, . . . , `.

Given a square matrix A ∈ Rn×n, the determinant of a A, denoted by Det(A), is the

signed n-dimensional volume of the parallelotope defined by 0 and the column vectors of

A. An m × m-minor of a r × n matrix, with m ≤ r, n, is the determinant of a square

submatrix of dimension m ×m. We call singular a matrix whose determinant is 0. The

(i, j)-minor of A is the determinant of A(i,j), that is the matrix obtained by removing the

ith row and the jth column. There are many ways to compute the determinant of a n× n
matrix, we provide the following formula6:

Det(A) = −
n∑
i=1

(
(−1)iA1iDet(A(1,i))

)
.

A related concept is that of rank: the row rank of a matrix is the maximum number

of rows that are linearly independent when seen as row vectors. A matrix is full row rank

4We can enlarge the definition to fields, but it is not fundamental for this work.
5Note that × is just a typographical symbol in this case.
6The provided formula is probably the most understandable, but it is not efficient. There exist algo-

rithms that compute the determinant of a given matrix in polynomial time.
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when all its rows are linearly independent. A square submatrix is nonsingular if and only

if it is full row rank.

We list some well-known classical operations on the rows of a matrix, called the Gauss

operations :

i. exchanging two rows,

ii. summing k times a row to a different one, for a real number k,

iii. multiplying all the elements of a row for a real number k 6= 0.

These operations do not change the rank of the matrix, and only the first and the third

operations affect the value of the determinant. If A′ is obtained from A by performing

once the first operation, then Det(A′) = −Det(A). If A′ is obtained from A by performing

once the third operation, then Det(A′) = kDet(A).

For further information about matrices we refer to any undergraduate book of linear

algebra (e.g. [115]).

1.3.7 Polyhedra

One of the main topics of this thesis is the study of specific integrality conditions on

polyhedra.

Let us consider the affine space Rn for a certain n > 0. A hyperplane is an affine

subspace of dimension n− 1. An hyperplane separates the space into two half-spaces. We

consider the hyperplane as being a subset of each of the subspaces it separates.

Every hyperplane H can be expressed as {x ∈ Rn : α>x = β} for some α ∈ Rn and

β ∈ R. Similarly, the two half-spaces defined by H will be {x ∈ Rn : α>x ≥ β} and

{x ∈ Rn : α>x ≤ β}.
We define a polyhedron as the intersection of a finite number of halfspaces of Rn. Thus,

a polyhedron is the set of solutions of a linear system: P = {x ∈ Rn : Ax ≤ b}, for a

matrix A ∈ R`×n and b ∈ R`. In this case, we say that P is described by Ax ≤ b. By

definition, polyhedra are convex sets.

Remark. It is important to note that the linear system that describes a polyhedron is

not unique.

A polytope is a polyhedron that is the convex combination of a finite number of points.

We can consider polytopes as “bounded polyhedra”.

9
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Observation 1.2. A polyhedron P ∈ Rn is a polytope if and only if there exists a c ∈ Rn
+

such that P ⊆ {x ∈ Rn : −c ≤ x ≤ c}.

A hyperplane H is called a supporting hyperplane of the polyhedron P if P is contained

in one of the two half-spaces bounded by H and P ∩H 6= ∅. A face F of a polyhedron P

is the set of points F = P or F = P ∩H for some supporting hyperplane H. A nonempty

face that contains no other face of P is called minimal face. When such a face is a point, we

call it vertex and we say that P is pointed. A face strictly contained in P that is contained

in no other face is called facet.

Let P = {x : Ax ≤ b} be a polyhedron of Rn and F be a face of P . A matrix M is

face-defining for F if M is full row rank and aff(F ) can be written {x : Mx = d} for some

d. A matrix is face-defining for P if it is face-defining for some of its faces. A face-defining

matrix for a facet of P is called facet-defining.

Remark. The definition of face-defining matrix is independent from the description of P .

On the other hand, all facet-defining inequalities for a given facet of a full-dimensional

polyhedron are relatively multiple.

Observation 1.3. Let P ⊆ Rn be a polyhedron and let F = {x ∈ P : Bx = b} be a face of

P . If B has full-row rank and n− dim(F ) rows, then B is face-defining for F .

We say that a polyhedron is integer if every face contains an integer point. Similarly, a

polyhedron is rational if every face contains a rational point. For pointed polyhedra these

conditions are satisfied if and only if the vertices are integer/rational.

The following result relates integer polyhedra and supporting hyperplanes.

Theorem 1.4 ([63]). A polyhedron P is integer if and only if each supporting hyperplane

of P contains an integer point.

A stronger requirement is the following: a polyhedron P is box-integer if P ∩ {x : ` ≤
x ≤ u} is an integer polyhedron for all integer vectors ` and u. Figure 1.2 provides an

example of an integer polytope that is not box-integer.

A polyhedral cone is a polyhedron that is also a cone. Polyhedral cones are finitely

generated. A pointed polyhedral cone that has 0 as vertex is described by systems of the

form Ax ≤ 0.

The dominant of a polyhedron P is the set of points {x ∈ Rn : x = y+z ∀y ∈ P, z ≥ 0}.
A dilation of a polyhedron P = {x ∈ Rn : Ax ≤ b} is the polyhedron KP = {x :

A(K−1x) ≤ b} for some diagonal matrix K such that Kii > 0 for all i = 1, . . . , n. A

10
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Figure 1.2: A box-integer polytope (left) and a non box-integer polytope (right):

A and B are non integer points given by the intersection with an integer box-constraint.

uniform dilation is a dilation such that all the elements on the diagonal of K are equal;

let k be the value of the entries of the diagonal of K. We denote such dilation by kP , and

it is immediate to note that kP = {x : Ax ≤ kb}.

1.3.8 Submodularity and Polymatroids

Let U be a set and f : 2U → R be a function. We say that f is a set function on U . A set

function f is called submodular if:

f(T ) + f(S) ≥ f(T ∪ S) + f(T ∩ S) for all subsets S and T of U .

Submodular set functions are associated with a special class of polyhedra, the polyma-

troids. A polymatroid is the ploytope described by:{
x(S) ≤ f(S) for all subsets S of U,

x ≥ 0,

for a submodular set function f on U . Similarly, an extended polymatroid is the polyhedron

described by

x(S) ≤ f(S) for all subsets S of U,

for some submodular set function f on U . Polymatroids were introduced by Edmonds [62],

who gave also the following classical result (see also [135, Section 44.3]).

Theorem 1.5. For any integer submodular set function f , the polymatroid Pf and the

extended polymatroid EPf are integer polyhedra.

In Exemple 1.2 we introduce a well-known polymatroid, for the definitions of graph and

forest we refer to Section 1.6
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Example 1.2: The forest polytope.

Consider a graph G = (V,E). In the following, we describe the convex hull of points

in RE that are incidence vectors of forests of G. We call this polytope the forest

polytope of G.

Proposition 1.6. Given a graph G = (V,E), its forest polytope F is described by

the following system.{
x(F ) ≤ |V [F ]| − 1 for all nonempty subsets F of E,

x ≥ 0.

(1.1)

(1.2)

Proof. The points x ∈ {0, 1}E represents subsets of edges of G. We denote by G[x]

the graph induced by such subset of edges. Inequalites (1.1) imply that a binary

x does not belong to F if G[x] contains a circuit. On the other hand, if G[x] is

forest of G, then x respects inequalities (1.1). Moreover, the right-hand side of (1.1)

is a submodular set function, thus the polytope described by (1.1) and (1.2) is a

polymatroid, that is integer by Theorem 1.5. �

1.4 Mathematical Programming

Mathematical programming is one of the most important branches of operational research.

It concerns the maximization or minimization of a function, that represents the objective

of our decision, under a set of constraints imposed by the nature of the problem being

studied. The meaning of these constraints may vary: limited budget, logical implications,

legal restrictions, and other kind of limitations could interfere with our aim. More generally,

mathematical programming can be defined as a formal mathematical representation aimed

at maximizing the output of a choice under the hypothesis of limited resources. When this

representation uses only linear functions, we have a linear-programming model.

A mathematical optimization problem can be seen as max{c(x) : x ∈ P} for some

objective function c and set P .

A point x is a feasible solution (or a solution) if it respects all the constraints. A solution

x∗ is an optimum or an optimal solution of min{c(x) : x ∈ P} if c(x∗) = min{c(x) : x ∈ P}.
Given a solution x, we say that a constraint is active for x if it is satisfied with equality.

A constraint is active for a face F if the corresponding inequality is satisfied with equality

by all points x in F . We say that a problem min{c(x) : x ∈ P} is feasible if it admits a
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feasible solution, and we say that it is bounded if there exists two real numbers u, ` such

that ` ≤ min{c(x) : x ∈ P} ≤ u. We use the terms unfeasible and unbounded to denote

the contrary of feasible and bounded.

1.4.1 Linear Programming

In this thesis we focus on linear programming (LP). A problem is linear when both the

constraints and the objective function are linear. The objective function is a linear function

defined on this polyhedron, hence we can always define it as a scalar product between a

cost vector c and its argument x. In this context, we use the terms cost function, objective

function, and cost vector as synonyms. A linear programming algorithm finds a point

in the polyhedron where this function has the largest (or smallest) value, if such a point

exists.

The set of solutions – also called feasible region – of a linear program is given by the

intersection of half-spaces, hence its feasible region is a convex polyhedron. We usually

denote a linear program by max{c>x : Ax ≤ b, x ∈ Rn}, for some c ∈ Rn, b ∈ Rm and

A ∈ Rm×n. When possible, will omit x ∈ Rn, to ease the notation. In this context the con-

straints are called linear constraints. Some constraints we find commonly in mathematical

programming are the nonnegativity constraints, that are the constraints of the form x ≥ 0.

Theorem 1.7. Linear Programming is in P .

Indeed, there exists two algorithms that solve LP in polynomial time: the ellipsoid

method [106] and Karmakar’s algorithm [102]. Moreover, Tardos [148] proved that a linear

program is solvable in polynomial time with respect to the size of the constraint matrix A.

Thus, all the computational hardness of a linear program lies in the polyhedral structure

of the program itself.

1.4.2 Combinatorial Optimization and Linear Integer Program-

ming

A combinatorial optimization problem consists in minimizing (or maximizing) a function

over a discrete set7.

We are interested in combinatorial optimization problems that have linear objective

function. Thus, our problems will be of the form max{c>x : x ∈ S}, for some vector c

and discrete set S. Moreover, we want to restrict our research to domains that are strictly

7The reader can think of a discrete set as finite.
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correlated with linear programming. Indeed, the scope of our research is to study the

polyhedral structure of conv(S) to solve the combinatorial optimization problem defined

on S. Therefore, we require S to have some sort of convexity (that we lost when we

assumed S to be discrete). We say that a set of integer points S is pseudo-convex if S is

the set of integer points of conv(S). The interested reader can find some more results and

possible definitions of discrete convexity in the work of Danilov and Koshevoi [45].

If we assume that our domain is pseudo convex, we reduce our scope to problems of

the form max{c>x : Ax ≤ b, x ∈ Zn}, for some c ∈ Rn, b ∈ Rm and A ∈ Rm×n. The linear

problem max{c>x : Ax ≤ b} is the linear relaxation of our integer problem. Note that, for

a given pseudo-convex set, there exist many different linear relaxations of the domain, as

shown in Figure 1.3.

Problem like this are also called integer linear programs. We will use the terms combi-

natorial optimization problem and integer linear program as synonyms.

In general, solving such a combinatorial optimization problem is a hard task: many

combinatorial optimization problems are NP -hard [78]. Therefore, linear integer programs

seem to be harder to solve than linear programs. This is partially due to the lack of “local

properties”: the domain being not convex, it is not trivial to move smoothly from one

feasible solution to another. On the other hand, the convex hull of our domain possibly

has an exponential number of facets, hence using linear programming techniques can still

be not efficient. Nevertheless, there exist many combinatorial optimization problems with

an exponential number of solutions that are treatable.

Figure 1.3: Two linear relaxations of a set of integer points.
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Polyhedral approach. Our approach is based on linear programming. Let S be a

discrete set, then consider the combinatorial optimization problem max{c>x : x ∈ S} and

its linear relaxation max{c>x : x ∈ conv(S)}. We know that conv(S) is a polytope having

elements of S as vertices, and we know that there exists a vertex attaining the optimal

solution of max{c>x :∈ conv(S)}. Thus, solving the linear relaxation of our problem gives

us an optimal solution to max{c>x : x ∈ S}.
As already mentioned, the criticality of this approach is the fact that conv(S) has

possibly an exponential number of facets, and so the problem could be still untreatable.

Nevertheless, this approach, proposed by Edmonds [61], turns out to be useful under some

hypothesis. Indeed, Grötschel, Lovász, and Schrijver [86], Karp and Papadimitrou [104],

and Padberg and Rao [119] showed under which assumptions we can use the ellipsoid

method to solve a combinatorial optimization problem in polynomial time. In order to

present the major result in this sense, we need the concept of separation problem. Given

P = {x ∈ Rn : Ax ≤ b}, its separation problem consists in deciding whether a point x̄

belongs to P and, in negative case, provide an inequality of Ax ≤ b violated by x̄. The

following theorem is of great importance for combinatorial optimization.

Theorem 1.8 (Equivalence of separation and optimization). Let A be a class of inequality

systems, then the optimization problem for A is solvable in polynomial time if and only if

the separation problem for A is solvable in polynomial time.

For the proof and some extensions of this result, we refer to [87].

1.4.3 Duality in Linear Programming

One of the most interesting aspects of linear programming is the existence, for each prob-

lem, of a corresponding dual problem. The relation occurring between a problem – named

also primal – and its dual is so strict that we sometimes consider the couple primal-dual

as a unique instance of a problem.

Given a primal problem P and its dual D, there exists a bijection between constraints

(resp. variables) of P and variables (resp. constraints) of D. Moreover, the cost function

of the one problem is the right-hand side of the other, and, if A is the constraint matrix

of the primal, then A> is constraint matrix of the dual. Given a LP problem P, its dual is

the following:
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max c>x (P)

s.t.

{Ax ≤ b
(1.3)

min b>y (D)

s.t.{
A>y = c

y ≥ 0
(1.4)

Since we can always rewrite a LP problem to be in the same form of P, the previous

example is completely general. However, there is a set of rules we can apply, in order to

deduce the dual of a LP problem, even if the system is not in the form as above. We

summarized these rules in Table 1.1. A nice result is that the primal problem is the dual

of its dual problem, hence there exists a one-to-one correspondence between problems and

duals. The interrelation existing between these two problems is explained in the following

result.

Theorem 1.9 (Strong Duality Theorem). Let P : max{c>x : Ax ≤ b} be a primal LP

problem and let D : min{b>y : y ≥ 0, y>A = c} be its dual. Then:

• P is unbounded if and only if D is unfeasible.

• P is unfeasible if and only if D is unbounded.

If P is feasible and bounded, max{c>x : Ax ≤ b} = min{b>y : y ≥ 0, y>A = c}.

Primal (Maximization) Dual (Minimization)

ith constraint ≤ bi ←→ ith variable ≥ 0

ith constraint ≥ bi ←→ ith variable ≤ 0

ith constraint = bi ←→ ith variable free

jth variable ≥ 0 ←→ jth constraint ≥ cj

jth variable ≤ 0 ←→ jth constraint ≤ ci

jth variable free ←→ jth constraint = cj

Table 1.1: Rules of LP duality

Another useful result is that of complementary slackness.

Theorem 1.10 (Complementary Slackness). If, in an optimal solution of a linear program,

the value of the dual variable associated with a constraint is nonzero, then that constraint

must be satisfied with equality. Further, if a constraint is satisfied with strict inequality,

then its corresponding dual variable must be zero.
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Unfortunately, there is no one-to-one correspondence between optima of the primal and

those of the dual. Nevertheless, Theorem 1.10 is a strong tool to derive an optimal solution

of the primal from the optimal solution of the dual and vice versa.

1.5 Unimodular and Equimodular Matrices

In this section, we study some classes of matrices that play an important role in combina-

torial optimization, in particular when studying total dual integrality, as we will see in the

next chapter.

A unimodular matrix (UM ) is a full row rank r×n, integer matrix whose r× r minors

have value 0,±1. A quite more specific definition is that of total unimodularity. A matrix

is a totally unimodular matrix (TUM ) if all its square submatrices have determinant equal

to 0,±1. In particular all entries of a totally unimodular matrix are 0,±1.

Another possible way to generalize this concept is to consider when all the full dimen-

sional determinants have the same value: an equimodular matrix (EM ) is a full row rank

r × n matrix whose non zero full dimensional determinants have the same absolute value.

A further generalization is that of total equimodularity. A matrix is a totally equimodular

matrix (TEM ) if all its sets of linearly independent rows form an equimodular matrix.

Clearly, the most restrictive definition is that of total unimodularity, that implies all

the others. Moreover, the discriminant between unimodular matrices and equimodular

matrices is well-known (see e.g. [28]) and involves a remarkable property for integer linear

programming.

Observation 1.11. Let A ∈ Rr×n be an equimodular matrix. If the g.c.d. of all the r × r
determinants equals 1, then A is unimodular.

In Example 1.3 we present some matrices belonging to the different classes we treat.

Moreover, Figure 1.4 shows the inclusions between these classes of matrices.

We give an original result that characterizes totally unimodular matrices in terms of

total equimodularity.

Proposition 1.12. A matrix is totally unimodular if and only if it is unimodular and

totally equimodular.

Proof. Total unimodularity directly implies unimodularity and total equimodularity. On

the other hand, suppose there exists a matrix A ∈ Zr×n that is unimodular and totally

equimodular but not totally unimodular. By definition of unimodularity, all the entries of

A are integer numbers.
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Example 1.3: Some examples of matrices.

Here we list some examples of matrices belonging to the classes we mentioned. First,

we highlight that there exist matrices that are equimodular but not unimodular,

indeed the matrix

A =

 1 1 0 −1

1 0 1 −1

0 1 1 0


is equimodular but not unimodular. Moreover, the multiplication of a row by a

constant number preserves both equimodularity and total equimodularity, but not

unimodularity:

B =

[
1 1 0

2 0 2

]
.

Furthermore, A and B are totally equimodular, unlike

C =

 1 0 1 0

2 1 1 0

0 0 1 1

 ,
that is unimodular (and hence equimodular) but not totally equimodular: the second

row has both a 2 and a 1, so it is a non equimodular subset of rows.

We show in Proposition 1.12 that unimodular matrices that are also totally equimod-

ular are totally unimodular.

Let now B be a square submatrix of A with determinant equal to ±k for some integer

k > 1, and let R the subset of indices corresponding to the rows of B. Then, by total

equimodularity of A, all non-singular square submatrices of A defined on R have determi-

nant ±k. Let us denote the set of these matrices by B . Let A′ ∈ Zr×r be a full row rank

square submatrix of A, then:

Det(A′) = −
r∑
i=1

(
(−1)iA′jiDet(A′(j,i))

)
for some j 6∈ R.

We can calculate recursively Det(A′) by Laplace expansion on the rows not in R, obtaining:

Det(A′) =
∑
B′∈B

(λB′Det(B′)) , (1.5)
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where λB′ ∈ Z because it is a sum of products of elements of A′. Since Det(B′) ∈ {0,±k}
for all B′ ∈ B , we can rewrite (1.5):

Det(A′) = k
∑
B′∈B

(
λB′

Det(B′)

k

)
. (1.6)

This leads to a contradiction: Det(A′) = ±1, while the the right-hand side of (1.6) is k

times an integer number. �

1.5.1 Unimodular Matrices and Linear Programming

Unimodular matrices are related with very strong results in integer linear programming,

and are a powerful tool to detect integer polyhedra.

Hoffman and Kruskal [99] proved that the coprimality of all full dimensional determi-

nants implies integrality of the polyhedron:

Theorem 1.13. Let P = {x ∈ Rn : Ax ≤ b} and A ∈ Zr×n. Then, the g.c.d. of all the

r × r determinants of A equals 1 if and only if P is integer for every integer vector b.

Since every unimodular matrix satisfies the condition of the theorem, we can deduce

the following:

Corollary 1.14. Let P = {x ∈ Rn : Ax ≤ b} and A ∈ Zr×n be unimodular. Then, P is

integer for all integer b.

Hoffman and Kruskal themselves generalized this result in the same paper, introducing

total unimodular matrices.

Theorem 1.15. Let P = {x ∈ Rn : Ax ≤ b} and A ∈ Zr×n. Then, P is box-integer for

every integer vector b if and only if A is totally unimodular.

This result has very important consequences that we will explore in Chapter 2.

1.5.2 Recognition of Totally Unimodular Matrices

Here we discuss how we can recognize totally unimodular matrices, let us start from a

trivial observation:

Observation 1.16. Matrix A is totally unimodular if and only if A> is.

The following sufficient condition is credited to Heller, Tompkins, and Gale [94] (some-

times, also to Hoffman and Kruskal).
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TUMg.c.d.=1
TEM

UM EM

Figure 1.4: Classes of matrices.

Theorem 1.17. Let A be a matrix such that:

• the entries of A are 0,±1,

• each row of A contains at most two nonzero elements,

• the columns of A can be partitioned into two sets A1, A2 such that two nonzero entries

in a row are in the same set of columns if and only if they have different sign;

then A is totally unimodular.

Corollary 1.18. A matrix is totally unimodular if it contains at most one +1 and at most

one −1 in each column.

As an immediate consequence, we can highlight a well-known class of totally unimodular

matrices:

Corollary 1.19. The edge-incidence matrix of a bipartite graph is totally unimodular.

Proof. It is sufficient to partition the columns of the matrix in V1 and V2 corresponding to

the parts of the graph. Being the graph bipartite, no rows have two ones in either V1 or

V2. �

Camion [16] and Ghouila-Houri [80] provided two classical characterizations of totally

unimodular matrices. For the first we need the following definition: a matrix is Eulerian

if the sum of the elements on the rows and the sum of the elements on the columns are

even numbers.
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Theorem 1.20 (Camion’s Characterization). A 0/±1 matrix is totally unimodular if and

only if the sum of the elements in each Eulerian square submatrix is a multiple of 4.

Theorem 1.21 (Ghouila-Houri’s Characterization). A matrix A is totally unimodular if

and only if we can partition for every subset S of columns of A into two sets S1 and S2

such that ∑
j∈S1

Aij −
∑
`∈S2

Ai` ∈ {−1, 0, 1} for every row i.

From this characterization stems Theorem 1.17: indeed, if a matrix satisfy the condi-

tions of Theorem 1.17, we can just choose S1 and S2 of Theorem 1.21 respectively as S∩A1

and S ∩ A2.

Another sufficient consequence is based on the consecutive property: a 0/1 matrix has

the consecutive ones property if, for every row i, Aij = Aij′ = 1, with j < j′ implies that

Ai` = 1 for all j < ` < j′.

Corollary 1.22. Every matrix with the consecutive ones property is totally unimodular.

Seymour [140] characterized totally unimodular matrices in terms of network matrices.

We avoid further details on this fundamental result that can be found in Seymour [140, 141]

and Schrijver [134, Section 19]. A major outcome of [140] is the fact that there exists a

polynomial-time algorithm to test whether a matrix is totally unimodular, as shown by

Truemper [151].

Theorem 1.23. The problem to decide if a given matrix is totally unimodular is in P .

1.5.3 Recognition of Equimodular Matrices

We will discuss the role of equimodular matrices in Chapter 2. We conclude this sec-

tion providing some ways to check whether a matrix is equimodular. Here we show a

characterization due to Heller [93] (see [28]).

Theorem 1.24. Let A ∈ Rr×n be full row rank. Then, the following are equivalent.

• A is equimodular.

• For each nonsingular full dimensional submatrix D of A, lattice(D) = lattice(A).

• For each nonsingular full dimensional submatrix D of A, D−1A is integer.

• For each nonsingular full dimensional submatrix D of A, D−1A has 0/± 1 entries.
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• For each nonsingular full dimensional submatrix D of A, D−1A is totally unimodular.

• There exists a r × r submatrix D of A, such that D−1A is totally unimodular.

Combining Theorems 1.23 and 1.24, we obtain the following result.

Corollary 1.25. The problem to decide if a given matrix is equimodular is in P .

We give here some original simple observations we will use in Chapter 4.

Observation 1.26. Let A ∈ RI×J be a full row rank matrix, j ∈ J , c be a column of A,

and v ∈ RI . If A is equimodular, then so are the following if they have full row rank:

(i)
[
A c

]
, (ii)

[
A

±ξj

]
, (iii)

[
A v

0> ±1

]
, (iv)

[
A 0

±ξj ±1

]
.

Observation 1.27. Gauss operations preserving the rank preserve equimodularity.

Observation 1.28 ([28]). Let F be a face of a polyhedron. If a face-defining matrix of F

is equimodular, then so are all face-defining matrices of F .

1.6 Graphs

Graphs are a convenient mean to model discrete data in mathematics, as well as a fruit-

ful source of combinatorial optimization problems. Indeed, in this thesis we focused all

problems we tackle are defined on graphs.

A graph G is a pair G = (V,E), where V is the set of vertices of G, and E is a family8

of unordered pairs of elements of V , called edges. The terms node and arc are sparsely

used as synonyms respectively of vertex and edge.

Given an edge, the vertices composing it are called endpoints. We sometimes denote an

edge e having v and w as endpoints as vw. The cardinalities of V and E are respectively

called order and size of G. Two edges are incident9 if they share an endpoint. An edge

that is incident only to one vertex, is a loop and two edges sharing both endpoints are

called parallel edges. A graph that have neither loops nor parallel edges is called simple.

An edge and a vertex are incident one to the other if the latter is an endpoint of the first.

We denote the set of edges incident to a vertex v by δ(v). The degree of a vertex is the

8Following our definition a graph can have multiple edges with the same endpoints. In literature, these

objects are sometimes called multigraphs.
9Sometimes, the term adjacent is also used.
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number of edges incident on it. Two vertices are adjacent if they are endpoints of a same

edge.

We usually represent a graph by drawing points (the vertices) connected by lines (the

edges).

A path is an alternating sequence of vertices and edges P = {v1, e1, v2, . . . , ek−1, vk},
such that two consecutive elements of the sequence are incident. We say that the length

of a path is the number of vertices in the path10.

A graph G is connected if for each pair of vertices there exists a path in G containing

both of them. We can generalize this concept: a graph G is k-connected if the removal

of any k − 1 vertices does not disconnect it. Moreover, a graph is k-edge-connected if the

removal of any k − 1 edges does not disconnect it.

Observation 1.29. A graph is k-connected (resp. k-edge-connected) if and only if there

exist k vertex-disjoint (resp. edge-disjoint) paths between any two vertices.

We will now define some basic elements of graphs, let G = (V,E) be a graph. A

subgraph of G is a graph H = (V ′, E ′) where V ′ ⊆ V and E ′ ⊆ E. A subgraph H = (V ′, E ′)

of G, is an induced subgraph if E ′ is the set of edges of E having both endpoints in V ′.

We denote the subgraph induced by V ′ by G[V ′]. An edge-induced subgraph is a subgraph

H = (V ′, E ′) where E ′ ⊆ E and V ′ is the set of endpoints of the edges of E ′.

A contraction of an edge e is the operation of replacing e and its endpoints by a single

vertex. If H is obtained from G by contracting the edge e, we write that H = G/e. A

subdivision of an edge e is the operation of replacing e and its endpoints by a path of

length 2. A deletion is the removal of an edge or a vertex and all edges incident to it from

the graph. The graph obtained by the removal of a vertex v is denoted by G \ {v}. The

notation is the same for the edges. A graph H is a topological minor (or simply, a minor)

of G if we can obtain H from G by a sequence of edge contraction, edge deletion, and

vertex deletion. Given two graphs G and H and two vertices v ∈ G and w ∈ H, we define

the 1-Sum Gv⊕wH as the graph obtained by identifying the vertices v of G and w of H.

One of the objectives of graph theory is to characterize different classes of graphs in

terms of forbidden minors and/or forbidden induced subgraphs. An interesting result in

this sense, is due to Robertson and Seymour [126]: they proved what was previously known

as Wagner’s Conjecture.

Theorem 1.30 (Robertson-Seymour Theorem). Every class of graphs closed under minors

can be defined by a finite set of forbidden minor graphs.

10This choice is standard, but not universally accepted.
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1.6.1 Structures of Graphs

We list here the objects that we will use in our research, together with some elementary

observations.

A subset of edges that induces a graph whose vertices have even degree is called a cycle.

With an abuse of notation, we indicate with the same letter the subgraph induced by the

cycle. A circuit is a cycle inducing a connected graph whose vertices have degree 2. The

length of a circuit is the number of edges forming it.

We say that an edge is a chord of a circuit C if it has as endpoints two vertices of C

that are not adjacent in C. A circuit with no chord is said to be chordless. A hole of G is

a chordless circuit of length at least 4. We say that a graph is chordal if it has no holes.

Given two set of vertices of G, say W1,W2, we define by δ(W1,W2) the set of edges having

one endpoint in W1 and the other in W2. A cut is a set of edges of G having exactly one

endpoint in a subset of vertices W of V . We denote such a cut by δ(W )11. The sets W

and V \W are called shores. A bond is a cut containing no other nonempty cut. In the

literature, a bond is sometimes called a central cut. We list some well-known facts.

Observation 1.31 ([10]). For a graph G the following hold:

• Every bond intersects every circuit of G in an even number of edges.

• A nonempty cut is a bond if and only if both its shores induce connected subgraphs.

• Symmetric difference of two cuts is a cut.

Given a partition {W1, . . . ,Wk} of V , a multicut is the set of edges having endpoints

into two distinct sets of the partition. Following the notation on δ, we denote this mul-

ticut by δ(W1, . . . ,Wk). For each multicut M there exists a unique partition of vertices

{V1, . . . , VdM} such that G[Vi] is connected for all i = 1, . . . , dM . We call such {V1, . . . , VdM}
shores, and we say that dM is the order of M . The reduced graph of a multicut M is the

graph GM obtained by contracting all the edges of E \M (see Figure 1.5). Note that a

multicut of GM is also a multicut of G.

In Chapters 3 and 4 we will treat some systems whose constraints are associated with

bonds, cuts, and multicuts. The following trivial observations will be useful for our results.

Observation 1.32. Every cut is the disjoint union of bonds.

11A cut δ(W ) is the set of edges δ(W,V \W ), so we are omitting the complementary set.
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Figure 1.5: Left: a circuit C and a bond B.

Center-right: a multicut M of a graph G, and the reduced graph GM .

Observation 1.33. Let M = δ(V1, . . . , VdM ) be a multicut, then

χM =

dM∑
i=1

1

2
χδ(Vi).

Observation 1.34 ([40]). A set of edges M of a graph G is a multicut if and only if

|M ∩ C| 6= 1 for all circuits C of G.

We denote respectively by MG and BG the set of multicuts and the set of bonds of G.

A flow is a couple (C, e), where C is a circuit of G and e is an edge of C. In a flow

(C, e), the edge e represents a demand and C\e represents the path satisfying this demand.

With an abuse of notation, we say that the incidence vector of a flow (C, e) is the 0/± 1

vector χC\e − χe.

Observation 1.35. For every flow F and bond B of a graph,
(
χF
)>
χB ≥ 0.

Some graph classes. A graph having no cycles is a forest, a connected forest is a tree.

A graph is bipartite if we can partition its vertices into two subsets, say V,W such that

every edge of G has one endpoint in V and the other in W . V and W are called parts

of G. Bipartite graphs are characterized for not having odd-length cycles as subgraphs.

The complete graph on n vertices, denoted by Kn is the graph having n vertices and one

edge between each two distinct vertices. The complete bipartite graph Km,n is the bipartite

graph having a part V of m vertices, a part W of n vertices, and an edge connecting each

vertex of V to each vertex of W .

25



CHAPTER 1. PRELIMINARIES, DEFINITIONS, AND NOTATION

In the following, we present some properties and characterizations of the graphs we

study in this thesis. Every result unproved or unreferenced can be found in classical books

on graph theory, e.g. the book of Diestel [52].

1.6.2 Planar Graphs

A graph is planar if it can be drawn onto the plane in a way such that no edges meet in

any point other than their common endpoints. Such a drawing is called planar embedding.

Note that the representation of a graph is independent from its planarity. Once a graph

G is drawn onto the plane, it subdivides the plane in a set of regions delimited by edges

and vertices. Let G be a planar graph, the planar dual of G is the graph having a vertex

for each region of the planar embedding, and an edge between two vertices for each edge

separating two regions. We denote the planar dual by G?. It is immediate to see that

the planar dual of a planar graph is planar. In figure 1.6, we can see two planar graphs

reciprocally dual.

Figure 1.6: A graph (black) and its planar dual (blue).

Planar duality is indeed a powerful instrument that has various applications. In Chap-

ter 3 we will use the following property:

Proposition 1.36. Let G be a planar graph, there exists a one-to-one correspondence

between the circuits (resp. bonds) of G and bonds (resp. circuits) of G?.

Planar graphs have been characterized by Kuratowski [108].

Theorem 1.37 (Kuratowski’s Theorem). A graph is planar if and only if it does not have

neither K5 nor K3,3 as minors.
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1.6.3 Series-parallel Graphs

The class of graphs we study the most in this thesis is the class of series-parallel graphs.

A graph is series-parallel if it can be built starting from K2, the graph with two vertices

and one edge, by applying repeatedly the following operations:

• (parallelization) adding an edge parallel to an existing one,

• (subdivision) subdividing an edge,

• (1-Sum) 1-Summing two series-parallel graphs.

We refer to these building operations as series-parallel operations. In Figure 1.7, we show

the three operations.

Figure 1.7: Series-parallel graphs: the series-parallel operations.

Equivalently, we can say that a graph is series-parallel if its 2-connected components

can be built from the circuit of length 2, by repeatedly adding edges parallel to an existing

one, and subdividing edges.

Series-parallel graphs are a remarkable class of graphs. They are fairly simple and their

building characterizations allow easy proofs for many results. Moreover, many usually hard

problems are treatable on series-parallel graphs. The most important characterization of

series-parallel graphs is due to Duffin [59].

Theorem 1.38. A graph is series-parallel if and only if it does not have K4 (see Figure 1.8)

as a minor.
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Figure 1.8: K4, the smallest non-series-parallel graph.

Theorem 1.38 implies various properties, for instance the fact that series-parallel graphs

are planar.

Corollary 1.39. Every series-parallel graph is planar.

Proof. To see that, we observe thatK4 is a subgraph ofK5, and it can be obtained fromK3,3

by contracting two edges incident to a same vertex. Combining Theorems 1.37 and 1.38

we obtain the result. �

Moreover, K4 being the planar dual of itself, the class of series-parallel graphs is closed

under planar duality.

Observation 1.40. A graph is series-parallel if and only if its planar dual is.

In 1992, Eppstein [66] gave another powerful tool to build series-parallel graphs, based

on the concept of ear decomposition. An open nested ear decomposition of a graph G =

(V,E) is a partition of E into E0, . . . ,Em such that E0 is a circuit, and the ears Ei, for

i = 1, . . .m, are paths with the following properties:

• both the end vertices of Ei lie in a single Ej for some j < i,

• no internal vertex of Ei is in Ej for all j < i,

• if two ears Ei and Eh have both their end vertices in the same ear Ej, then a path in

Ej between the extremities of Ei contains either both or none the endpoints of Eh.

In Figure 1.9, we see an open nested ear decomposition of a series-parallel graph.

Series-parallel graphs are those that admits an open nested ear decomposition.

Theorem 1.41 ([66]). A non-trivial 2-connected graph is series-parallel if and only if

admits an open nested ear decomposition.

There exist some other definitions of series-parallel graph, e.g. those used by Duffin [59]

and Eppstein [66]. The definitions given in this thesis are consistent with the vast majority

of the literature.
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E0

E4

E1

E2E3

Figure 1.9: An open nested ear decomposition.

Problems on series-parallel graphs Many optimization problems on graphs are NP -

hard. However, specific problems, like the minimum spanning tree or the maximum match-

ing problem, admit a polynomial-time algorithm. Moreover, problem usually hard to solve

can become treatable on a specific class of graphs.

Takamizawa, Nishizeki, and Saito [147] provided a general characterization of linear-

time solvable problems on series-parallel graphs. As a consequence, the following problems

are solvable in linear time in series-parallel graphs:

• the minimum vertex cover problem (NP -hard in general),

• the maximum outerplanar induced subgraph problem (NP -hard in general),

• the maximum matching problem (P , but non linear-time solvable in general),

• the maximum cut problem (NP -hard in general),

• the Steiner tree problem (NP -hard in general),

K3,2

S3

Figure 1.10: Two series-parallel graphs: K3,2 and S3 (also known as net graph).
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More generally, series-parallel graphs are a “docile” class for optimization problems: a

wide spectrum of problems hard in general are treatable in this class [127, 142, 143, 149].

Moreover, for series-parallel graphs it is known the linear programming description of many

polyhedra that are usually problematic to describe [10, 29, 30, 47, 49, 51, 84, 114, 122]. In

this thesis we are interested in connectivity problems. In series-parallel graphs, many of

these problem are easy to solve: like the minimum k-edge-connected spanning subgraph

problem [50], the generalized Steiner tree problem [153], and the Steiner traveling salesman

problem [43].

Lastly, the recognition of series-parallel graphs [66] can be done in polynomial time.
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Chapter 2

Total Dual Integrality in

Combinatorial Optimization

In this chapter we study a classical concept of linear programming: total dual integrality.

Total dual integrality is a powerful tool used to study linear programming relaxations of

combinatorial problems.

2.1 Total Dual Integrality

A rational system of linear inequalities Ax ≤ b is totally dual integral (TDI ) if the mini-

mization problem in the linear programming duality:

max{cx : Ax ≤ b} = min{yb : y ≥ 0, yA = c}

admits an integral optimal solution for each integral vector c such that the maximum is

finite.

A motivation for the study of TDI systems is given by the fact that totally dual integral

systems can be used to prove integrality of the polyhedra they describe. Some initial results

on this topic were provided by Fulkerson [76] and Hoffman [98], and where then unified by

Edmonds and Giles [63] in the following theorem.

Theorem 2.1. If Ax ≤ b is a TDI system and b is integral, then {x : Ax ≤ b} is an

integer polyhedron.

A first fundamental remark is that that total dual integrality is a property related to

systems, and not to polyhedra. Indeed, a polyhedron can be described by various systems,

which can or cannot share the property of being TDI, as showed by Example 2.1.
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Example 2.1: A TDI and a non-TDI systems.

Consider the two following systems:


x1 + x2 ≥ 0

x1 + x3 ≥ 0

x2 + x3 ≥ 0

(2.1)


x1 + x2 ≥ 0

x1 + x3 ≥ 0

x2 + x3 ≥ 0

x1 + x2 + x3 ≥ 0

(2.2)

Clearly, Systems (2.1) and (2.2) describe the same polyhedron. System (2.2) is TDI,

however the same does not hold for System (2.1). Indeed, the dual of max{1>x : x

is a solution to (2.1)} is:

max 0

s.t.
y1 + y2 = 1

y1 + y3 = 1

y2 + y3 = 1

y ≥ 0.

Whose unique solution is y = 1
2
.

Interestingly, the given example is not a special case: for a given polyhedron we can

always find a TDI system and a non-TDI system describing it. Here, we anticipate a

result due to Giles and Pulleyblank [82]. We will analyze in depth this theorem and its

consequences in Section 2.1.4.

Theorem 2.2. Every rational polyhedron is described by a TDI system Ax ≤ b, with A

integer. Moreover, b can be chosen integer if and only if the polyhedron is integer.

We can combine Theorems 2.1 and 2.2 as follows:

Corollary 2.3. A polyhedron P is integer if and only if there exists a TDI system Ax ≤ b

with b integer describing it.

Another important reason for studying total dual integrality lies in the fact that duality

in linear programming can be interpreted as a min-max relation between two different

problems. We discuss this property in details later in this chapter.
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Example 2.2: Kőnig’s Theorem.

For a graph, a matching is a set of pairwise non incident edges. We denote by ν(G)

the cardinality of the largest matching of a graph G = (V,E). Similarly, a vertex

cover is a set of vertices such that all the edges of the graph are incident to at least

one vertex of the set; we denote by τ(G) the cardinality of the smallest vertex cover

of G.

Theorem 2.4 (Kőnig’s Theorem). If G is a bipartite graph, ν(G) = τ(G).

This result is a good example of the min-max relations we can obtain by total dual

integrality. It is easy to see that ν(G) ≤ τ(G), since at least one endpoint for each

edge of a matching is required in order to cover all the edges of the matching, and

so all the edges of G. This relation can be explained also by linear programming

duality:

max{1>y : y ≥ 0, y (δ(v)) ≤ 1 ∀v ∈ V } ≤ min{1>x : x ≥ 0, xv + xu ≥ 1 ∀vu ∈ E}
(2.3)

Without further hypothesis, the minimization problem in (2.3) does not admit an

integer optimal solution. On the contrary, the matrix of constraints of the dual

is totally unimodular when the graph is bipartite by Corollary 1.19. Hence, the

dual problem have integer optimum by Theorem 1.15, and the optimum of the two

combinatorial problems is equal. Moreover, we can extend this result to the weighted

case and deduce the result known as Egerváry’s Theorem.

Other well-known results that can be proved by total dual integrality are the Max-flow

Min-cut Theorem [65, 69], the Nash-Williams Orientation Theorem [116] (see [73, 75]),

and the Cunningham-Marsh Formula [44]. The interested reader can found the proof of

these results in terms of total dual integrality in the books of Schrijver: [134, Section 7.10]

for the Max-flow Min-cut Theorem, [134, Section 22.2] for the Nash-Williams Orientation

Theorem, and [135, Section 25.3] for the Cunningham-Marsh formula. All of these results

were first proved without the use of total dual integrality. In the following of this chapter,

we provide some results strongly relying on total dual integrality.

Directly proving that a system is TDI is not trivial. Indeed, to determine if a problem

has an integer optimal solution for every integer right-hand side of the constraints can be

quite a hard task. In Chapter 4, we show an example of this kind of proof. In the following,

33



CHAPTER 2. TOTAL DUAL INTEGRALITY IN COMBINATORIAL
OPTIMIZATION

Figure 2.1: A visual representation: u and v form a Hilbert basis

we will analyze some of the tools we can use to determine whether a system is TDI.

2.1.1 Hilbert Bases

Totally dual integral systems are characterized in terms of Hilbert bases. A set {v1, . . . , vk}
of vectors is a Hilbert basis1 if each integer vector in their conic hull can be expressed as a

nonnegative integer combination of v1, . . . , vk. We give in figure 2.1 a representation of an

Hilbert basis.

The following central result was proved by Giles and Pulleyblank [82].

Theorem 2.5. A system Ax ≤ b is TDI if and only if for every face F of P = {x : Ax ≤ b},
the rows of A associated with tight constraints for F form a Hilbert basis.

The statement of Theorem 2.5 is still valid if we consider only minimal faces, as stated

by the following.

1 The term Hilbert basis is sometimes used to indicate different (even if related) concepts in combina-

torics, as testified by [83, 109, 138]. The reader should pay attention to the fact that Theorem 2.5 is not

valid if we use one of the alternative definitions. We give further details on this topic in Section 3.4.
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Corollary 2.6. A system Ax ≤ b is TDI if and only if for every minimal face F of

P = {x : Ax ≤ b}, the rows of A associated with tight constraints for F form a Hilbert

basis.

Corollary 2.6 gives a characterization of Hilbert bases in terms of total dual integral-

ity, and, conversely, provides a simple result for proving TDIness of systems describing

polyhedral cones.

Corollary 2.7. A system Ax ≤ 0 is TDI if and only if the rows of A form a Hilbert basis.

2.1.2 Sufficient Conditions for TDIness

The characterization given in Theorem 2.5 is not the only tool we can use to prove TDIness.

The first alternative result, that we implicitly used for proving Theorem 2.4, relies

on totally unimodular matrices. As shown in Section 1.5, totally unimodular matrices

describe integer polyhedra. The following result is a direct consequence of Theorem 1.15

and Observation 1.16.

Theorem 2.8. Let A be a totally unimodular matrix, then both problems in the linear

programming duality:

max{cx : Ax ≤ b} = min{yb : yA = c, y ≥ 0},

admit integer optimal solutions, for all integer vectors b and c.

In other words, every system whose constraint matrix is totally unimodular is TDI.

As totally unimodular matrices are well-characterized and recognizable in polynomial

time, Theorem 2.8 is one of the principal instruments used in the literature for proving

total dual integrality of systems.

The following characterization of Schrijver and Seymour [136] can be used to prove

total dual integrality using combinatorial arguments.

Theorem 2.9. The system Ax ≤ b is TDI if and only if

min{yb : yA = c, y ≥ 0, y half-integer} (2.4)

is finite and attained by an integer vector, for every integer vector c such that the primal

problem is finite.
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Different other sufficient conditions have been given during the years. An efficient

strategy is the one of analyzing the case when the constraints are incidence vectors of sets

of a collection. Schrijver [131] gave general condition for a collection and a set function

to describe a TDI system. This result generalizes different previous works [63, 72, 85]; a

recollection of these results can be found in [132] and in the book of Schrijver [135, Volume

B]. We will analyze further these results in terms of box-TDIness and polymatroids [62] in

the Section dedicated to box-TDIness. O’Shea and Sebő [117, 118] characterized totally

dual integral systems in terms of polynomial ideals. Some sufficient conditions on the

constraint matrix conditions were given by Conforti and Cornuéjols [32]. A necessary

condition for a system to be TDI is given by Gerards and Sebő [79].

2.1.3 TDI Systems and Operations

As we have seen in the example provided at the beginning of this section, total dual

integrality is not a property shared by different systems describing the same polyhedron.

Indeed, TDIness has a peculiar behavior under operations that we usually consider “safe”.

Here, we study some of the operations that preserve or disrupt total dual integrality. All

the unreferenced results are taken by [134, Section 22.5]. The interested reader can find

some more insights and results in Cook [35].

The multiplication of (some of) the constraints defining a TDI system by a rational does

not, in general, preserve the total dual integrality, even if it does not change the described

polyhedron. The following elementary example should convince the reader of this fact.

Example 2.3: Losing TDIness by multiplication.

Consider the system x1 ≤ 1, x2 ≤ 1. It is TDI because its constraint matrix is totally

unimodular. However, if we multiply one of the constraint by 2 and consider the

duality min{x1 + x2 : 2x1 ≤ 2, x2 ≤ 1} = max{2y1 + y2 : 2y1 = 1, y2 = 1, y ≥ 0}, we

see that the only feasible dual solution is not integer.

Conversely, dividing constraints of a TDI system by a positive integer preserves the

total dual integrality of the system.

Observation 2.10 (Division by an integer). Let Ax ≤ b be a totally dual integral system,

and let k ∈ Z, k > 0. The system obtained by dividing both sides of a constraint of Ax ≤ b

by k is TDI.
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Multiplying the right hand side of a TDI system by a positive rational gives a totally

dual integral system.

Observation 2.11 (Multiplication of the right hand side). Let Ax ≤ b and k ∈ Q, k > 0.

Then Ax ≤ b is TDI if and only if Ax ≤ kb is.

Total dual integrality is preserved under the addition of slack variables.

Proposition 2.12 (Addition and removal of slack variables). The system Ax ≤ b, ax ≤ p,

where a is an integer vector, is TDI if and only if the system Ax ≤ b, ax + t = p, t ≥ 0,

where t is a new variable, is TDI.

Another operation that does not change the TDIness of a system is the addition of a

column identical to an existing one.

Observation 2.13 (Addition of an identical column). Let Ax ≤ b be a system, and let α

be a column of A. Then the system Ax+αy ≤ b, where y ∈ R is a new variable, is TDI if

and only if Ax ≤ b is.

Adding redundant constraints to a TDI system preserves it TDIness.

Proposition 2.14 (Addition of redundant constraints). Let Ax ≤ b be a TDI system,

and ax ≤ p be a constraint respected by all the points {x : Ax ≤ b}. Then the system

Ax ≤ b, ax ≤ p is TDI.

2.1.4 Obtaining TDI Systems

Theorem 2.2 assures that it is always possible to find a TDI system that describes a given

polyhedron. In the present section, we show how we can obtain a TDI system describing

a polyhedron P , assuming we know a non TDI system describing it.

There exist substantially two ways to obtain a TDI system from a non TDI system.

The first consists in adding redundant constraints, while the other consists in dividing the

existing constraints for a sufficiently large integer.

Division. Given a system Ax ≤ b, we can always obtain a TDI system describing the

same set of points by simply dividing the inequalities by a sufficiently large integer.

Theorem 2.15 ([82]). For each rational system Ax ≤ b there exists a natural number k

such that k−1(Ax) ≤ k−1b is TDI.
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Example 2.4: Obtaining TDIness from division.

By dividing both sides of System (2.1) by 2, we obtain a TDI system.

Addition of constraints. The second technique we could use to obtain a TDI system

is to add a set of redundant constraints to a TDI system. In Example 2.1 we provided a

case where the addition of a redundant constraint to a non TDI system resulted in a TDI

system. The following proposition can be seen as a consequence of Theorem 2.5 and the

fact that every rational polyhedral cone admits a finite Hilbert basis.

Theorem 2.16 ([82]). Let Ax ≤ b be a non TDI system, then there exists a TDI system

A′x ≤ b′ obtained by adding redundant constraints to Ax ≤ b.

Depending on the objective, the two techniques have different applications. If we are

looking for a min-max relation between non integer objects, if we are looking for the 1
k
-

integrality of a polyhedron, or if we want a bound on the gap between two combinatorial

values, dividing a system by an integer number can lead to good results. On the other

hand, for purely combinatorial applications, like proving integrality of a polyhedron, or

describing a min-max relation between combinatorial objects, we usually look for an integer

TDI system.

As already shown for Systems (2.1) and (2.2), the removal of a redundant constraint

can disrupt the TDIness of a system. This justifies the interest on minimal integer TDI

systems.

2.1.5 Total Dual Integrality and Min-max Relations

Total dual integrality is strongly related to min-max relations. Many combinatorial min-

max relations stem from the fact that certain linear programs admit integer optima. When

this happens, we can use Theorem 1.9 to deduce a min-max relation. Indeed, we can always

set up the following chain of inequalities:

max{c>x : Ax ≤ b, x ∈ Zn} ≤(1) max{c>x : Ax ≤ b, x ∈ Rn} =(2)

= min{yb : yA = c,Rm
+} ≤(3) min{yb : yA = c, y ∈ Zm+}.

(2.5)

Inequalities (2.5) give a bound on the value of the optimal solutions to a combinatorial

optimization problem, that is the optimal value of another optimization problem. Equation

(2) is consequence of the Strong Duality Theorem 1.9. When the system Ax ≤ b describes
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an integer polyhedron, inequality (1) is attained to equality, hence strengthening the bound.

Moreover, inequality (3) is an equality whenever Ax ≤ b is TDI. To conclude, if b is integer

and Ax ≤ b is TDI, all the elements of (2.5) are equal by Theorem 2.1.

Moreover, we can insert a term in Chain (2.5):

min{yb : yA = c,Rm
+} ≤ min{yb : yA = c, 2y ∈ Zm+} ≤ min{yb : yA = c, y ∈ Zm+}. (2.6)

We can combine Theorem 2.9 and Theorem 2.1 to see that, if the last inequality of (2.6)

is respected with equality, then all terms of (2.5) are equal.

Among the TDI systems, those having integer coefficients play a main role, since they

give min-max relations between combinatorial objects. However, the set P = {x ∈ Zn :

Ax ≤ b} is described by different systems with integer coefficients, each of which determines

a different dual problem. Hence, the min-max relation we can deduce by TDIness is

not unique. Indeed, if Ax ≤ b is a TDI system describing P , there could exist some

redundant constraints whose removal does not destroys the TDIness of the system. Since

every constraint of the primal problem is associated with a variable of the dual, when we

remove these “useless” constraints we obtain a min-max relation between smaller sets of

objects. This motivates the interest for minimal integer TDI systems.

2.1.6 The Schrijver System

A system Ax ≤ b is minimally TDI if removing any redundant constraint leads to a non

TDI system. Equivalently, Ax ≤ b is minimally TDI if and only if each of its constraints

determines a supporting hyperplane of {x : Ax ≤ b} and is not a nonnegative integer

combination of other constraints in Ax ≤ b.

Theorem 2.17 ([128]). Let P be a full-dimensional polyhedron. There exists a unique

minimal TDI system Ax ≤ b, with A integer describing P . Moreover P is integer if and

only if b can be chosen integer.

The minimal TDI system having integer coefficients was named [39] the Schrijver sys-

tem of P . As mentioned by Pulleyblank [124], it is not uncommon that the minimal

integral system and the Schrijver system of a polyhedron coincide. This is the case of the

matching polytope and matroid polyhedra. However, this is not true in general, as shown

by Cook [34] and Pulleyblank [124] for the b-matching polyhedron, and by Sebő [137] for

the t-join polyhedron.
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2.1.7 Literature Analysis

Totally dual integral systems were introduced by Edmonds and Giles in the late ’70s [63],

even if we can recognize early stage of this concept in the work of Edmonds [62], Fulker-

son [76], and Hoffman [98]. TDIness, characterizing integer polyhedra [82, 128] and min-

max combinatorial relations [129], rapidly spread as a fundamental tool of mathematical

programming.

A remarkable result is the work of Cunningham and Marsh [44], where they provide

a TDI system describing the matching polytope. Schrijver and Seymour [136] and Schri-

jver [130] proposed alternative proofs for this result. For more references on TDIness we

refer to the survey of Pulleyblank [125], as well as the books of Schrijver [134, 135].

Theorem 2.17 in [128] brought interest also on minimal integer TDI systems [34, 39,

124, 137]. Total dual integrality has been exploited also for generalizing Caratheodory’s

Theorem [18] to integer vectors [37, 138].

Even if TDIness is nowadays considered a classical concept, it is still a powerful tool

and active area of research [20, 22, 23, 40, 100, 111, 154].

Total dual integrality has recently been extended to different contexts than the lin-

ear programming. In [144] De Carli Silva and Tunçel, propose a generalization of total

dual integrality to semidefinite programming, and restate some classical theorems for this

definition. In [57] and [146] total dual integrality is extended to linear complementarity

problems.

2.2 Box-Total Dual Integrality

A stronger concept than total dual integrality is that of box-total dual integrality. A

system Ax ≤ b is box-totally dual integral (box-TDI ) if the system Ax ≤ b, ` ≤ x ≤ u

is TDI for all rational vectors with possibly infinite components, ` and u. We call box

constraints the constraints ` ≤ x ≤ u. There exists no result analogous to Theorem 2.2 for

box-TDIness, this motivates the following definition: a polyhedron that can be described

by a box-TDI system is called a box-TDI polyhedron. Example 2.5 presents a non box-TDI

polyhedron. The definition of box-TDI polyhedra is consistent with the following result,

due to Cook [36]:

Theorem 2.18. Every TDI system describing a box-TDI polyhedron is box-TDI.

Theorem 2.18 highlights the first fundamental difference between TDIness and box-

TDIness: while TDIness is by all means a property of systems, box-TDIness is essentially
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a polyhedral property. As TDIness was related to integrality, so is box-TDIness: we recall

that a polyhedron is box-integer if it remains integer when it is intersected with a set of

integer box constraints. The following result is a consequence of Theorem 2.2.

Proposition 2.19. Let P be an integer box-TDI polyhedron. Then P is box-integer.

Example 2.5: A simple non-box-TDI polyhedron.

Let us consider the polyhedron P = {x ∈ R2 : x1 − 2x2 = 0}. The following system

describes P and is TDI.

x1 − 2x2 = 0. (2.7)

On the other hand the polyhedron P ′ = P ∩ {x : 0 ≤ x1 ≤ 1} is not an integer

polyhedron since it has (1, 1
2
) as a vertex. This polyhedron is described by:

x1 − 2x2 = 0,

x ≥ 0,

x ≤ 1.

(2.8)

System (2.8) is the intersection of System (2.7) with the integer box-constraint 0 ≤
x ≤ 1. System (2.8) is not TDI, because P ′ is not integer and Theorem 2.1. Thus,

System (2.7) is a TDI system describing P that is not box-TDI, hence P is not

box-TDI by Proposition 2.19.

2.2.1 Recognizing Box-Total Dual Integrality

In the following we provide some conditions for systems and polyhedra to be box-TDI.

Box property, normal cones, and tangent cones. We can extend the concept of

Hilbert basis in order to deal with box-TDIness. We say that a set S of vectors in Rn is

a box-Hilbert basis if S ∪i∈I (±)ξi is a Hilbert basis for all I ⊆ {1, . . . , n}, where we recall

that ξi is the ith element of the canonical basis of Rn. The definition of box-Hilbert basis

is due to Cook [36], who characterized box-TDI systems in terms of box-Hilbert basis, in

a way pretty similar to Theorem 2.5.

Theorem 2.20. A linear system Ax ≤ b is box-TDI if and only if for each face F of

{x : Ax ≤ b} the set of constraints tight for F in Ax ≤ b is a box-Hilbert basis.
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Despite its structure resembling that of Theorem 2.5, Theorem 2.20 is sparsely used,

this is possibly due to the intrinsic complexity of the definition of box-Hilbert basis. In

the same paper, Cook proposed the following characterization:

Theorem 2.21. A polyhedron P is box-TDI if and only if for each rational vector c, there

exists an integral vector c̄ such that bcc ≤ c̄ ≤ dce and such that each optimal solution of

max{cx : x ∈ P} is also an optimal solution of max{c̄x : x ∈ P}.

This result, as well as the characterization we present below, is strictly related with

the concept of tangent and normal cones. Given a polyhedron P = {x : Ax ≤ b} and a

nonempty face F = {x ∈ P : AFx = bF}, for AFx ≤ bF subset of rows of Ax ≤ b, we

define the tangent cone associated with F the cone CF = {x : AFx ≤ bF}. When F is a

minimal face of P we say that CF is a minimal tangent cone. Similarly, the normal cone

for F is the cone generated by the rows of AF .

The formulation of Theorem 2.21 we presented above is the one proposed by Schri-

jver [134]; the original formulation was given in [36] in terms of box property: a cone C

has the box property if for all rational vector v in C there exists an integer vector w in C,

bvc ≤ w ≤ dve. Then, Theorem 2.21 can be restated as “A polyhedron P is box-TDI if

and only if, for each of its faces F , the cone generated by the tight constraints for F has

the box property”.

In a recent paper [28], Chervet, Grappe, and Robert gave a result similar to Theo-

rem 2.21 based on tangent cones.

Theorem 2.22. A polyhedron P is box-TDI if and only if every minimal tangent cone of

P is box-TDI.

Theorems 2.21 and 2.22 are in some sense complementary. Indeed, the tangent cone

and the normal cone of a face are polar one of the other; as we will see later in this section,

polarity behaves nicely with respect to box-TDIness of cones.

Box-TDIness and Matrices. As we have already noted, totally unimodular matrices

play a central role in system with high requirements of integrality. Thus, it is unsurprising

that totally unimodular matrices are strongly related with box-TDI systems. We restate

Theorem 1.15 in terms of box-total dual integrality.

Theorem 2.23 ([99]). A rational matrix A is totally unimodular if and only if Ax ≤ b is

a box-TDI system for every rational vector b.
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Figure 2.2: The normal cone and the (minimal) tangent cone for a vertex of a

polyhedron.

The vast majority of box-TDI systems found until the 2000’s are related with totally

unimodular matrices, these results were summarized by Schrijver with the following result.

Theorem 2.24 (Theorem 5.35 of [135]). Let Ax ≤ b be a system of linear inequalities,

with A an m × n matrix. Suppose that for each c ∈ Rn, max{c>x : Ax ≤ b} has (if

finite) an optimum dual solution y ∈ Rm
+ such that the rows of A corresponding to positive

components of y form a totally unimodular submatrix of A. Then Ax ≤ b is box-TDI.

This result includes a wide spectrum of sufficient conditions for total dual integrality.

Indeed, for various classical min–max theorems (e.g. the Lucchesi–Younger Theorem [110])

the proofs are divided in the following steps: first it is shown that the active constraints

in the optimum of the problem can be chosen to be “nice”; second, these nice constraints

form a totally unimodular matrix. Here “nice” can be declined as “cross-free”, “laminar”,

and similar cases.

Whenever we look for box-TDI systems, Theorem 2.18 allows us to break the task in

two distinct passages: the recognition of box-TDIness of the polyhedron, and the search

for a TDI system describing such polyhedron. Recently, Chervet, Grappe, and Robert [28],

characterized box-TDI polyhedra in terms of principal box-integrality and equimodularity

of constraint matrices.
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A polyhedron P is principally box-integer if kP is box-integer for all k ∈ Z+ such that

kP is integer.

Theorem 2.25. Let P be a rational polyhedron. Then the following are equivalent.

i. P is a box-TDI polyhedron.

ii. P is principally box-integer.

iii. Every face of P has an equimodular face-defining matrix.

iv. Every face defining matrix of P is equimodular.

v. Every face of P has a totally unimodular face-defining matrix.

Theorem 2.25 has the peculiarity of giving necessary and sufficient conditions for box-

TDIness that are independent from the description of the polyhedron itself. Indeed, face-

defining matrices my be completely unrelated with the known descriptions of the polyhe-

dron. Thanks to this result, we can prove the box-TDIness of a system by first showing

the box-TDIness of the polyhedron, and then by proving that the system is TDI.

From Theorem 2.25 we can deduce the following result originally proved by Edmonds

and Giles [64].

Corollary 2.26. Every box-TDI polyhedron can be described by a 0/± 1-matrix.

In Example 2.6, we use Theorem 2.25, to show that there exist some box-integer poly-

hedra that are not box-TDI.

Example 2.6: A box-integer polyhedron that is not box-TDI.

As we saw in Proposition 2.19, every integer box-TDI polyhedron is box-integer. The

contrary does not hold: an integer 0/1-polytope is box-integer, but this is not forcibly

true for all its dilations. The following counterexample of a box-integer polyhedron

that is not box-TDI is taken from [28]. Consider the following set of points of R5:

{0, (1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 1, 1, 1, 1)}, and let P be the convex hull

of these points. P is a 0/1 polytope, hence it is box-integer. However, it can be

checked that (2, 1, 1, 1, 1
2
) is a fractional vertex of 2P ∩ {x2 = x3 = x4 = 1}.

We have a condition similar to Theorem 2.23 for totally equimodular matrices:

Theorem 2.27 ([28]). A rational matrix A is totally equimodular if and only if {x : Ax ≤
b} is a box-TDI polyhedron for all rational b.
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Box-integer Cones. The characterizations valid for rational polyhedra can be reinforced

when treating polyhedral cones.

Observation 2.28 ([28]). Let C = {x : Ax ≥ 0} be a cone. Then C is box-TDI if and

only if it is box-integer.

Moreover, a cone is box-TDI if and only if its polar cone is.

Proposition 2.29 ([28]). Let C = {x : Ax ≥ 0} be a cone, and let Co be its polar. Then

C is box-TDI if and only if Co is.

The ESP property. The ESP property is a combinatorial property associated with box-

TDIness. It was introduced by Chen, Chen, and Zang in [21], and it is involved in many

recent results on box-TDIness.

Let Ax ≤ b, x ≥ 0 be a rational system, and let R and S be respectively the set of

indices of the rows and of the columns of A. For any collection Λ of elements of R, and

any element s of S, we denote by b(Λ) =
∑

r∈Λ br and dΛ(s) =
∑

r∈ΛAr,s. An equitable

subpartition of Λ consists of two collections Λ1 and Λ2 of elements of R such that:

1. b(Λ1) + b(Λ2) ≤ b(Λ);

2. dΛ1∪Λ2(s) ≥ dΛ(s) for all s ∈ S;

3. dΛi
(s) ≥

⌊
dΛ(s)

2

⌋
for all s ∈ S, for i = 1, 2.

We say that Ax ≤ b, x ≥ 0 is equitably subpartitionable (ESP) if every collection of R

admits an equitable subpartition.

The link between ESP systems and box TDIness is the following:

Theorem 2.30 ([54]). Every ESP system Ax ≤ b, x ≥ 0, with A integer, is box-TDI.

One of the great improvements of Theorem 2.30 with respect to some of the previous re-

sults is that the ESP property is essentially combinatorial, on the contrary of Theorem 2.18,

that often leads us to use at the same time combinatorial and polyhedral arguments.

Polymatroids. Theorem 2.23 is one of the most used tools to prove box-TDIness of

polyhedra: as pointed out by Chen, Hu, and Zang [26]: “Almost all known box-TDI systems

can be verified via totally unimodular matrices [. . . ] or the ESP property”. In this paragraph

we deal with polymatroids and some related classes of polyhedra whose box-total dual

integrality can be proved via total unimodular matrices.
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We recall that a polymatroid is a the polyhedron defined by {x ∈ RU : x ≥ 0, x(S) ≤
f(S) for all S ⊆ U} for a finite set U and submodular set function f . The following result

is due to Edmonds [62]:

Theorem 2.31. For a finite set U and a submodular set function f the system {x(S) ≤
f(S) for all S ⊆ U} is box-TDI.

This result has been generalized to various classes of collections, less rich than the

power set. Schrijver [135, section 44-49] gave a deep analysis of the results in this topic.

2.2.2 Operations on Box-TDI Polyhedra

In this section we will consider what are the effects of some simple operations on box-TDI

polyhedra.

Faces, dominants, and variables. One of the interesting properties of box-TDIness is

its stability with respect to the passage to faces and dominants.

Theorem 2.32. All faces of a box-TDI polyhedron are box-TDI.

Theorem 2.33 ([36]). The dominant of a box-TDI polyhedron is box-TDI.

Another operation preserving box-TDIness is the copy of a column.

Theorem 2.34 ([64], cf. [36]). If Ax ≤ b is box-TDI, then ax0 +Ax ≤ b is box-TDI again,

where a is a column of A and x0 is a new variable.

Moreover, this is valid also under the existence of nonnegativity inequalities.

Lemma 2.35 ([25]). Let Ax ≥ b, x ≥ 0 be a (box-)TDI system, and let B be obtained from

A by adding a column identical to an existing one. Then Bx ≥ b, x ≥ 0 is (box-)TDI.

Projections. The projection onto subsets of variables preserve the box-TDIness of a

polyhedron, this result can be found in Schrijver [134, Section 22.5]:

Proposition 2.36. Let P = {x ∈ Rn, y ∈ R : A(x, y) ≤ b} be a box-TDI polyhedron.

Then, P ′ = {x ∈ Rn : ∃y : (x, y) ∈ P} is a box-TDI polyhedron.

Translation. Integrality of polyhedra is not preserved under rational translations. On

the contrary, box-TDIness is preserved.

Observation 2.37. If a polyhedron is box-TDI, then so are all its rational translations.
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Intersection. Box-Total dual integrality is not preserved under intersection, as proved

by Example 2.7.

Example 2.7: Intersection of polyhedra does not preserve box-TDIness.

Consider the following polyhedra:

P = {x ∈ R4 :

[
1 1 0 1

1 0 1 1

]
x ≥ 0} and Q = {x ∈ R4 :

[
1 1 0 1

0 1 1 1

]
x ≥ 0}

Both the constraint matrices of P and Q are totally unimodular, hence P and Q are

box-TDI polyhedra. On the contrary,

P ∩Q = {x ∈ R4 :

 1 1 0 1

1 0 1 1

0 1 1 1

x ≥ 0},

Let A be the constraint matrix of P ∩ Q. Since there exists at least two points

respecting all the constraints to equality, A is face-defining for P ∩Q, and it is not

equimodular. Therefore P ∩Q is not a box-TDI polyhedron.

However there exists a notable example of class of box-TDI polyhedra closed under

intersection: the class of polymatroids. The following result is due to Edmonds [62].

Theorem 2.38. The intersection of any two (extended) polymatroid is box-TDI.

Dilations. Uniform dilations preserve box-TDIness, as we can deduce also from Theo-

rem 2.25. Moreover, if Ax ≤ b is a box-TDI system, then Ax ≤ kb is box-TDI for all

rational k > 0. On the other hand, dilations generally do not preserve box-TDIness, even

when they preserve integrality.

2.2.3 History and Notable Examples of Box-TDIness

The concept of box-total dual integrality was introduced by Edmonds and Giles in the

late ’70s [63] and received a peak of interest in the following years as testified, among

the others, by the works of Cook [36] and Schrijver [129]. We refer to classical surveys

such as: Edmonds and Giles [64], Pulleyblank [123, 125], and Schrijver [132, 133]. Later,

Frank and Király [74] analyzed polyhedral results related with submodular functions and
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polymatroids. Schrijver presented an exhaustive analysis of the topic in its books [134, 135],

that inspired the vast majority of the material presented in this Chapter.

While total dual integrality received a lot of attention, box-total dual integrality appears

to be somehow less studied. The reasons of this difference lie in the difficulty of providing

box-TDI systems for polyhedra. Historically, box-TDI polyhedra and systems were strictly

connected with totally unimodular matrices. The lack of alternative efficient tools for

treating box-TDIness has perhaps demotivated the research of box-TDI systems until recent

times, when some theoretical results shed new interest on box-TDIness. As an example,

in 2009 Chen, Ding, and Zang [25] still relied on Theorem 2.21 to show a box-TDI system

describing the 2-edge-connected spanning subgraph polyhedron for series-parallel graphs.

Starting from an idea of Ding and Zang [55], Chen, Chen, and Zang [21] introduced

the ESP property. Using this result, Ding, Tan, and Zang [54] characterized the graphs for

which the TDI system of Cunningam and Marsh [44] describing the matching polytope is

actually box-TDI. Moreover, Chen, Ding, and Zang [24] exploited the ESP property to char-

acterize box-Mengerian matroid ports. Chen, Hu, and Zang [26] summarized the results

achieved by the scientific community in the decade between 2003 (when Schrijver published

his monograph [135]) and 2013, focusing on the results related to hypergraphs. Cornaz,

Grappe, and Lacroix [41] provided several box-TDI systems in series-parallel graphs. New

insights on box-TDI polyhedra, along with new geometric characterizations, have been

recently announced by Chervet, Grappe, and Robert [28]. In Example 2.8, we show a

remarkable case of a topic of research related with box-TDI polyhedra.

2.3 Hardness of Recognising (Box-)TDIness

TDI systems and Hilbert bases. The recognition of TDI systems is a topic that

interested many academics. Let Ax ≤ b be a rational system with A integer, how complex

is to determine whether it is TDI or box-TDI?

Generally one can see directly [134, Section 22.9] that the problems “Does Ax ≤ b

describe an integer polyhedron?”, “Is Ax ≤ b TDI?”, and “Is Ax ≤ b box-TDI?” belong

to Co-NP . Cook [36] showed that the problem “Does Ax ≤ b describe a box-TDI polyhe-

dron?” is in Co-NP too. Papadimitriou and Yannakakis [121] proved that decide whether

a system describes an integer polyhedron is a Co-NP -complete problem. The recognition

of TDI and box-TDI systems has been proved to be Co-NP -complete by Ding, Feng, and

Zang [53]. Pap [120] proved that the result holds even under the assumptions that the

system has only binary coefficients, and that the defined polyhedron is a cone.
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Example 2.8: Box-perfect graphs.

A graph G = (V,E) is said to be perfect if, for all induced subgraphs H, the size of

a maximum independent set of H – denoted by α(H) – equals the minimum number

of cliques which cover all the vertices of H. We will denote the latter by θ(H). We

can express this condition by linear programming duality.

max
∑
v∈V

cvxv (P )

s.t.
∑
v∈K

xv ≤ 1 ∀ clique K of G

xv ≥ 0
(2.9)

min
∑

K clique of G

yK (D)

s.t.
∑
K:v∈K

yK ≥ cv ∀v ∈ V

yv ≥ 0
(2.10)

Problems P and D are one the dual of the other. Integer solutions to P for c ∈
{0, 1} are independent sets of the subgraph induced by V ′ = {v ∈ V : cv = 1}.
Similarly an integer solution of D is a clique cover of the subgraph induced by V ′.

Therefore, by linear programming duality, α(H) ≤ θ(H) for all induced subgraphs H

of G. Cameron and Edmonds [15] characterized perfection of G in terms of TDIness

of (2.9).

Proposition 2.39. A graph G is perfect if and only if System (2.9) is TDI.

Motivated by Proposition 2.39, Cameron and Edmonds [13, 15] introduced the con-

cept of box-perfect graphs. A graph G is box-perfect if System (2.9) associated

with G is box-TDI. The lack of a combinatorial characterization of box-perfect

graphs alimented a fruitful stream of research. In [15], Cameron and Edmonds prove

that p-Comparability graphs and Cocomparatibility graphs are box-perfect. In [14],

Cameron shows the effects of some graph operations on box-perfection, including the

fact that box-perfection is not preserved under the passage to the complement. More-

over, she proves that totally unimodular graphs – that is, the class of graphs having

a totally unimodular clique matrix – are box-perfect. Ding, Zang, and Zhao [56]

introduced new classes of box-perfect graphs.

If we assume the rank of A as fixed, Cook, Lovasz, and Schrijver [38] proved that we

can say whether Ax ≤ b is TDI in polynomial time; their work extended previous results of

Chandrasekaran and Shirali [19] and Giles and Orin [81]. Starting from a characterization
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of Hilbert bases of Sebő [138], Dueck, Hoşten, and Sturmfelsn [58] proved that the same

problem belongs to P in case of fixed codimension.

By Corollary 2.7, we deduce equivalent results for Hilbert bases. Complementary results

on Hilbert bases of cones can be found in [95, 96, 97]. It is an open question to decide if

“Is Ax ≤ 0 box-TDI?” and “Is {x : Ax ≤ 0} a box-TDI cone?” are solvable in polynomial

time. Chervet, Grappe, and Robert [28], showed that these problems belong to Co-NP .

Matrices. By the characterization of equimodular matrices in terms of totally unimodu-

lar matrices (see Theorem 1.24), it turns out that we can tell if a matrix is equimodular in

polynomial time. To decide whether a matrix is totally equimodular is a Co-NP problem,

but it is not known nether if it is polynomial nor if it is Co-NP -complete.

In Table 2.1, we summarize the result stated in this section.

Problem Class Reference

Does Ax ≤ b describe an integer polyhedron? Co-NP -complete [121]

Is Ax ≤ b TDI? Co-NP -complete [53]

Is Ax ≤ b box-TDI? Co-NP -complete [53]

Is {x : Ax ≤ b} a box-TDI polyhedron? Co-NP [36]

Is Ax ≤ 0 TDI? Co-NP -complete [120]

Is {x : Ax ≤ 0} a box-TDI cone? Co-NP [28]

Is A equimodular? P [28]

Is A totally equimodular? Co-NP [28]

Table 2.1: Hardness of problems related with TDIness
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Chapter 3

The Schrijver System of the Flow

Cone

3.1 Flows, Cuts, and Related Polyhedra

In this chapter we are interested in TDI, box-TDI, and Schrijver systems describing the

flow cone of series-parallel graphs. Given a graph G = (V,E), we recall that a flow of G is

a couple (C, e) with C a circuit of G and e an edge of C. The flow cone of G is the cone

generated by the flows of G and the unit vectors ξe of RE.

Flows and cuts are some of the most known and studied objects of combinatorial

optimization. Indeed, different famous min max relations involve or are expressible as linear

programming duality between (multi)cuts and (multi)flows. When G is series-parallel,

different systems describing polyhedra related with cuts and flows, are known to be TDI

(see e.g. [135, Corollary 29.9c] and [40]), moreover, Cornaz, Grappe, and Lacroix [41]

recently proved that various of these systems are in fact box-TDI when G is series-parallel.

When G has no K5-minor, the flow cone of G is the polar of the cut cone and is described

by x(C) ≥ 0, for all cuts C of G [139]. Chervet, Grappe, and Robert [28] proved that the

flow cone is a box-TDI polyhedron if and only if the graph is series-parallel. Moreover,

they provided the following box-TDI system:

1

2
x(B) ≥ 0 for all bonds B of G. (3.1)

Quoting them, they “leave open the question of finding a box-TDI system with integer

coefficients, which exists by [134, Theorem 22.6(i)] and [36, Corollary 2.5].”
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Contribution. The goal of this chapter is to answer the question of [28] mentioned

above.

We first prove that

x(M) ≥ 0 for all multicuts M of G, (3.2)

is a TDI system describing the flow cone if and only if the graph is series-parallel. As

the flow cone is a box-TDI polyhedron for such graphs, this implies that System (3.2) is

a box-TDI system if and only if the graph is series-parallel. We then refine this result by

providing the corresponding Schrijver system, which is composed of the so-called chordal

multicuts—see Corollary 3.6. This completely answers the question of [28].

We conclude the chapter with some results and insights for future direction of research.

3.2 An Integer TDI System for the Flow Cone for

Series-parallel Graphs

We aim to find an integer TDI system describing {x ∈ RE : x(B) ≥ 0 for all bonds B

of G} when G is series-parallel. This is equivalent to find an integer Hilbert basis for the

cone generated by the cuts of G. The set of cuts of K3 is not a Hilbert basis, however,

Chervet, Grappe and Robert [28], proved that the set of 1
2
-incidence vectors of bonds of

series-parallel graphs are a Hilbert basis. A natural candidate solution to our problem

is the set of multicuts of G. Indeed, a multicut δ(V1, . . . , Vd) is the 1
2
-sum of the bonds

1
2
δ(V1) + · · ·+ 1

2
δ(Vd).

3.2.1 A Characterization

The following result characterizes series-parallel graphs as the class of graphs for which the

multicuts form a Hilbert basis.

Theorem 3.1. The multicuts of a graph form a Hilbert basis if and only if the graph is

series-parallel.

Proof. First, let us show that the incidence vectors of the multicuts of a non series-parallel

graph do not form a Hilbert basis. Suppose that G = (V,E) has K4 as a minor. Then, V

can be partitioned into four sets {V1, . . . , V4} such that Vi induces a connected subgraph and

at least one edge connects each pair Vi, Vj for i, j = 1, . . . , 4 i 6= j. Let M = δ(V1, V2, V3, V4).

We subdivide M into E1, . . . , E6 as in Figure 3.1.
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E1

E2

E3

E4

E5

E6

V3

V1 V2

V4

Figure 3.1: Here, edges represent sets of edges of G having endpoints in distinct Vi’s.

Let us define w ∈ ZE as follows:

we =


2 if e ∈ E1,

1 if e ∈ E2, . . . , E6,

0 otherwise.

Since w = 1
2
δ(V1) + 1

2
δ(V2) + 1

2
δ(V1 ∪ V3) + 1

2
δ(V1 ∪ V4), it belongs to the cut cone of G.

So it suffices now to prove that K+
4 , the graph obtained from K4 by duplicating one edge,

is not the sum of multicuts of K4. Observe that multicuts of K4 have 3, 4, 5, or 6 edges.

Since K+
4 has 7 edges, it should be the sum of two multicuts, with respectively 3 and 4

edges. That is, K+
4 is the sum of a 3−star and a cycle of length 4 of K4, a contradiction.

For the other direction, remark that each multicut of a series-parallel graph is the

disjoint union of multicuts of its 2-connected components. Since they belong to disjoint

spaces, if the set of multicuts of each 2-connected component forms a Hilbert basis, then so

does their union. Hence, it is enough to prove that the multicuts of a 2-connected series-

parallel graph form a Hilbert basis. From now on, assume the graph to be 2-connected.

We prove the result by induction on the number of edges of G. When G has a single

edge, that is G = ({u, v}, {e}), the only nonempty multicut is {e}, and its incidence vector

forms a Hilbert basis.

Otherwise, by construction of 2-connected series-parallel graphs, G is obtained either

by adding a parallel edge to or by subdividing an edge of a 2-connected series-parallel

graph H = (W,F ). By the induction hypothesis, MH is a Hilbert basis.
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e

f

M

Figure 3.2: Multicuts and parallel edges. The removal of f from the graph does not

change the structure of the multicut M containing e.

Suppose first that G is obtained from H by adding an edge f parallel to an edge e of F .

A subset of edges M of H containing (respectively not containing) e is a multicut if and

only if M ∪ f (respectively M) is a multicut of G (see Figure 3.2). Thus, the incidence

vector of each multicut of G is obtained by copying the component associated with e in

the component of f . Since the incidence vectors of the multicuts of H are a Hilbert basis,

so are the incidence vectors of the multicuts of G.

Suppose now that G is obtained from H by subdividing an edge e ∈ F . We denote

by u the new vertex and by f and g the edges adjacent to it. A multicut M of G can be

expressed as the half-sum of the bonds of G. Since System (3.1) is TDI in series-parallel

graphs [28, end of Section 6.4], the set of vectors {1
2
χB : B ∈ BG} is a Hilbert basis.

Let a be an integer vector in the cut cone. We claim that a is an integer conic combi-

nation of the incidence vectors of the multicuts of G. There exist λB ∈ 1
2
Z+ for all B ∈ BG

such that a =
∑

B∈BG
λBχ

B. The vector a is an integer combination of multicuts of G if

and only if a− bλδ(u)cχδ(u) is, thus we may assume that λδ(u) ∈ {0, 1
2
}. Define b ∈ ZF by:

bh =

{
af + ag − 2λδ(u) if h = e,

ah otherwise,
for all h ∈ F .

Remark that (B \ e) ∪ f and (B \ e) ∪ g are bonds of G whenever B is a bond of H

containing e (see Figure 3.3). Moreover, a bond B of H which does not contain e is a bond

of G.

Since δ(u) is the unique bond of G containing both f and g, we have:

b =
∑

B∈BH :e∈B

(λ(B\e)∪f + λ(B\e)∪g)χ
B +

∑
B∈BH :e 6∈B

λBχ
B.

Thus, b belongs to the cut cone of H. Moreover, as λδ(u) is half-integer, b is integer.

By the induction hypothesis, MH is a Hilbert basis, hence there exist µM ∈ Z+ for all

M ∈ MH such that b =
∑

M∈MH
µMχ

M . Consider the family N of multicuts of H where

each multicut M of H appears µM times.
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e
f g f g

Figure 3.3: A bond containing e after the subdivision of e contains either f or g.

Suppose first that λδ(u) = 0. Then, af +ag multicuts of N contain e. Let P be a family

of af multicuts of N containing e and Q = {F ∈ N : e ∈ F} \ P . Then, we have

a =
∑

M∈N :e/∈M

χM +
∑
M∈P

χ(M\e)∪f +
∑
M∈Q

χ(M\e)∪g,

hence a is a nonnegative integer combination of multicuts ofG. For a graphical visualization

of this passage see Exemple 3.1.

Suppose now that λδ(u) = 1
2
. Then, af + ag − 1 multicuts of N contain e. Let P be

a family of af − 1 multicuts of N containing e, let Q be a family of ag − 1 multicuts in

{F ∈ N : e ∈ F} \ P , and denote by N the unique multicut of N containing e which is

not in P ∪ Q . Then, we have

a =
∑

M∈N :e/∈M

χM +
∑
M∈P

χ(M\e)∪f +
∑
M∈Q

χ(M\e)∪g + χN\e∪{f,g}.

Hence a is a nonnegative integer combination of multicuts of G. This proves that MG is a

Hilbert basis. �

3.2.2 An Integer Box-TDI System for the Flow Cone

Combining the box-TDIness of the flow cone, Corollary 2.7, and Theorem 3.1 yields a

box-TDI system for the flow cone of a series-parallel graph with only integer coefficients.

This provides a first answer to the question of [28].

Corollary 3.2. The following statements are equivalent:

i. G is a series-parallel graph,

ii. System (3.2) is TDI,
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Example 3.1: Intuition for the last passage of Theorem 3.1.

In the last part of the proof, we defined three families of multicuts N ,P , and Q .

Here we explain the intuitive idea of that passage.

For the sake of brevity, let N ′ be the subfamily of multicuts of N containing e.

M1 M2 M3 M4

M1 \ e ∪ f M2 \ e ∪ f M3 \ e ∪ f M3 \ e ∪ gM4 \ e ∪ g

N ′

P Q

When λδ(v) = 0, we have that
∑

M∈N ′ µM = be = af + ag. Hence, we can “distribute

in an integer way” the multicuts of N ′ among two families P and Q such that∑
M∈P µM = af and

∑
M∈Q µM = ag.

When λδ(v) = 1
2
, the procedure is just a bit more complicated.

M1 M2 M3

M1 \ e ∪ f M2 \ e ∪ fM3 \ e ∪ f M3 \ e ∪ g

N ′

P Q?

M3 \ e ∪ δ(v)

Now, the multicuts in N ′ are not sufficient to cover both the requests af and ag. In

this case we “integrally distribute” all the multicuts but one among P and Q . The

only multicut M not assigned will become M \ e ∪ δ(v), hence contributing to both

af and ag.

iii. System (3.2) is box-TDI.

Proof. (i.⇔ii.) This equivalence follows by combining Corollary 2.7 and Theorem 3.1.

(ii.⇔iii.) If G is series-parallel, then System (3.1) is box-TDI [28, end of Section 6.4].

Hence, the flow cone of G is box-TDI. Since a TDI system describing a box-TDI polyhedron

is a box-TDI system [36], point ii. implies point iii.. A box-TDI system being TDI by
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definition, point iii. implies point ii.. �

3.3 The Schrijver System for the Flow Cone

3.3.1 A Minimal Integer Hilbert Basis

Theorem 3.1 provides the set of graphs whose multicuts form a Hilbert basis. The following

theorem refines this result by characterizing the multicuts which form the minimal Hilbert

basis for this class of graphs.

A multicut is chordal when its reduced graph is 2-connected and chordal. Note that

bonds are chordal multicuts.

Lemma 3.3. Let C be a circuit of length at least 4 in a series-parallel graph G. Then,

there exists a pair of vertices nonadjacent in G[C] whose removal disconnects G.

Proof. We can assume that there are two nonadjacent vertices u and v of G[C] such that

there exists a path P between u and v that has no internal vertex in C. Indeed, otherwise,

removing any two nonadjacent vertices of G[C] would disconnect G.

Let us show that removing u and v disconnects G. Denote by Q and R the two paths

of C between u and v. By contradiction, suppose that G\{u, v} is connected. Then, there

exists a path containing neither u nor v between an internal vertex of R and an internal

vertex of either P or Q. Let S be a minimal path of this kind. Then, no internal vertex of

S belongs to P , Q, or R, and the subgraph composed of P , Q, R and S is a subdivision

of K4. This contradicts the hypothesis that G is series-parallel. �

Theorem 3.4. The chordal multicuts of a series parallel graph form a minimal integer

Hilbert basis.

Proof. Let G = (V,E) be a series-parallel graph. By Theorem 3.1, the multicuts of G

form an integer Hilbert basis. Hence, the minimal integer Hilbert basis is composed of the

multicuts which are not disjoint union of other multicuts. These multicuts are characterized

in the following lemma.

Lemma 3.5. A multicut of a series-parallel graph G is chordal if and only if it can not be

expressed as the disjoint union of other nonempty multicuts.

Proof. Let M be a multicut of G. Recall that every multicut of GM is a multicut of G.

Beside, since the disjoint union of multicuts is a multicut, a disjoint union of nonempty

multicuts is actually the disjoint union of two nonempty multicuts.
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Example 3.2: Intuition for Lemma 3.3.

P

The path P divides the circuit C of a series-parallel graph into two parts. No external

path connects vertices belonging to different parts, as otherwise there would exist a

K4-minor in G (highlighted in red). Moreover, no external path connects an internal

vertex of P to a vertex of C \P , as otherwise there would exist a K4-minor in G (in

blue). Thus, the removal of the extremities of P disconnects the graph.

We first prove that, if GM is 2-connected and chordal, then M is not the disjoint union

of two nonempty multicuts. By contradiction, suppose that GM is 2-connected and chordal,

and M = M1∪M2 where M1,M2 are disjoint multicuts of GM . If C is a circuit of length at

most three in GM , then C ⊆ Mi for some i = 1, 2. Indeed, the edges of C are partitioned

by M1 and M2, and a multicut and a circuit intersect in either none or at least two edges

by Observation 1.34.

Since GM is 2-connected and Mi is nonempty for i = 1, 2, there exists at least a circuit

containing edges of both M1 and M2, as stated by a well-known theorem of Whitney (see

e.g. [9, Theorem 3.2] and [155]). Let C be such a circuit of smallest length. Then, C has

length at least 4, as otherwise it would be contained in one of M1 and M2. Since GM is

chordal, there exists a chord c of C. Denote by P1 and P2 the two paths of C between the

endpoints of c. For i = 1, 2, the circuit Pi ∪ {c} is strictly shorter than C. Since C is the

shortest circuit intersecting both M1 and M2, we get that Pi ∪ {c} ⊆ Mi for i = 1, 2. But

then c ∈M1 ∩M2, a contradiction.

To prove the other direction, first suppose that GM is not 2-connected. Then, the set

of edges of each 2-connected component of GM is a multicut of G, and M is the disjoint

union of these multicuts. Now, suppose that GM is not chordal, that is, GM contains a
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chordless circuit C of length at least 4.

By Lemma 3.3, there exist two vertices u and v of C, nonadjacent in G[C], whose

removal disconnects G. Denote by V1, . . . , Vk the sets of vertices of the connected compo-

nents of G \ {u, v}, and let Gi = G[Vi ∪ {u, v}], for i = 1, . . . , k. Note that, since C is

chordless, E(Gi) ∩ E(Gj) = ∅ for all distinct i and j. Thus, M is the disjoint union of

E(G1), . . . , E(Gk).

Let us prove that E(Gi) is a multicut of GM , for i = 1, . . . , k. Consider a circuit D of

GM . If D is contained in one of the Gi’s, then |D ∩ Gj| 6= 1 for j = 1, . . . , k. Otherwise,

D is the union of two paths from u to v, these paths being contained in two different

Gi’s. Without loss of generality, let these paths be P1 ∈ G1 and P2 ∈ G2. Then, we have

D ∩ Gi = Pi if i = 1, 2, and ∅ otherwise. Since C has no chord, the shortest path from

u to v in each Gi is of length at least two, hence |Pi| ≥ 2. Therefore |D ∩ Gi| 6= 1 for

i = 1, . . . , k.

Therefore, E(Gi) is a multicut of GM , and hence of G, for i = 1, . . . , k. Hence, M is

the disjoint union of multicuts of G. �

Therefore, we conclude that chordal multicuts of a series-parallel graphs form a minimal

Hilbert basis. �

3.3.2 The Schrijver System of the Flow Cone in Series-Parallel

Graphs

Corollary 3.2 provides an integer box-TDI description of the flow cone in series-parallel

graphs. However, this box-TDI description is not minimal: there are redundant inequalities

whose removal does not disrupt the box-TDIness. Here, we provide the minimal integer

box-TDI system for this cone. This completely answers the question of [28, end of Section

6.4].

Corollary 3.6. The Schrijver system for the flow cone of a series-parallel graph G is the

following:

x(M) ≥ 0 for all chordal multicuts M of G. (3.3)

Moreover, this system is box-TDI.

Proof. By Corollary 2.7 and Theorem 3.4, System (3.3) is TDI. Since every bond is a

chordal multicut, this system describes the flow cone for series parallel graphs. There-

fore, by [36, Corollary 2.5] and by the flow cone being box-TDI for series-parallel graphs,

System (3.3) is box-TDI. �
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3.3.3 Cone of Conservative Functions

By planar duality, Corollary 3.6 implicitly provides the Schrijver system for the cone of

conservative functions [135, Corollary 29.2h] in series-parallel graphs.

If we denote by H the class of planar dual graphs of chordal, two-connected, series-

parallel graphs, we can state the following.

Corollary 3.7. The Schrijver system for the cone of conservative functions of a series-

parallel graph G is the following:

x(H) ≥ 0 for all subgraph H of G belonging to H .

Moreover, this system is box-TDI.

We do not know an explicit characterization of H , however, we can give some necessary

conditions.

Observation 3.8. Let G = (V,E) ∈ H . Then G is series-parallel and two-connected,

Moreover, we have that V = {u, V̄ } such that:

1. G[V̄ ] does not have neither loops nor circuits of length 3 or more,

2. u is adjacent to all vertices of V̄ that are adjacent to less than 2 vertices of V̄ .

Note that Condition 1 above can be restated as “G[V̄ ] is a tree with possibly parallel

edges”.

Figure 3.4: Graphs in H and their planar dual graphs.
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3.4 Related Results and Perspectives

By (3.1), we deduce that the set of bonds is a 1
2
-Hilbert basis for all series-parallel graphs.

Asking for which class of graphs the sets of bonds/cuts/multicuts form a Hilbert basis is

an interesting question. As an example, Laurent [109], and Goddyn, Huynh, and Desh-

pande [83], studied the graphs for which

cone(DG) ∩ lattice(DG) = intcone(DG), (3.4)

where intcone(DG) denotes the set of nonnegative integer combinations of elements of DG.

These authors call Hilbert basis a set of vectors that respects condition (3.4). The two

different definitions of Hilbert basis lead to different results, as we show in Example 3.3.

Hence, we call Hilbert basis only the sets of vectors that respects the definition given in

Section 2.1.1.

Example 3.3: Different “Hilbert bases” have different properties.

Consider the graph K3. The set of cuts for this graph is given by the couples of

edges. Thus, the set DK3 in this case is {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. By the result of

Laurent [109], cone(DK3) ∩ lattice(DK3) = intcone(DK3). However, vector (1, 1, 1)

is the 1
2
-sum of the elements of DK3 , and it can not be obtained as integer positive

combination of {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Thus, DK3 is not a Hilbert basis. More-

over, we can see from Example 2.1 that the system described by x(B) ≥ 0 for all

B ∈ DK3 is not TDI.

A Hilbert Basis of Bonds

In order to find some nice characterization, we can instead ask when 1
2

the incident vectors

of cuts of a graph form a Hilbert basis. Here we show that the circuit cover property, studied

by Alspach, Goddyn, and Zhang [2] and Seymour [139], is a strictly related condition. A

graph G has the circuit cover property if p ∈ ZE is an integer conic combination of incidence

vectors of circuits of G whenever p satisfies:

• p(C \ e) ≥ pe for all circuit C and e ∈ C, and

• p(D) is even, for all cuts D of G.
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Figure 3.5: The Petersen graph P10.

Such a p is called admissible weight.

Seymour proved that every planar graph has the circuit cover property. Moreover

Alspach, Goddyn, and Zhang [2] proved the following:

Theorem 3.9. A graph G has the circuit cover property if and only if G has no Petersen

graph P10 as a minor (see Figure 3.5).

We can translate the condition on p to be admissible for G into a condition on the

planar dual of G.

Lemma 3.10. Let G be a planar graph and let G? be its planar dual. If w ∈ ZE is an

integer vector in cone(DG), then 2w is an admissible weight for G?.

Proof. Each circuit intersects each bond in either none or at least two edges. Thus, the

first condition for 2w is satisfied whenever w belongs to the cone generated by the circuits

of G?. This cone is the cut-cone of G. The second condition is stems holds because each

component of 2w is even. �

The following result directly stems from Lemma 3.10.

Observation 3.11. The set of vectors 1
2
χB for B ∈ BG is a Hilbert basis if G is planar.

Thus, System (3.1) is TDI when G is planar.

It is interesting to note that the Hilbert basis given is minimal. Observation 3.11 gives

only a sufficient condition on the graph G. Numerical tests for small examples of nonplanar

graphs suggest that K5 is the minimal graph for which 1
2
χB for B ∈ BG is not an Hilbert
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basis. This is consistent with related results on the same class of graphs, e.g. the description

of Seymour of the cut cone. Therefore, we propose the following conjecture:

Conjecture 3.12. The set of vectors 1
2
χB for B ∈ BG is a Hilbert basis when G has no

K5 minor.

A TDI System when G is not Series-parallel

The second question that arises naturally after this work is the following:

Open Problem 3.13. What is the integer TDI system for the flow cone when G has a

K4-minor?

Even if we restrict our search to planar graphs, we have very little guesses. Using

SageMath [150] we experimentally checked that, for K4, a minimal Hilbert basis for the

cut cone is given by multicuts and the set of vectors {1+ξe for each edge e ∈ K4}. However,

we failed to discern a pattern when looking at other small non series-parallel graphs.

3.5 Conclusions

In this chapter we analyzed the TDI description of the flow cone. In Section 3.2, we

provided an integer TDI system describing this cone if and only if G is series-parallel.

From this work we can deduce that, for series-parallel graphs, the multicut partitioning

problem admits an integer solution whenever it is feasible. This could be a starting point

for results analogous to those about the cut packing problem (see e.g. [1, 8, 17]). Moreover,

in Theorem 3.1, we implicitly provided an operation to build a Hilbert basis starting from

an existing one.

Corollary 3.14. Let A,A′, and A′′ be three matrices as follows:

A =

[
A0 0

A1 1

]
, A′ =


1
2
A0 0 0

1
2
A1

1
2

0
1
2
A1 0 1

2

0> 1
2

1
2

 , A′′ =


A0 0 0

A1 1 0

A1 0 1

A1 1 1

0> 1 1

 .

Then, if the rows of A and A′ are two Hilbert bases, then so are the rows of A′′.
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This operation recalls the parallel extension used in a slightly different context by Chen,

Ding, and Zang in [25].

In Section 3.3, we strengthened the result by providing the minimal integer TDI system

describing the flow cone in series-parallel graphs.
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Chapter 4

Box-TDIness and Edge-Connectivity

In this chapter, we study dual integrality properties of systems and polyhedra associated

with the k-edge-connected spanning subgraph problem.

Our interest is twofold. First, we prove that Pk(G), that is the convex hull of the

k-edge-connected spanning subgraphs of G, is a box-TDI polyhedron if and only if G is a

series-parallel graph. Secondly, we provide a TDI system with integer coefficients describing

Pk(G) for this class of graphs. Moreover, we deal with the case k = 1 separately, as in this

case the results we provide are valid for all graphs.

The k-edge-connected spanning subgraph problem has been studied under two different

assumptions: indeed, we can choose to either allow or forbid that each edge of G can be

“taken multiple times”. We extensively treat the case where each edge can be taken

multiple times. Nevertheless, our results hold under both assumptions. Indeed, we can

impose that each edge can be taken at most once by adding the box-constraint x ≤ 1.

By definition of box-TDIness, this operation preserves the box-TDIness of systems and

polyhedra treated.

4.1 Connected Subgraph Problems

The following problem is classical in combinatorial optimization: given a graph G with

costs on the edges, find the connected subgraph of G of minimum cost that covers all the

vertices of G. If we assume that all the edges have positive cost, the problem is known as

the minimum spanning tree problem. The minimum spanning tree problem has a classical

application in energy distribution and telecommunications. Indeed, Otakar Bor̊uvka, one of

the first scientists that studied the problem, was motivated by the study of an efficient way

to build an electrical network in Moravia. Nowadays, connected subgraphs model a vast
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category of problems that are related with physical networks, like in telecommunications

and transportation science.

Telecommunication networks have to be resistant to failures. In particular, we want

these networks to remain operative even if some of their elements suddenly stop working.

Therefore, one of the stages when designing telecommunication networks is to define a

network that remains connected even when a certain number of links is removed. This

leads to the k-edge-connected spanning subgraph problem, a generalization of the minimum

spanning tree problem.

4.1.1 The k-edge-connected Spanning Subgraph Problem

Given a graph G = (V,E), a k-edge-connected spanning subgraph of G is a graph H =

(V, F ), where F is a family of edges of E, such that H is a k-edge-connected graph,

spanning all the vertices of G. It is important to note that we are allowed to take each

edge more than once, this can be interpreted as the addition of multiple parallel edges

between two nodes. We present an example of a 3-edge-connected spanning subgraph in

Figure 4.1 where the edges taken multiple times are represented by parallel edges.

Figure 4.1: A graph and a 3-edge-connected spanning subgraph.

We are interested in the k-edge-connected spanning subgraph problem (k-ECSSP): given
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a graph G = (V,E), and an edge cost function c ∈ RE, find the k-edge-connected spanning

subgraph H = (V, F ) that minimizes c>x, where x ∈ RE is the vector in which xe is the

multiplicity of e in F , for all edges e in E.

We denote by Pk(G) the k-edge-connected spanning subgraph polyhedron, that is the

convex hull of the incidence vectors of k-edge-connected spanning subgraphs of G. This

polyhedron is the set of solutions of the k-ECSSP.

The k-ECSSP is NP -hard for every fixed k ≥ 2 [78]. Literature on the k-ECSSP has

often focused on special cases of the problem. The most studied one is the 2-ECSSP which

is a relaxation of the well-known Traveling Salesman Problem; see [67]. In [153], Winter

introduced a linear-time algorithm solving the 2-ECSSP on series-parallel graphs.

Different algorithms have been devised in order to deal with the k-ECSSP, such as

branch-and-cut procedures [7, 42], approximation algorithms [27, 77], cutting plane al-

gorithms [90], and heuristics [107]. By exploiting a polynomial separation algorithm of

Barahona [3] and their polyhedral description, Didi Biha and Mahjoub [50] proved that,

when G is series-parallel, the k-ECSSP is solvable in polynomial time.

4.1.2 Some Related Problems

When we design robust networks we can consider many possible “reliability requirements”.

In this sense, a brief overview of some problems related to the design of survivable networks

could be profitable for a more complete comprehension of the subject.

Node-connectivity. An alternative connectivity requirement can be set on the min-

imum number of vertices necessary to disconnect the subgraph. This leads to the k-

connected spanning subgraph problem. It should be noted that every k-connected span-

ning subgraph is k-edge-connected, hence node-connectivity is a stronger requirement than

edge-connectivity.

Survivable network design. A generalization of the k-edge-connected spanning sub-

graph problem is the edge survivable network design problem: given a graph G and a

requirement r(v) for each vertex v of G, find the subgraph of G such that between each

couple of vertices v, w there exist min(r(v), r(w)) edge-disjoint paths. Clearly, when r is

uniform, we obtain again the k-ECSSP. At the same time this problem is a generalization

of many other well-known problems. We can further generalize this problem by adding a

requirement on the robustness of the network after the removal of a set of nodes.
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These problems were introduced by Grötschel, Monma, and Stoer in [89], and further

studied by Grötschel and Monma [88], and Grötschel, Monma and Stoer [90, 91, 92]. For a

more detailed survey, we refer to the book of Stoer [145]. Among the generalizations of the

k-edge-connected spanning subgraph problem contained in the survivable network design

problem, we mention the generalized Steiner tree problems [153] and the k-edge-connected

star problem [71].

L-hop-constraints. If we consider that the condition on the k-edge-connectivity can

be seen as the existence of k edge-disjoint paths between each couple of vertices, we can

add some constraints on the length L of these paths. This leads to the k-edge-connected

L-hop-constrained spanning subgraph problem [11, 46, 101].

For a more exhaustive analysis of the design of survivable networks, we address the

reader to [70, 105, 145].

4.2 Case k = 1: the Connector Polyhedron

Before dealing with the k-edge-connected spanning subgraph polyhedron in the general

case, we give some TDIness and box-TDIness results for the case k = 1. P1(G) is also

known as the connector polyhedron, or the connector polytope1 when we impose x ≤ 1 [135].

In Figure 4.2, we present the forest polytope, the tree polytope, and the connector polytope

of K3.

Proposition 4.1. P1(G) is a box-TDI polyhedron for all graphs G.

Proof. We already saw in Example 1.2 that the forest polytope of G = (V,E) – that is the

convex hull of incidence vectors of forests of G – is the polymatroid described by:{
x(F ) ≤ |V [F ]| − 1 for all F ⊆ E,

x ≥ 0.
(4.1)

By Theorem 2.31, System (4.1) is box-TDI. The spanning tree polytope, which is the

convex hull of the incidence vectors of the spanning trees of G, is box-TDI by Theorem 2.32

because it is the face of the forest polytope defined by x(E) ≤ |V |−1. Remark that adding

edges to a spanning tree of G, we obtain a connected spanning subgraph of G. Moreover,

every integer point of P1(G) is a connected spanning subgraph of G, and hence can be

1Not to be confused with the connected subgraph polytope, that is the convex hull of sets of edges of G

that induce a connected subgraph. (see e.g. [48]).
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e1 e3

e2

e1 e3

e2

e1 e3

e2

Figure 4.2: A graph G, a tree, and a 1-connected spanning subgraph.

Below, the forest polytope, the tree polytope, and the connector polytope of G.

Note that the tree polytope is a face of both the forest and the connector polytopes.

69



CHAPTER 4. BOX-TDINESS AND EDGE-CONNECTIVITY

obtained from a spanning tree of G by adding edges. Therefore, P1(G) is the dominant of

the spanning tree polytope of G. By Theorem 2.33, P1(G) is a box-TDI polyhedron. �

It is natural to ask whether there exists an integer TDI system describing such polyhe-

dron. The answer is affirmative: the integer system provided by Fulkerson [76] is nowadays

known for being TDI [135, Theorem 50.8].

Theorem 4.2. For a graph G, the connected spanning subgraph polyhedron is described by

the following box-TDI system:{
x(M) ≥ dM − 1 for all multicuts M of G,

x ≥ 0.
(4.2)

System (4.2) is not minimally TDI, since every constraint associated with a multicut

of order 3 that is disjoint union of two bonds does not contribute to the TDIness of the

system. An example of such multicut is given in Figure 4.3. However, the same does not

hold when the multicut has order 4 or more. At the best of our knowledge, the Schrijver

system for this polyhedron is not known.

M

B1

B2

Figure 4.3: A multicut M that is given by disjoint union of two bonds B1 and B2.

4.3 The k-edge-connected Spanning Subgraph Poly-

hedron

In this section, we give some known results for Pk(G) when k ≥ 2. We study separately

the cases k even and k odd. In order to better distinguish these cases, and to ease the

notation, we will write that k = 2h when k is even, and k = 2h+ 1 when k is odd.
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In 1985, Cornuéjols, Fonlupt, and Naddef [43] showed that the following system{
x(D) ≥ 2 for all cuts D of G,

x ≥ 0
(4.3)

describes P2(G) when G is a series-parallel graph. More generally, Vandenbussche and

Nemhauser [152] characterized in terms of forbidden minors the class of graphs for which

system (4.3) describes P2(G).

Chopra [31] provided a relaxation of Pk(G) for all k odd and introduced a set of facet-

defining inequalities, the so-called LOP-inequalities. Didi Biha and Mahjoub [50] provided

a complete description of Pk(G) for all k, when G is series-parallel.

Theorem 4.3. Let G be a series-parallel graph and h be a positive integer. Then P2h(G)

is described by:

(4.4)

{
x(D) ≥ 2h for all cuts D of G,

x ≥ 0,

(4.4a)

(4.4b)

and P2h+1(G) is described by:

(4.5)

{
x(M) ≥ (h+ 1)dM − 1 for all multicuts M of G,

x ≥ 0.

(4.5a)

(4.5b)

We call Constraints (4.5a) partition constraints. Some authors (like [6, 31]) call these

constraints outerplanar inequalities or SP-partition inequalities.

What if we impose x ≤ 1? As we mentioned in the introduction of the chapter, Pk(G)

has been a subject of research also under the assumption that we can take each edge at

most once. Grötschel and Monma [88] describe several basic facets of Pk(G)∩{x : x ≤ 1}.
Further polyhedral results for the 2-ECSSP have been obtained by Boyd and Hao [12] and

Mahjoub [112, 113]. Moreover, Fonlupt and Mahjoub [68] extensively studied the extremal

points of the k-edge-connected spanning subgraph polytope and presented the class of

graphs for which this polytope is described by System (4.3) plus the inequalities x ≤ 1.

Barahona and Mahjoub [4] proved that, when G is a Halin graph, P2(G) is described by

(4.3) plus the inequalities x ≤ 1 and the so-called odd-wheels inequalities.

Box-TDIness. In 2006, Chen, Ding, and Zang [25] provided a box-TDI result for P2(G)

for series-parallel graphs.
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Theorem 4.4. The system:{
1
2
x(D) ≥ 1 for all cuts D of G,

x ≥ 0
(4.6)

is box-TDI if and only if G is a series-parallel graph.

As mentioned in Chapter 2, if we multiply both sides of System (4.6), we potentially

undermine the total dual integrality of the system. At the same time, Theorem 4.4 alone is

not sufficient to state that P2(G) is a box-TDI polyhedron if and only if G is series-parallel.

4.4 Preliminary Results

In this section, we collect the technical results we will use in the rest of the chapter, the

majority of these results are already known in the literature.

First, we give an alternative description of Pk(G) when k is even and G is series-parallel.

By combining the description of P2h(G) given in Theorem 4.3 and Observation 1.33, we

deduce the following.

Observation 4.5. Let G be a series-parallel graph and h ∈ Z, h ≥ 1. The polyhedron

P2h(G) is described by:

(4.7)

{
x(M) ≥ hdM for all multicuts M of G,

x ≥ 0

(4.7a)

(4.7b)

Multicuts play a central role in the rest of the chapter, hence we will say that a multicut

is tight for a point x of Pk(G) when the corresponding partition constraint (either (4.7a)

or (4.5a), depending on the parity of k) is satisfied with equality by x. Similarly, we will

say that a multicut M is active for a solution y of the dual of System (4.5) when yM > 0.

The following observation states that for all multicuts that strictly contain δ(v) for a

vertex v of degree 2 and are tight for a point of Pk(G), v and the vertices adjacent to it

belong to three different shores.

Observation 4.6. Let G = (V,E) be a simple series-parallel graph, let M be a multicut

of G strictly containing δ(v) = {f, g}, and let k ≥ 2. If M is tight for a point of Pk(G),

then both M \ f and M \ g are multicuts of G of order dM − 1.

Proof. Let M ) δ(v) be a multicut of G such that M \ f is not a multicut. Then,

M = δ(v, V2, . . . , VdM ) and the two vertices of G adjacent to v belong to the same shore,
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say V2. Then, we have that M \ δ(v) = δ(V2∪v, . . . , VdM ), hence it is a multicut with order

dM\δ(v) = dM − 1. then, if k = 2h+ 1 for an integer h ≥ 1, we have:

(h+1)dM−1 < (h+1)(dM−1)−1+(h+1)dδ(v)−1 ≤ x(M \δ(v))+x(δ(v)) = x(M), (4.8)

else, if k = 2h for an integer h ≥ 1:

hdM < h(dM − 1) + hdδ(v) ≤ x(M \ δ(v)) + x(δ(v)) = x(M). (4.9)

Since for both (4.8) and (4.9) the first term is the right hand side of the partition constraint

associated with M , this multicut is not tight for any point x ∈ Pk(G). �

Proposition 4.7. Let G = (V,E) be a simple 2-connected series parallel graph, and let

|E| ≥ 2. Then, at least one of the following holds:

(a) there are in G at least two adjacent vertices of degree 2;

(b) there is in G at least a vertex of degree 2 that belongs to a circuit of length exactly 3;

(c) there exist in G two vertices of degree 2 that belong to the same circuit of length 4.

Proof. Consider the open nested ear decomposition of G, E1, . . . ,Em. Let Eh be an ear

with extremities on Ej such that no other ear has extremities on an internal vertex of Eh

and such that there exists a path Ph ⊆ Ej between the endpoints of Eh such that no ear

has extremities on an internal vertex of Ph. This ear exists by the definition of open nested

ear decomposition. Since no internal vertex of Eh and Ph is the extremity of an ear, they

are all degree 2 vertices. Hence, either condition (a) is realized, or both Eh and Ph have

less than 2 internal vertices. In the second case, by G being simple, at least one among Eh

and Ph has one internal vertex, hence at least one among (b) and (c) is satisfied. �

Theorem 4.8 ([50]). Let x be a point of P2h+1(G), and let M = δ(V1, . . . , VdM ) be a tight

multicut for x. Then, the following hold:

1. if dM ≥ 3, then x (δ(Vi, Vj)) ≤ h+ 1 for all i 6= j ∈ {1, . . . , dM}.

2. GM is 2-connected.

Lemma 4.9. Let G = (V,E) be a simple series-parallel graph, v ∈ V be a vertex of degree

2, and M be a multicut such that |M ∩ δ(v)| = 1. Then, M ∪ δ(v) and M∆δ(v) are

multicuts. Moreover, dM∪δ(v) = dM + 1, and dM∆δ(v) = dM .
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Proof. Let M = δ(V1, . . . , VdM ), δ(v) = {uv, vw}, v, w ∈ V1, and u ∈ V2. Then M ∪ vw =

δ(v, V1 \ {v}, . . . , VdM ), and M∆δ(v) = δ(V1 \ {v}, V2 ∪ {v}, . . . , VdM ). �

Observation 4.10. Let e be an edge of K4. Then, the following inequality is facet-defining

for P2h+1(K4): ∑
f∈E\e

xf + 2xe ≥ 4(h+ 1)− 1. (4.10)

Chopra [31] called the inequalities like (4.10) LOP-inequalities, and provided a sufficient

condition for such inequalities to be facet-defining for P2h+1(G).

The two following results give sufficient conditions for an inequality to be facet-defining

for P2h+1(G).

Theorem 4.11 ([31]). Let G = (V,E) be a graph, M be a multicut of G, and a>x ≥ b be

a facet-defining inequality for P2h+1(GM). Then ã>x ≥ b is a facet defining inequality for

P2h+1(G), where ã is defined as:

ãe =

{
ae if e ∈M,

0 otherwise,
for all e ∈ E.

Theorem 4.12 ([31]). Let G = (V,E) and G′ = G \ e0 for a certain edge e0 parallel to an

edge of e1 ∈ E. Let a>x ≥ b be a facet-defining inequality for P2h+1(G′). Then ã>x ≥ b is

facet defining for P2h+1(G), where ã is defined as:

ãe =

{
ae1 if e = e0,

ae otherwise,
for all e ∈ E.

4.5 Box-TDIness of Pk(G)

In this section, we extend Proposition 4.1 by characterizing for which graphs Pk(G) is a

box-TDI polyhedron when k > 1. We first show that, for these k, Pk(G) is not box-TDI if

G is not series-parallel.

Lemma 4.13. For k ≥ 2, if G = (V,E) contains a K4-minor, then Pk(G) is not box-TDI.

Proof. G having a K4-minor, there exists a multicut M such that GM is a K4, possibly with

parallel edges. When k is odd, by Observation 4.10, Constraint (4.10) is facet-defining for

Pk(K4). Combining Theorems 4.11 and 4.12, we deduce that there exists a facet-defining

inequality:

1>x(E ′) + 2>x(E ′′) ≥ b, (4.11)
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where E ′ and E ′′ are two disjoint nonempty subsets of E and b ∈ Q. Note that the

coefficient vector of Constraint (4.11) is [0>,1>,2>] ∈ RE, hence it is not equimodular.

Thus, Pk(G) is not box-TDI by Theorem 2.25.

We now prove the case when k is even. Since G has a K4-minor, there exists a partition

{V1, . . . , V4} of V such that G[Vi] is connected and δ(Vi, Vj) 6= ∅ for all i < j ∈ {1, . . . , 4}.
We now prove that the matrix T whose three rows are χδ(Vi) for i = 1, 2, 3 is a face-defining

matrix for Pk(G) which is not equimodular. This will end the proof by Theorem 2.25.

Let eij be an edge in δ(Vi, Vj) for all i < j ∈ {1, . . . , 4}. The submatrix of T formed by

the columns associated with edges eij is the following:

e12 e13 e23 e14 e24 e34

χδ(V1)

χδ(V2)

χδ(V3)

 1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1


The matrix T is not equimodular as the first three columns form a matrix of determinant

-2 whereas the last three ones have determinant 1.

To show that T is face-defining, we exhibit |E| − 2 affinely independent points of

Pk(G) satisfying x(δ(Vi)) = k for i = 1, 2, 3 as follows. Let D1 = {e12, e14, e23, e34},
D2 = {e12, e13, e24, e34}, D3 = {e13, e14, e23, e24} and D4 = {e14, e24, e34}. First, we define

the points Sj =
∑4

i=1 kχ
E[Vi] + k

2
χDj , for j = 1, 2, 3, and S4 =

∑4
i=1 kχ

E[Vi] + kχD4 . Note

that they are affinely independent.

Now, for each edge e /∈ {e12, e13, e14, e23, e24, e34}, we construct the point Se as follows.

When e ∈ E[Vi] for some i = 1, . . . , 4, we define Se = S4+χe. Adding the point Se maintains

affine independence as Se is the only point not satisfying xe = k. When e ∈ δ(Vi, Vj) for

some i, j, we define Se = S` − χeij + χe, where S` is S1 if e ∈ δ(V1, V4) ∪ δ(V2, V3) and S2

otherwise. Affine independence comes because Se is the only point involving e. �

The following theorem is characterizes when Pk(G) is box-TDI. When k is even, the

result stems from [25]. When k is odd, we show by induction on the number of edges of

G that each face-defining matrix of Pk(G) is equimodular, and we use the characterization

given in Theorem 2.25.

Theorem 4.14. For k ≥ 2, Pk(G) is a box-TDI polyhedron if and only if G is series-

parallel.

Proof. Necessity stems from Lemma 4.13. Let us now prove sufficiency. For P2(G), Chen,

Ding, and Zang [25] proved that System (4.6) is box-TDI. This implies box-TDIness for
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all even k: multiplying the right-hand side of a box-TDI system by a positive rational

preserves its box-TDIness [134, Section 22.5]. System (4.4) can be obtained from (4.6) by

multiplying its left-hand side by 2 and its right-hand side by k. Thus Pk(G) is a box-TDI

polyhedron when G is series-parallel and k is an even integer.

The rest of the proof is dedicated to the case where k = 2h+ 1 for some integer h ≥ 1.

For this purpose, we prove that every face of P2h+1(G) admits an equimodular face-defining

matrix. The characterization of box-TDIness given in Theorem 2.25 concludes. We proceed

by induction on the number of edges of G.

As a base-case of the induction we consider the series-parallel graph G consisting of two

vertices connected by a single edge. Then, P2h+1(G) = {x ∈ R+ : x ≥ 2h+ 1} is box-TDI.

(1-sum) Let G be the 1-sum of two series-parallel graphs G1 = (W 1, E1) and G2 =

(W 2, E2). By induction, there exist two box-TDI systems A1y ≥ b1 and A2z ≥ b2 describing

respectively P2h+1(G1) and P2h+1(G2). If v is the vertex of G obtained by the identification,

G \ v is not connected, hence, by Statement 2 of Theorem 4.8, a multicut M of G is tight

for a face of P2h+1(G) only if M ⊆ Ei for some i = 1, 2. It follows that for every face F of

P2h+1(G) there exist two faces F 1 and F 2 of P2h+1(G1) and P2h+1(G2) respectively, such

that F = F 1 × F 2. Then P2h+1(G) = {(y, z) ∈ RE1

+ × RE2

+ : A1y ≥ b1, A2z ≥ b2} and so it

is box-TDI.

(Parallelization) Let now G be obtained from a series-parallel graph H by adding an

edge g parallel to an edge f of H and suppose that P2h+1(H) is box-TDI. Note that

P2h+1(G) is obtained from P2h+1(H) by duplicating f ’s column and adding xg ≥ 0. Hence,

by Lemma 2.35, P2h+1(G) is a box-TDI polyhedron.

(Subdivision) Let G = (V,E) be obtained by subdividing an edge uw of a series-parallel

graph G′ = (V ′, E ′) into a path of length two uv, vw. By contradiction, suppose there exists

a non-empty face F = {x ∈ P2h+1(G) : AFx = bF} such that AF is a face-defining matrix

of F which is not equimodular. Take such a face with maximum dimension. Then, every

face-defining submatrix of AF is equimodular. We may assume that AF is defined by the

partition constraints (4.5a) associated with the set of multicuts MF and the nonnegativity

constraints associated with the set of edges EF .

Claim 4.14.1. EF = ∅.

Proof. Suppose there exists an edge e ∈ EF . Let H = G \ e and let AFH
x = bFH

be the

system obtained from AFx = bF by removing the column and the nonnegativity constraint

associated with e. The matrix AF being of full row rank, so is AFH
. Since M \ e is a

multicut of H for all M in MF , the set FH = {x ∈ P2h+1(H) : AFH
x = bFH

} is a face
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of P2h+1(H). Moreover, deleting e’s coordinate of aff(F ) gives aff(FH) so AFH
is face-

defining for FH . By the induction hypothesis, AFH
is equimodular, and hence so is AF by

Observation 1.26. �

Claim 4.14.2. For all e ∈ {uv, vw}, at least one multicut of MF different from δ(v)

contains e.

Proof. Suppose that uv belongs to no multicut of MF different from δ(v).

First, suppose that δ(v) does not belong to MF . Then, the column of AF associated

with uv is zero. Let A′F be the matrix obtained from AF by removing this column. Every

multicut of G not containing uv is a multicut of G′ (relabelling vw by uw), so the rows of

A′F are associated with multicuts of G′. Thus, F ′ = {x ∈ Pk(G′) : A′Fx = bF} is a face of

P2h+1(G′). Removing uv’s coordinate from the points of F gives a set of points of F ′ of

affine dimension at least dim(F )− 1. Since A′F has the same rank of AF and one column

less than AF , then A′F is face-defining for F ′ by Observation 1.3. By induction hypothesis,

A′F is equimodular, hence so is AF .

Suppose now that δ(v) belongs to MF . Then, the column of AF associated with uv

has zeros in each row but χδ(v). Let A?Fx = b?F be the system obtained from AFx = bF

by removing the row associated with δ(v). Then F ? = {x ∈ Pk(G) : A?Fx = b?F} is a face

of Pk(G) of dimension dim(F ) + 1. Indeed, it contains F and z + αχuv for every point z

of F and α > 0. Hence, A?F is face-defining for F ?. This matrix is equimodular by the

maximality assumption on F , and so is AF by Observation 1.26. �

Claim 4.14.3. |M ∩ δ(v)| 6= 1 for every multicut M ∈MF .

Proof. Suppose there exists a multicut M tight for F such that |M ∩ δ(v)| = 1. Without

loss of generality, suppose that M contains uv and not vw. Then, F ⊆ {x ∈ P2h+1(G) :

xvw ≥ xuv} because of the partition inequality (4.5a) associated with the multicut M∆δ(v).

Moreover, the partition inequality associated with δ(v) and the integrality of P2h+1(G)

imply F ⊆ {x ∈ P2h+1(G) : xvw ≥ h+ 1}. The proof is divided into two cases.

Case 1. F ⊆ {x ∈ P2h+1(G) : xvw = h+1}. We prove this case by exhibiting an equimod-

ular face-defining matrix for F . By Observation 1.28, this implies that AF equimodular,

which contradicts the assumption on F .

Equality xvw = h + 1 can be expressed as a linear combination of rows of AFx = bF .

Let A′Fx = b′F denote the system obtained by replacing a row of AFx = bF by xvw = h+ 1

in such a way that the underlying affine space remains unchanged. Denote by N the set
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of multicuts of MF containing vw but not uv. If N 6= ∅, then let N be in N . We now

modify the system A′Fx = b′F by performing the following operations.

1. Every row associated with a multicut M strictly containing δ(v) is replaced by the

partition constraint (4.5a) associated with M \ vw set to equality.

2. Whenever δ(v) ∈ MF , replace the row associated with δ(v) by the box constraint

xuv = h.

3. Replace every row associated with M ∈ N \ N by the partition constraint (4.5a)

associated with M∆δ(v) set to equality.

4. Whenever N 6= ∅, replace the row associated with N by the box constraint xuv =

h+ 1.

These operations do not modify the underlying affine space. Indeed, in Operation 1,

M \ vw is tight for F because of Observation 4.6 and F ⊆ {x ∈ P2h+1(G) : xvw = h + 1}.
Operation 2 is applied only if F ⊆ {x ∈ P2h+1(G) : xuv = h}. Operations 3 and 4 are

applied only if N 6= ∅, which implies that F ⊆ {x ∈ P2h+1(G) : xuv = h + 1} because of

the constraint (4.5a) associated with N∆δ(v) and F ⊆ {x ∈ P2h+1(G) : xvw ≥ xuv}. Note

that Operations 2 and 4 cannot be applied both, hence the rank of the matrix remains

unchanged.

Let A′′Fx = b′′F be the system obtained by removing the row xvw = h+1 from A′Fx = b′F .

By construction, A′′Fx = b′′F is composed of constraints (4.5a) set to equality and possibly

xuv = h or xuv = h + 1. Moreover, the column of A′′F associated with vw is zero. Let

F ′′ = {x ∈ P2h+1(G) : A′′Fx = b′′F}. For every point z of F and α ≥ 0, z + αχvw belongs to

F ′′ because the column of A′′F associated with vw is zero, and z + αχvw ∈ P2h+1(G). This

implies that dim(F ′′) ≥ dim(F ) + 1.

If F ′′ is a face of P2h+1(G), then A′′F is face-defining for F ′′ by Observation 1.3 and by

A′F being face-defining for F . By the maximality assumption on F , A′′F is equimodular,

and hence so is A′F by Observation 1.26.

Otherwise, by construction, F ′′ = F ? ∩ {x ∈ RE : xuv = t} where F ? is a face of

P2h+1(G) strictly containing F and t ∈ {h, h + 1}. Therefore, there exists a face-defining

matrix of F ′′ given by a face-defining matrix of F ? and the row χuv. Such a matrix is

equimodular by the maximality assumption of F and Observation 1.26. Hence, A′′F is

equimodular by Observation 1.28, and so is A′F by Observation 1.26.
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Case 2. F 6⊆ {x ∈ P2h+1(G) : xvw = h + 1}. Thus, there exists z ∈ F such that

zvw > h + 1. By Claim 4.14.2, there exists a multicut N 6= δ(v) containing vw which

is tight for F . By Theorem 4.8-1, the existence of z implies that N is a bond. Thus,

uv /∈ N and F ⊆ {x ∈ P2h+1(G) : xvw = xuv}. Consequently, L = N∆δ(v) is also a

bond tight for F . Moreover, N is the unique multicut tight for F containing vw. Suppose

indeed that there exists a multicut B containing vw tight for F . Then, B is a bond by

Theorem 4.8-1 and the existence of z. Moreover, B∆N is a multicut not containing vw.

This implies that no point x of F satisfies the partition constraint associated with B∆N

because x(B∆N) = x(B)+x(N)−2x(B∩N) = 2(2h+1)−2x(B∩N) ≤ 4h+2−2xe ≤ 2h,

a contradiction.

Consider the matrix A?F obtained from AF by removing the row associated with N .

Matrix A?F is a face-defining matrix for a face F ? ⊇ F of P2h+1(G) because F ? contains

F and z + αχuv for every point z of F and α > 0. By the maximality assumption, the

matrix A?F is equimodular. Let BF be the matrix obtained from AF by replacing the row

χN by the row χN −χL. Then, BF is face-defining for F . Moreover, BF is equimodular by

Observation 1.26 — a contradiction. �

Let A′Fx = b′F be the system obtained from AFx = bF by removing uv’s column from

AF and subtracting h + 1 times this column to bF . We now show that {x ∈ P2h+1(G′) :

A′Fx = b′F} is a face of P2h+1(G′) if δ(v) /∈ MF , and P2h+1(G′) ∩ {x : xuw = h} otherwise.

Indeed, consider a multicut M in MF . If M = δ(v), then the row of A′Fx = b′F induced by

M is nothing but xuw = h. Otherwise, by Observation 4.6 and Claim 4.14.3, the set M \uv
is a multicut of G′ (relabelling vw by uw) of order dM if uv /∈ M and dM − 1 otherwise.

Thus, the row of A′Fx = b′F induced by M is the partition constraint (4.5a) associated with

M \ uv set to equality.

By construction, A′F has full row rank and one column less than AF . We prove that A′F
is face-defining by exhibiting dim(F ) affinely independent points of P2h+1(G′) satisfying

A′Fx = b′F . Because of the integrality of P2h+1(G), there exist n = dim(F ) + 1 affinely

independent integer points z1, . . . , zn of F . By Claim 4.14.3, every multicut in MF contains

either both uv and vw or none of them. Then, Claim 4.14.2 and Theorem 4.8-1 imply that

F ⊆ {x ∈ RE : xuv ≤ h + 1, xvw ≤ h + 1}. Combined with the partition inequality

xuv + xvw ≥ 2h + 1 associated with δ(v), this implies that at least one of ziuv and zivw is

equal to h+ 1 for i = 1, . . . , n. Since exchanging the uv and vw coordinates of any point of

F gives a point of F by Claim 4.14.3, the hypotheses on z1, . . . , zn are preserved under the

assumption that ziuv = h + 1 for i = 1, . . . , n − 1. Let y1, . . . , yn−1 be the points obtained

from z1, . . . , zn−1 by removing uv’s coordinate. Since every multicut of G′ is a multicut
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of G with the same order, y1, . . . , yn−1 belong to P2h+1(G′). By construction, they satisfy

A′Fx = b′F so they belong to a face of P2h+1(G′) or P2h+1(G′)∩{x : xuw = h}. This implies

that A′F is a face-defining matrix of P2h+1(G′) if δ(v) /∈MF , and P2h+1(G′)∩{x : xuw = h}
otherwise.

By induction, P2h+1(G′) is a box-TDI polyhedron and hence so is P2h+1(G′)∩{x : xuw =

h}. Hence, A′F is equimodular by Theorem 2.25. Since the columns of AF associated with

uv and vw are equal, Observation 1.26 implies that AF is equimodular — a contradiction

to its assumption of non-equimodularity. �

4.6 An integer TDI system - Case k even

In Section 4.5, we proved that Pk(G) is a box-TDI polyheron if and only if G is series-

parallel. When k is an even integer, the result stems from the work of Chen, Ding, and

Zang [25], who also gave a TDI system describing P2(G). However, their system does

not have integer coefficients. In this section and in the following one, we provide a TDI

system for Pk(G) having integer coefficients. In particular, this section is devoted to the

case k = 2h for some integer h ≥ 1.

Given x̄ ∈ ZE+, we denote by G[x̄] the graph induced by the edges e ∈ E taken x̄e times.

Theorem 4.15. For a series-parallel graph G and h ∈ Z+, System (4.7) is TDI.

Proof. We only prove the case h = 1 since multiplying the right hand side of a system by

a positive constant preserves its TDIness [134, Section 22.5].

The proof is done by induction on the number of edges of the graph G = (V,E). As a

base-case of the induction we consider the series-parallel graph G consisting of two vertices

connected by a single edge `. Then, System (4.7) is x` ≥ 2, x` ≥ 0 and is TDI.

(1-sum) Let G be the 1-sum of two series-parallel graphs G1 = (W 1, E1) and G2 =

(W 2, E2). We prove the TDIness of System (4.7) associated with G using Corollary 2.6.

More precisely, we prove that for any vertex x̄ of P2(G), the set of vectors {χM : M ∈
Mx̄} ∪ {χe : x̄e = 0} is a Hilbert basis.

By construction, we have x̄ = (x̄1, x̄2) where x̄i ∈ P2(Gi) for i = 1, 2. Moreover, for

each multicut M ∈ Mx̄, the graph obtained from G[x̄] by contracting the edges of E \M
is a circuit. Indeed, it is 2-edge-connected since G[x̄] is, and it has x̄(M) = dM edges and

dM vertices. Therefore M is either a multicut of G1 tight for x̄1 or one of G2 tight for x̄2.

By induction, Systems (4.7) associated with G1 and G2 are TDI. Thus, {χM : M ∈
Mx̄ ∩M (Gi)} ∪ {χe : e ∈ Ei, x̄e = 0} is a Hilbert basis for i = 1, 2 by Corollary 2.6. Since
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they belong to disjoint spaces, their union is a Hilbert basis. By Corollary 2.6, System (4.7)

is TDI.

(Parallelization) Let now G be obtained from a series-parallel graph H by adding an

edge g parallel to an edge f of H. System (4.7) associated with G is obtained from

that associated with H by duplicating f ’s column in constraints (4.7a) and adding the

nonnegativity constraint xg ≥ 0. By Lemma 2.35, System (4.7) is TDI.

(Subdivision) Let G = (V,E) be obtained by subdividing an edge uw of a series-parallel

graph G′ = (V ′, E ′) into a path of length two uv, vw. We prove the TDIness of System (4.7)

associated with G using Corollary 2.6. More precisely, we prove that for any vertex z of

P2(G), the set of vectors Mz ∪ Ez forms a Hilbert basis.

Without loss of generality, suppose zuv ≥ zvw. Define z′ ∈ ZE′ by z′uw = zvw and

z′e = ze for all edges e in E ′ ∩E. Remark that z′ belongs to P2(G′) since G′[z′] is obtained

by contracting the edge uv in G[z] which preserves 2-edge-connectivity.

Remark that for all e ∈ E, ze ∈ {0, 1, 2}. Indeed, ze > 0 implies that e is in a cut tight

for z since z is a vertex of P2(G) which is an integer polyhedron described by System (4.4).

As zuv ≥ zvw, the partition constraint (4.7a) associated with δ(v) implies that zuv ∈ {1, 2}.
We now consider two different cases depending on the value of zuv.

Case i. zuv = 2.

First, note that there exists a unique N ∈ Mz containing uv and that N is a bond.

Indeed, if a multicut M = δ(V1, . . . , VdM ) ∈ Mz satisfies dM ≥ 3 and uv ∈ δ(V1, V2), then

the multicut M ′ = δ(V1 ∪ V2, V3, . . . , VdM ) is such that z(M ′) ≤ z(M)− 2 < dM − 1 = dM ′ .

Hence, the partition constraint (4.7a) associated with M ′ is violated – a contradiction.

Moreover, every multicut M with dM = 2 is a bond. Suppose now that there exist two

bonds B1 and B2 in Mz containing uv. Then, z(B1∆B2) ≤ z(B1) + z(B2) − 2zuv = 0 – a

contradiction. This implies that Mz = Mz′ ∪N as a multicut M not containing uv is tight

for z if and only if it is tight for z′. By induction and Theorem 2.5, Mz′ ∪ Ez′ is a Hilbert

basis. As Ez = Ez′ and N is the only member of Mz ∪Ez containing uv, Mz ∪Ez is also a

Hilbert basis.

Case ii. zuv = 1.

Let v be any integer point of the cone generated by Mz ∪ Ez. We prove that v can

be expressed as an integer nonnegative combination of vectors Mz ∪Ez which implies that

Mz ∪ Ez is a Hilbert basis.
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Let Bz be the set of bonds of Mz. Since System (4.6) is TDI in series-parallel graphs,

the set of vectors {1
2
χB : B ∈ Bz} ∪Ez forms a Hilbert basis by Theorem 2.5. Then, there

exist λB ∈ 1
2
Z+ for all B ∈ Bz and µe ∈ Z+ for all e ∈ Ez such that v =

∑
B∈Bz

λBχ
B +∑

e∈Ez
µeχ

e.

Since zuv ≥ zvw, the partition inequality (4.7a) associated with δ(v) implies that zvw = 1

and δ(v) ∈ Mz. The vector v is an integer combination of vectors of Mz ∪ Ez if and only

if v − bλδ(v)cχδ(v) is, thus we may assume that λδ(v) ∈ {0, 1
2
}. Define w ∈ ZE′ by:

we =

{
vuv + vvw − 2λδ(v) if e = uw,

ve otherwise.

Remark that (B \ uw) ∪ uv and (B \ uw) ∪ vw are bonds of Mz whenever B is a bond of

Mz′ containing uw because z′uw = zuv = zvw = 1. Moreover, a bond B of Mz′ which does

not contain uw is a bond of Mz. Since δ(v) is the unique bond of G containing both uv

and vw, and Ez = Ez′ , we have:

w =
∑

B∈Bz′ :uw∈B

(λ(B\uw)∪uv + λ(B\uw)∪vw)χB +
∑

B∈Bz′ :uw 6∈B

λBχ
B +

∑
e∈Ez′

µeχ
e.

Thus, w belongs to the cone of Mz′ ∪ Ez′ . By the induction hypothesis, Mz′ ∪ Ez′ is a

Hilbert basis, hence there exist λ′M ∈ Z+ for all M ∈Mz′ and µ′e ∈ Z+ for all e ∈ Ez′ such

that w =
∑

M∈Mz′
λ′Mχ

M +
∑

e∈Ez′
µ′eχ

e.

Consider the family N of multicuts of Mz′ where each multicut M of Mz′ appears λ′M
times. Suppose first that λδ(v) = 0. Then, vuv + vvw multicuts of N contain uw. Let P be

a family of vuv multicuts of N containing uw and Q = {F ∈ N : uw ∈ F} \ P . Then, we

have

v =
∑

M∈N :uw/∈M

χM +
∑
M∈P

χ(M\uw)∪uv +
∑
M∈Q

χ(M\uw)∪vw +
∑
e∈Ez′

µ′eχ
e. (4.12)

Suppose now that λδ(v) = 1
2
. Then, vuv + vvw− 1 multicuts of N contain uw. Let P be

a family of vuv−1 multicuts of N containing uw, let Q be a family of vvw−1 multicuts in

{F ∈ N : uw ∈ F} \ P , and denote by N the unique multicut of N containing uw which

is not in P ∪ Q . Then, we have

v =
∑

M∈N :uw/∈M

χM +
∑
M∈P

χ(M\uw)∪uv +
∑
M∈Q

χ(M\uw)∪vw + χN∪δ(v)\uw +
∑
e∈Ez′

µ′eχ
e. (4.13)

Every M ∈ Mz′ not containing uw is in Mz. For every M ∈ Mz′ containing uw,

(M \uw)∪uv, (M \uw)∪vw and (M \uw)∪δ(v) belong to Mz since z′uw = zuv = zvw = 1.

Since Ez = Ez′ , then v is a nonnegative integer combination of vectors of Mz ∪Ez in both

(4.12) and (4.13). This proves that Mz ∪ Ez is a Hilbert basis. �
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Theorem 4.15 and Lemma 4.13 characterize the box-TDIness of System (4.7) as follows.

Corollary 4.16. System (4.7) is box-TDI if and only if G is series-parallel.

Theorem 4.15 does not give a necessary condition for System (4.7) to be TDI. On one

hand, we know that System (4.7) is not TDI whenever the set of the solutions is a non

integer polyhedron. On the other, we directly computed that System (4.7) is TDI for K4.

Since System (4.7) describes an integer polyhedron if and only if the underlying graph

G has not the graphs in Figure 4.4 as minors (see [152]), that are “similar” to K4, we

conjecture that for this class of graphs System (4.7) is TDI.

Conjecture 4.17. System (4.7) is TDI if and only if the two graphs in Figure 4.4 are not

minors of G.

G1 G2

Figure 4.4: Minimal graphs for which System (4.3) is not integer

Why System (4.7) is not TDI for G1? The attentive reader probably noticed that

G1 can be obtained from K4 by subdividing three edges incident to a same vertex. In

the proof of Theorem 4.15 however, we showed that this operation preserves the TDIness

of System (4.7). We remark that this is not a contradiction: in our proof we implicitly

exploited the fact that the polyhedron described by System (4.7) is integer. When this

hypothesis does not hold, the proof given is no more valid because we do not explore all

the vertices of the polyhedron.
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4.7 An integer TDI system - Case k odd

In this section, we prove that System (4.5) is TDI if G is a series-parallel graph.

Theorem 4.18. Let G be a series-parallel graph and h a positive integer. Then, Sys-

tem (4.5) is TDI.

Proof. We prove the result by contradiction. Let G = (V,E) be a series-parallel graph

such that System (4.5) is not TDI. By definition of TDIness, there exists c ∈ ZE such that

D(G,c):

max
∑

M∈MG

bMyM

s.t.
∑

M∈MG:e∈M

yM ≤ ce for all e ∈ E

yM ≥ 0 for all M ∈MG

(4.14a)

(4.14b)

is feasible, bounded, and does not admit an integer optimal solution, where we defined bM

as bM = (h+ 1)dM − 1 for all M ∈MG. Without loss of generality, we assume that:

(i) G has a minimum number of edges,

(ii)
∑

e∈E ce is minimum with respect to (i).

Note that assumption (ii) is not restrictive. Indeed, if c ≥ 0, the point 0 is a solution to

D(G,c). Therefore, D(G,c′) is feasible for all 0 ≤ c′ ≤ c. Moreover, if ce < 0 for some edge e

that belongs to a multicut D(G,c) is not feasible. On the other hand, if c ≥ 0 is finite, then

D(G,c) is bounded.

We recall that a multicut M is active for a solution y to D(G,c) if yM > 0. Note that,

by complementary slackness, a multicut is active for an optimal solution to D(G,c) only if it

is tight for an optimal solution to the primal problem. In particular, if a multicut is tight

for no point of P2h+1(G), then it is not active for every optimal solution to D(G,c). Thus,

we will use Observation 4.6 and Theorem 4.8 to deduce properties of the optimal solutions

to D(G,c).

Claim 4.18.1. G is simple, 2-connected and different from K2.

Proof. By definition, multicuts do not contain loops hence, by minimality assumption (i),

G has no loop. Suppose by contradiction that there exist two parallel edges e1 and e2 and
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ce1 ≤ ce2 . Since a multicut contains either both e1 and e2 or none of them, the inequality

(4.14a) associated with e2 is redundant because ce1 ≤ ce2 . This contradicts minimality

assumption (i), so G is simple.

Assume by contradiction that G is not 2-connected. Then G is the 1-Sum of two

distinct graphs G1 = (V1, E1) and G2 = (V2, E2). By Statement (2) of Theorem 4.8, the

multicuts of G that intersect both E1 and E2 are not tight for the points of P2h+1(G), by

complementary slackness (Theorem 1.10), these multicuts are not active for the optimal

solutions to D(G,c). Hence, every optimal solution y to D(G,c) is of the form:

yM =


y1
M if M ∈MG1 ,

y2
M if M ∈MG2 ,

0 otherwise,

for all M ∈MG,

where yi is an optimal solution to D(Gi,c|Ei
) for i = 1, 2. By minimality assumption (i),

there exists an integer optimal solution ȳi to D(Gi,c|Ei
) for i = 1, 2, implying that (ȳ1, ȳ2) is

an integer optimal solution to D(G,c), a contradiction.

Finally, if G = K2, MG contains only one multicut, say {e}, and the optimal solution

to D(G,c) is y∗{e} = ce which is integer. �

From the definition of series-parallel graphs, Claim 4.18.1 implies that G contains at

least one degree 2 vertex. Let V̂ be the set of vertices of degree 2 in G.

Claim 4.18.2. For all edges e ∈ E, ce ≥ 1.

Proof. By hypothesis, c is integer and D(G,c) has an optimal solution, say y∗. Since y∗ ≥ 0,

then c ≥ 0 by inequalities (4.14a). Suppose by contradiction that there exists an edge

e ∈ E with ce = 0. Set G′ = G/e and c′ = c|E\e. The active multicuts for y∗ do not contain

the edge e so they are multicuts of G′ since MG′ = {M ∈ MG|e /∈ M}. Hence, the point

y′ ∈ RMG′ defined by y′M = y∗M for all M ∈MG′ is a solution to D(G′,c′).

By minimality assumption (i), there exists an integer optimal solution ỹ to D(G′,c′).

Extending ỹ to a point of ZMG by setting to 0 the missing components gives an integer

solution to D(G,c) with cost b>ỹ ≥ b>y′ = b>y∗. This is an integer optimal solution to

D(G,c) since y∗ is optimal, a contradiction with the hypothesis that D(G,c) has no integer

optimal solution. �

Claim 4.18.3. For every optimal solution y to D(G,c), 0 ≤ yM < 1 for all M ∈MG.

Proof. By contradiction, suppose that y∗ is an optimal solution to D(G,c) such that there

exists a multicut M such that y∗M ≥ 1. Therefore, the point y′ defined by y′ = y∗ − ξM is
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a solution to D(G,c′) where c′ = c − χM . By minimality assumption (ii), D(G,c′) admits an

integer optimal solution y′′. The point ỹ defined by ỹ = y′′ + ξM is an integer solution to

D(G,c) and we have:

b>ỹ = b>y′′ + bM ≥ b>y′ + bM = b>y∗.

Therefore ỹ is an integer optimal solution to D(G,c), a contradiction. �

Claim 4.18.4. Let v ∈ V̂ , δ(v) = {e1, e2}, y be an optimal solution to D(G,c), and M1

be an active multicut for y such that M1 ∩ δ(v) = e1. Then, if yδ(v) > 0, there exists no

multicut M2 such that yM2 > 0 and M2 ∩ δ(v) = e2.

Proof. We prove the result by contradiction. Assume that there exists a M2 such that

yM2 > 0 and M ∩ δ(v) = e2, and assume that M1 and δ(v) are active for y. By Lemma 4.9,

M ′
i = Mi ∪ δ(v) is a multicut of G such that dM ′i = dMi

+ 1 for i = 1, 2. Let ε > 0 such

that ε ≤ min
(
yM1 , yM2 , yδ(v)

)
. Then, the point:

y′ = y − ε
(
χM1 + χM2 + χδ(v)

)
+ ε

(
χM

′
1 + χM

′
2

)
is a solution to D(G,c), and we have b>y′ = b>y+ε, thus y is not optimal, a contradiction. �

Claim 4.18.5. For every optimal solution to D(G,c), the constraints (4.14a) associated with

the edges incident to a degree 2 vertex are tight.

Proof. We prove the result by contradiction. Suppose there exist an optimal solution y∗

to D(G,c) and a vertex v with δ(v) = {e1, e2} such that the inequality (4.14a) associated

with e1 is not tight and let, for i = 1, 2, si be the slack of the constraint associated with

ei, that means:

si = cei −
∑

M∈MG:ei∈M

y∗M

Inequality (4.14a) associated with e2 is tight, as otherwise there exists a η > 0,

η < min(s1, s2), such that y∗ + ηξδ(v) is a solution to D(G,c), a contradiction with the

optimality of y∗. Hence, Claims 4.18.2 and 4.18.3 imply that there are at least two dis-

tinct multicuts M1 and M2 active for y∗ and containing e2. Let ε be a rational number,

0 < ε ≤ min(y∗M1
, y∗M2

, s1). For i = 1, 2, e1 ∈ Mi, as otherwise y′ = y∗ + ε(ξMi∪e1 − ξMi
)

is a solution to D(G,c). This solution is such that b>y′ = b>y∗ + ε(h + 1) > b>y∗,

a contradiction with the optimality of y∗, for i = 1, 2. Since both M1 and M2 con-

tain δ(v) and are distinct, at least one of them, say M1, strictly contains δ(v). Then,

y′′ = y∗ + ε(−ξM1 + ξM1\e2 + ξδ(v)) is a solution to D(G,c) because M1 \ e2 belongs to MG

by Observation 4.6. Then, b>y′ = b>y∗ + ε(−bM1 + bM1 − (h + 1) + 2h + 1) > b>y∗, a

contradiction. �
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Given a solution y to D(G,c), we define for each vertex v ∈ V̂ the set Ay
v as the set of

multicuts active for y that strictly contain δ(v). Moreover we define the value αyv as:

αyv =
∑
M∈Ay

v

yM . (4.15)

Claim 4.18.6. For every optimal solution y to D(G,c), we have 0 < αyv < 1 for all v ∈ V̂ .

Proof. Suppose by contradiction that there exist an optimal solution y∗ to D(G,c) and a

vertex v of V̂ such that either αy
∗
v ≥ 1 or αy

∗
v = 0. Denote the two edges incident to v by

e1 and e2 in such a way that ce1 ≤ ce2 .

Suppose first that αy
∗
v ≥ 1. By Claim 4.18.3, there exist at least two multicuts in

Ay∗
v . Let Ay∗

v = {M1, . . . ,Mn}, by Observation 4.6, for all i = 1, . . . , n, M ′
i = Mi \ e1 is

a multicut of G with dM ′i = dMi
− 1. Let c′ = c − ξe1 . By αy

∗
v ≥ 1, there exist εi for all

i = 1, . . . , n, such that 0 ≤ εi ≤ y∗Mi
and

∑n
i=1 εi = 1. The point y1 defined by:

y1 = y∗ +
n∑
i=1

(
−εiξMi

+ εiξM ′i
)

is a solution to D(G,c′). By definition of b, we have:

b>y1 = b>y∗ − h− 1. (4.16)

By minimality assumption (ii), D(G,c′) admits an integer optimal solution, say y2. This so-

lution satisfies with equality the capacity constraint (4.14a) associated with e2 as otherwise

y2 + ξδ(v) would be a solution to D(G,c) with cost b>y2 + bδ(v) ≥ b>y1 + 2h+ 1, contradicting

the assumption that y∗ is optimal by (4.16) and h ≥ 1. Hence, there exists a multicut M̄

active for y2 containing e2 but not e1 since c′e1 ≤ c′e2−1. By definition, M̄ ∪e1 is a multicut

of G with order dM̄ + 1. Define y3 ∈ ZMG by:

y3
M = y2 − χM̄ + χM̄∪e1

By definition of c′ and y2, the point y3 is an integer solution to D(G,c). Therefore, by (4.16),

y2 being optimal in D(G,c′) and by definition of y3, we have:

b>y∗ = b>y1 + h+ 1 ≤ b>y2 + h+ 1 ≤ b>y3.

Thus, y3 is an integer optimal solution to D(G,c), a contradiction.

Suppose now that αy
∗
v = 0. First, note that δ(v) is not an active multicut for y∗.

Otherwise by Claims 4.18.2, 4.18.3 and 4.18.5, there would be a multicut containing e1
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and not e2, say N1, and a multicut containing e2 and not e1, say N2, which are both active

for y∗. This contradicts Claim 4.18.4. This, and the definition of αy
∗
v imply that no active

multicut contains δ(v).

By Lemma 4.9, if a multicut M contains e2 but not e1, then M∆δ(v) is a multicut with

the same order and bM = bM∆δ(v). Hence, we can define the point y4 ∈ QMG :

y4
M =


0 if e1 ∈M ,

y∗M + y∗M∆δ(v) if e1 /∈M and e2 ∈M ,

y∗M otherwise,

for all M ∈MG,

which is a solution to D(G,ĉ), where ĉ is defined by:

ĉe =


ce1 + ce2 if e = e2,

0 if e = e1,

ce otherwise,

for all e ∈ E.

By construction, we have:

b>y4 = b>y∗. (4.17)

By Claim 4.18.2, D(G,ĉ) admits an integer optimal solution, say y5. Let S be the family

of active multicuts for y5 containing e2, where each multicut M appears y5
M times in

S . We have |S | > ce2 as otherwise y5 would be an integer optimal solution to D(G,c), a

contradiction.

We now construct from y5 an integer solution y6 to D(G,c) with the same cost by

replacing e2 by e1 in some active multicuts for y5. More formally, since |S | ≥ ce1 , there

exists S ′ ⊆ S with |S ′| = ce1 . By Lemma 4.9, M∆δ(v) is a multicut of G for all M ∈ S ′

and bM = bM∆δ(v). Let y6 ∈ ZMG be the point defined by:

y6 = y5 +
∑
M∈S ′

(
ξM∆δ(v) − ξM

)
(4.18)

By construction, we have:

b>y6 = b>y5. (4.19)

Remark that for each M ∈ S ′, adding ξM∆δ(v) − ξM to a point of RMG increases (resp.

decreases) by 1 the left-hand side of the inequality (4.14a) associated with e1 (resp. e2)

while not changing the left-hand side of the inequalities (4.14a) associated with the edges

of E \ {e1, e2}. Therefore, by definition of ĉ, y6 is a solution to D(G,c). By (4.19), y5 being

optimal and (4.17), we have:

b>y6 = b>y5 ≥ b>y4 = b>y∗.
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Therefore y6 is an integer optimal solution to D(G,c), a contradiction. �

The previous result implies that for each optimal solution y and for each v ∈ V̂ there

exists at least one multicut strictly containing δ(v) that is active for y. For the following

claims we need to define a subset of optimal solutions to D(G,c): let Dv be the set, possibly

empty, of optimal solutions to D(G,c) for which δ(v) is not active. Dv is a face of the

polytope of the solutions, hence, if it is not empty, there exists a solution y in Dv such

that αyv ≥ αzv for all solutions z ∈ Dv.

The following claim presents the structure of a specific optimal solution to D(G,c) for

which δ(v) is not active. Figure 4.5 gives an insight on the structure of this solution.

Claim 4.18.7. Let v ∈ V̂ with δ(v) = {e1, e2} and let y∗ in Dv maximizing αy
∗
v .

The only multicuts active for y∗ that intersect δ(v) are two bonds F ∪ e1 and F ∪ e2,

and a multicut F ∪{e1, e2} of order 3, where F is a subset of E \δ(v) that does not contain

nonempty multicuts.

Proof. By Claim 4.18.6, there exists at least one multicut strictly containing δ(v) which

is active for y∗, say M0. By y∗δ(v) = 0 and Claim 4.18.5, there exists at least one multicut

active for y∗ which contains ei and not δ(v) \ ei, for i = 1, 2. Let Mi be such a multicut

with maximum order.

We claim that Mj \ δ(v) does not contain multicuts for j = 0, 1, 2. First, we prove

that M0 \ δ(v) does not contain multicuts. Let M0 = δ(v, V2, V3, . . . , VdM0
), note that, by

Observation 4.6 and complementary slackness, the two vertices adjacent to v belong to

two different shores, say V2 and V3. By contradiction, let M ′
0 be the maximal multicut

contained in M0 \δ(v). We have that dM ′0 = dM0−2 because M0 = δ(v∪V2∪V3, . . . , VdM0
).

For i = 1, 2, M ′
i = Mi ∪ δ(v) is a multicut with order dM ′i = dMi

+ 1. Let 0 < ε < y∗M`
for

` = 0, 1, 2. Then, let y′ ∈ RMG be the point defined by:

y′ = y∗ − εξM0 + εξM ′0 + ε
∑
i=1,2;i

(
−ξMi

+ ξM ′i
)
.

By construction, y′ is a solution to D(G,c) such that b>y∗ = b>y′. Hence y′ is an optimal

solution, but we have αy
′
v = αy

∗
v + ε because δ(v) ( M ′

i for i = 1, 2. This contradicts the

maximality of αy
∗
v . Therefore M0 \δ(v) does not contain nonempty multicuts. This implies

that dM0 = 3.

Now, we show that M1 \ δ(v) does not contain nonempty multicuts. The result for

M2 stems by symmetry. By contradiction, let M ′
1 be the maximal multicut contained in
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v

e2e1

F

v

e2e1

F

v

e2e1

F

Figure 4.5: Visual representation of Claim 4.18.7: the only multicuts active for y∗ that

intersect δ(v) are F ∪ e1, F ∪ {e1, e2}, and F ∪ e2 for some set F not containing nonempty

multicuts.

M1 \ δ(v). Note that dM ′1 = dM1 − 1. Let M ′
2 = M2 ∪ δ(v), it is a multicut with order

dM ′2 = dM2 + 1. Let 0 < ε < y∗M`
for ` = 1, 2. Then, let y′ ∈ RMG be the point defined by:

y′ = y∗ − εξM1 + εξM ′1 − εξM2 + εξM ′2 .

By construction, y′ is a solution to D(G,c) such that b>y∗ = b>y′. Hence y′ is an optimal

solution, but we have αy
′
v = αy

∗
v + ε because δ(v) ( M ′

2. This contradicts the maximality

of αy
∗
v .

Therefore Mi \ δ(v) does not contain multicuts for i = 1, 2. This implies that dM1 =

dM2 = 2.

We now prove that there exists a set F such that M0 = F ∪ δ(v), and Mi = F ∪ ei
for i = 1, 2. Remark that M1 ∪M2 is a multicut so y′′ = y∗ + ε(ξM1∪M2 − ξM1 − ξM2) is a

solution to D(G,c). The optimality of y∗ implies dM1∪M2 ≤ 3. Since M1 and M2 are distinct

bonds, there exists F ⊆ E \ δ(v) such that Mi = F ∪ ei, for i = 1, 2.

Finally, let N0 = M0\e2 and N1 = M1∪e2. Note that ỹ = y∗+ε(ξN0−ξM0 +ξN1−ξM1) is

an optimal solution to D(G,c) for which δ(v) is not active. Moreover, N0 and M2 are bonds

active for ỹ since dM0 = 3. This implies that N0 = F ∪ e1, and hence M0 = F ∪ δ(v). �

Claim 4.18.8. Let v ∈ V̂ and y be an optimal solution to D(G,c). Then,
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i. if yδ(v) = 0, then ce = 1 for all e ∈ δ(v),

ii. if yδ(v) > 0, then αyv + yδ(v) = 1, and there exists e ∈ δ(v) such that ce = 1.

Proof. (i.) First suppose that yδ(v) = 0. Let y′ be a point of Dv having αy
′
v maximum,

such point exists because Dv 6= ∅. Then, by Claim 4.18.7, there exist exactly two active

multicuts for y′ containing ei for i = 1, 2. Combining Claims 4.18.3 and 4.18.5, and the

integrality of c, we obtain that cei = 1 for all i = 1, 2.

(ii.) Let now yδ(v) > 0. By Claim 4.18.4, there exists an edge e ∈ δ(v) such that every

multicut active for y that contains e contains δ(v). Hence, the constraint (4.14a) associated

with e is:

ce ≥
∑

M :e∈M

y∗M = y∗δ(v) +
∑

M∈Ay∗
v

y∗M = y∗δ(v) + αy
∗

v . (4.20)

By Claim 4.18.5, the constraint (4.14a) associated with e is tight. Thus, y∗δ(v) + αy
∗
v = ce,

and by Claims 4.18.3 and 4.18.6, and ce being integer, we have that ce = 1. �

The next (and last) three claims of the proof state some deduce some structural property

of the graph G. In particular we focus our attention on the vertices of V̂ . We give some

insights on the proof of the following claim in Example 4.1.

Claim 4.18.9. Vertices of degree 2 are not adjacent in G.

Proof. Assume by contradiction that there exist two adjacent vertices v1 and v2 in V̂ , and

denote δ(vi) = {e0, ei} for i = 1, 2.

We first claim that δ(vi) is active for all optimal solutions to D(G,c). We prove that

δ(v1) is active for all optimal solutions, the result for δ(v2) is obtained by symmetry. By

contradiction, suppose that Dv1 6= ∅. Among the solutions belonging to Dv1 , let y1 be one

having αyv1
maximum.

Then, by Claim 4.18.7, all the active multicuts for y1 intersecting δ(v1) are M0 =

F ∪ δ(v1), B1 = F ∪ e1, and B0 = F ∪ e0, where Bi are bonds for i = 0, 1, and F ⊆ E \ δ(v)

contains no nonempty multicut. By Claim 4.18.6, there exists a multicut M active for

y1 strictly containing δ(v2). By δ(v1) ∩ δ(v2) = e0, M intersects δ(v1), hence M = M0,

F = {e2} and B0 = δ(v2).

As δ(v1) = 0, by Claim 4.18.8-(i.), ce0 = ce1 = 1. By Claim 4.18.5, the constraints

associated with e0 and e1 are tight. Since Ay1

v1
= {M0}, we have:

cei = y1
M0

+ y1
Bi

= 1 for i = 0, 1. (4.21)
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Let {M1, . . . ,Mn} be the set of active multicuts for y1 such that Mi ∩ {e0, e1, e2} = e2, for

i = 1, . . . , n. The constraint (4.14a) associated with e2 is tight, hence:

ce2 = y1
M0

+ y1
B0

+ y1
B1

+
n∑
i=1

y1
Mi

= 1 + y1
B0

+
n∑
i=1

y1
Mi
. (4.22)

By Claim 4.18.3 and ce2 ∈ Z, we have that {M1, . . . ,Mn} 6= ∅. Moreover, note that ce2 ≥ 2.

Thus, combining (4.21) and (4.22), we have:

n∑
i=1

y1
Mi

= ce2 − 1− y1
B0
≥ y1

M0
. (4.23)

Then, there exist ε1, . . . , εn such that 0 ≤ εi ≤ y1
Mi

for i = 1, . . . , n, and

n∑
i=1

εi = y1
M0
.

We have that, for i = 1, . . . , n, Mi ∪ e0 is a multicut with order dMi
+ 1, hence we can

consider the following solution:

y2 = y1 −

(
y1
M0
ξM0 +

n∑
i=1

(εiξMi
)

)
+

(
y1
M0
ξM0\e0 +

n∑
i=1

(εiξMi∪e0)

)
. (4.24)

We have that b>y1 = b>y2, but αy
2

v1
= 0, a contradiction with Claim 4.18.6. By symmetry,

we deduce that both δ(v1) and δ(v2) are active for all optimal solutions to D(G,c).

By Claim 4.18.4, we have that, for every optimal solution y to D(G,c) and multicut

M ∈MG, if yM > 0 and ei ∈M , then e0 ∈M , for i = 1, 2.

Let y∗ be the optimal solution to D(G,c) maximizing αyv1
. We have that Ay∗

v2
⊆ Ay∗

v1
and

all the multicuts in Ay∗
v2

have order at most 3. Otherwise, let M ∈ Ay∗
v2
\Ay∗

v1
(resp. M such

that dM ≥ 4), and 0 < ε < min(y∗M , y
∗
δ(v1)). The solution

y3 = y∗ − ε(ξM + ξδ(v1)) + ε(ξM\e2 + ξδ(v1)∪e2)

is optimal, but αy
3

v1
= αy

∗
v1

+ ε by the choice of M , a contradiction with the choice of y∗.

Thus, M̄ = {e0, e1, e2} is the only multicut in Ay∗
v2

.

Let {N1, . . . , Nm} be the set of active multicuts for y∗ such that Ni ∩ {e0, e1, e2} = e0.

The constraint associated with e0 is tight by Claim 4.18.5, hence, by Ay∗
v2
⊆ Ay∗

v1
, we have:

ce0 = αy
∗

v1
+ y∗δ(v1) + y∗δ(v2) +

m∑
i=1

y∗Ni
. (4.25)
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Example 4.1: Hints for Claim 4.18.9.

e1

v1 v2

e2

e0

Mi

B1

M0

B0

y1

e1

v1 v2

e2

e0

Mi ∪ e0

Mi

B1

M0 \ e0 B0

y2

Case δ(v1) not active. We change the solution by substituting M0 with M0 \ e0 = B1,

and by partially substituting Mi with Mi ∪ e0 for i = 1, . . . , n.

e1

v1 v2

e2

e0

y∗

e1

v1 v2

e2

e0

y5

Ni

M̄ \ e1

δ(v2)
δ(v1)

Ni ∪ e1
Ni

M̄

δ(v2)
δ(v1)

Last passage. We change y∗ by substituting M̄ with M̄ \ e1 = δ(v2), and by partially

substituting Ni with Ni ∪ e1 for i = 1, . . . ,m.

By Claim 4.18.8-(ii.) applied to v1, we have y∗δ(v1) + αy
∗
v1

= 1, and so:

ce0 = 1 + y∗δ(v2) +
m∑
i=1

y∗Ni
. (4.26)

By Ay∗
v2

= M̄ and Claim 4.18.8-(ii.) applied to v2, we have y∗δ(v2) + y∗
M̄

= 1, hence:

ce0 = 2− y∗M̄ +
m∑
i=1

y∗Ni
. (4.27)

By ce0 being integer, y∗
M̄
< 1 by Claim 4.18.3, and (4.27), we have:

m∑
i=1

y∗Ni
≥ y∗M̄ . (4.28)
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Hence, let λ1, . . . , λm be such that 0 ≤ λi ≤ y∗Ni
for i = 1, . . . ,m, and

∑m
i=1 λi = y∗

M̄
.

Remark that δ(v2) = M̄ \ e1. Then, the point:

y5 = y∗ −

(
y∗M̄ξM̄ +

m∑
i=1

λiξNi

)
+

(
y∗M̄ξδ(v2) +

m∑
i=1

λiξNi∪e1

)

is a solution to D(G,c), and it is optimal by definition of b. Moreover,

y5
δ(v2) = y∗M̄ + y∗δ(v2) = 1,

a contradiction with Claim 4.18.3. �

The following claim forbids a circuit of length 3 to contain a vertex of V̂ , we informally

present the proof of this claim along with some pictures in Example 4.2.

Claim 4.18.10. A degree 2 vertex does not belong to a circuit of length 3 in G.

Proof. Assume by contradiction that in G there exist a vertex v ∈ V̂ and a circuit

{e1, e2, e3} such that δ(v) = {e1, e2}. By Observation 1.34, a multicut contains e3 only

if it intersects δ(v). On the other hand, by Observation 4.6 and complementary slackness,

for each M active multicut for an optimal solution, M 6= δ(v), e3 ∈ M , we have that

M ∩ δ(v) 6= ∅. Thus, for every optimal solution y to D(G,c), we have:∑
M :e3∈M

yM =
∑

M :e1∈M,M 6=δ(v)

yM +
∑

M :e2∈M,M 6=δ(v)

yM − αyv. (4.29)

Let y∗ be an optimal solution to D(G,c). By the constraint (4.14a) associated with e3,

(4.29), and Claim 4.18.5, we have:

ce3 ≥
∑

M :e3∈M

y∗M = ce1 + ce2 − 2y∗δ(v) − αy
∗

v . (4.30)

By Claims 4.18.6 and 4.18.8-(ii.), we have that 2y∗δ(v) + αy
∗
v < 2. Thus, we deduce

from (4.30) that ce3 ≥ ce1 + ce2 − 1.

Define G′ = G \ e3 and c′ = c|E\e3 . Note that for each multicut M ∈ MG, M \ e3 is

a multicut of G′ with order at least dM . Hence, y∗ induces a solution to D(G′,c′) of cost

at least b>y∗. By minimality assumption (i), there exists an integer optimal solution y′ to

D(G′,c′), and we have b>y′ ≥ b>y∗.

Let M1 (resp. M2) be the set of multicuts M = δ(V1, . . . , VdM ) of G′ active for y′ such

that the endpoints of e3 belong (resp. do not belong) to a same Vi for some i ∈ {1, . . . , dM}.
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For each M ∈ M1 (resp. M ∈ M2), M (resp. M ∪ e3) is a multicut of G with the same

order. Hence,

y′′ =
∑
M∈M1

y′MξM +
∑
M∈M2

y′MξM∪e3

is a point of ZMG
+ with b>y′′ = b>y′. Thus, b>y′′ ≥ b>y∗, and y′′ is not a solution to

D(G,c). By definition, y′′ respects every constraint of D(G,c) except for the constraint (4.14a)

associated with e3, hence this constraint is violated by y′′.

By definition of y′′, we have:∑
M :e3∈M

y′′M =
∑

M :e1∈M,M 6=δ(v)

y′′M +
∑

M :e2∈M,M 6=δ(v)

y′′M − αy
′′

v . (4.31)

Therefore, by the inequality (4.14a) associated with e3, Equation (4.31), and the inequali-

ties (4.14a) associated with e1 and e2, we have:

ce3 <
∑

M :e3∈M

y′′M =
∑

M :e1∈M

y′′M +
∑

M :e2∈M

y′′M − αy
′′

v − 2y′′δ(v) ≤ ce1 + ce2 − αy
′′

v − 2y′′δ(v). (4.32)

Thus, by Equation (4.30), we have αy
′′
v +2y′′δ(v) < αy

∗
v +2y∗δ(v) < 2. By ce3 ≥ ce2 +ce1−1, the

integrality of y′′, and Equation (4.32), we have that αy
′′
v = y′′δ(v) = 0, and so ce3 = ce1+ce2−1.

Hence, by the integrality of y′′:

ce3 + 1 =
∑

M :e3∈M

y′′M =
∑

M :e1∈M

y′′M +
∑

M :e2∈M

y′′M = ce1 + ce2 . (4.33)

For i = 1, 2, since cei ≥ 1, there exists a multicut Mi active for y′′ such that Mi∩ δ(v) = ei.

We claim that the constraint (4.14a) associated with e3 is not tight for y∗. By ce3 = ce1 +

ce2 − 1, (4.30), and Claim 4.18.6, stems that δ(v) is active for y∗. Hence, by Claim 4.18.8-

(ii.), we have:

αy
∗

v + y∗δ(v) = 1. (4.34)

By tightness of the constraint associated with e1, and (4.34), there exists an edge in δ(v), say

e1, such that all the active multicuts containing e1 contain e2. Moreover, by Claim 4.18.5,

the constraint associated with e2 is tight for y∗, hence:∑
M :M∩δ(v)=e2

y∗M + αy
∗

v + y∗δ(v) =
∑

M :M∩δ(v)=e2

y∗M + 1 = ce2 . (4.35)

In particular,
∑

M :M∩δ(v)=e2
y∗M is integer. By Observation 1.34, a multicut active for y∗

contains e2 but not e1 if and only if it contains e3. Thus, the constraint associated with e3

is not tight for y∗, because ce3 is integer and αy
∗
v is not, so:

ce3 >
∑

M :e3∈M

y∗M =
∑

M :M∩δ(v)=e2

y∗M + αy
∗

v .
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Example 4.2: Idea of Claim 4.18.10.

We consider two points y∗ and y′′, where the first is an optimal solution to D(G,c), and

the latter violates only the constraint associated with e3 and has (at least) optimal

value.

v

e1 e2

e3

y∗

δ(v)

M ∈ Ay∗
v

v

e1 e2

e3

y′′

M1 M2

In the proof we show that the constraint associated with e3 is not tight for y∗ and

that there exist four multicuts as above that are active for the two points. By

construction of y′′ and y∗, there is a λ ∈ (0, 1) such that λy∗+(1−λ)y′′ is an optimal

solution to D(G,c). The multicuts active for this solution are the union of those active

for y∗ and those active for y′′. This contradicts Claim 4.18.4.

v

e1 e2

e3

λy∗ + (1− λ)y′′

δ(v)

M ∈ Ay∗
v

M1 M2

The point y′′ respects all the constraints of D(G,c) except the one associated with

e3, and this constraint is not tight for y∗. Therefore, there exists λ ∈ (0, 1), such that

ỹ = λy∗ + (1− λ)y′′ is a solution to D(G,c). Moreover, ỹ is optimal because b>y∗ ≤ b>y′′.

All multicuts active for at least one between y∗ and y′′ are active for ỹ. Since δ(v) is
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active for y∗ and M1,M2 are active for y′′, the three multicuts M1,M2, and δ(v) are active

for ỹ, a contradiction with Claim 4.18.4. �

Claim 4.18.11. In G no circuit of length 4 contains two or more vertices of V̂ .

Proof. Assume by contradiction that there exists a circuit C = {e1, . . . , e4} in G such that

v1, v2 ∈ V̂ belong to C. By Claim 4.18.9, v1 and v2 are not adjacent, hence we assume that

δ(v1) = {e1, e2} and δ(v2) = {e3, e4}. Let v3 and v4 be the remaining vertices of C.

We have that δ(v1) is active for all optimal solutions to D(G,c). Indeed, let y′ be a

solution maximizing αy
′
v1

among all the solutions in Dv1 . By Statement 2 of Theorem 4.8,

for every multicut M in Ay′
v2

, we have M = δ{v2, V2, . . . , VdM}, with v3 and v4 belonging to

different Vi’s, hence M ∩ δ(v1) 6= ∅. However, by Claim 4.18.7 applied to v1, M \ δ(v1) can

not contain any multicut, a contradiction. Exchanging the role of v1 and v2, we deduce

that δ(v2) is active for all optimal solutions to D(G,c).

Without loss of generality, there exists an optimal solution y such that αyv1
≥ αyv2

. Then,

we can build an optimal solution to D(G,c), say y∗, such that Ay∗
v1
⊇ Ay∗

v2
. Indeed, suppose

there exist {M1, . . . ,Mn} ∈ Ay
v2
\ Ay

v1
. Then, since αyv1

≥ αyv2
, there exist {N1, . . . , Nm} in

Ay
v1
\ Ay

v2
, such that:

n∑
i=1

yMi
≤

m∑
j=1

yNj
. (4.36)

Note that, by Statement 2 of Theorem 4.8 and complementary slackness, v3 and v4 belong

to different shores of Nj for each j = 1, . . . ,m, thus Nj ∩ δ(v2) 6= ∅. Moreover, since

Nj 6∈ Ay
v2

, we have |Nj ∩ δ(v2)| = 1, for all j = 1, . . . ,m. Furthermore, by δ(v2) being

active and Claim 4.18.4, there exists an edge in δ(v2), say e3, such that Nj ∩ δ(v2) = e3 for

all j = 1, . . . ,m. Hence, there exist ε1, . . . , εm such that 0 ≤ εj ≤ yNj
, for j = 1, . . . ,m,

and
n∑
i=1

yMi
=

m∑
j=1

εj. (4.37)

Therefore, let

y∗ = y −

(
n∑
i=1

yMi
ξMi

+
m∑
j=1

yNj
ξNj

)
+

(
n∑
i=1

yMi
ξMi\e4

m∑
j=1

yNj
ξNj∪e4

)
. (4.38)

The point so defined is a solution to D(G,c), b
>y∗ = b>y, and Ay∗

v1
⊇ Ay∗

v2
. Moreover,

this implies that all the multicuts in Ay∗
v2

have order at least 4 because of Statement 2 of

Theorem 4.8.
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Let Ay∗
v2

= {M ′
1 . . . ,M

′
p}. By Ay∗

v2
⊆ Ay∗

v1
, we have that, for i = 1, . . . , p, M ′

i =

δ(v1, v2, V
i

3 , V
i

4 , . . . , V
i
dM′

i

), where V i
3 and V i

4 contain respectively v3 and v4. We define, for

each i = 1, . . . , p, the multicut M ′′
i as the maximal multicut contained in M ′

i \ δ(v2), that

means M ′′
i = δ(v1, v2∪V i

3 ∪V i
4 , . . . , V

i
dM′

i

). Since δ(v2) is active for y∗, by Claim 4.18.8-(ii.),

we have αy
∗
v2

+ y∗δ(v2) = 1. Then, the point y1 ∈ QMG defined by:

y1 = y∗ −

(
y∗δ(v2)ξδ(v2) +

p∑
i=1

y∗M ′iξM
′
i

)
+

(
p∑
i=1

y∗M ′iξM
′′
i

)
,

is a solution to D(G,c′), where c′ = c− χδ(v2).

By dM ′′i = dM ′i − 2 for all i = 1, . . . , p, and y∗δ(v2) + αy
∗
v2

= 1, we have:

b>y1 = b>y∗ − αy∗v2
(2h− 2)− y∗δ(v2)(2h− 1) = b>y∗ − (2h− 1)− αy∗v2

. (4.39)

By minimality assumption (ii), D(G,c′) admits an integer optimal solution, say y2. The

point y3 ∈ ZMG defined by y3 = y2 + ξδ(v2) is a solution to D(G,c) such that:

b>y3 = b>y2 + 2h+ 1. (4.40)

Therefore, by (4.39), the optimality of y2, and (4.40), we have:

b>y∗ = b>y1 + 2h+ 1 + αy
∗

v2
≤ b>y2 + 2h+ 1 + αy

∗

v2
= b>y3 + αy

∗

v2
. (4.41)

By integrality of P2h+1(G) and duality, we have that b>y∗ ∈ Z. Furthermore, y3 is integer

by construction, so b>y3 ∈ Z. Then, by (4.41) and Claim 4.18.6, we have that b>y∗ ≤ b>y3,

and so y3 is an integer optimal solution to D(G,c), a contradiction. �

Claims 4.18.1, 4.18.9, 4.18.10, 4.18.11 and Proposition 4.7 imply that G is not series-

parallel, a contradiction. �

The following corollary summarizes the results we achieved for Pk(G), when k is odd.

Corollary 4.19. System (4.5) is box-TDI if and only if G is series-parallel.

Proof. When G is not series-parallel, System (4.5) does not describe an integer polyhedron

by Observation 4.10 and Theorems 4.11 and 4.12. Thus System (4.5) is not TDI by

Theorem 2.1.

Whenever G is series-parallel, Pk(G) is box-TDI by Theorem 4.14 and System (4.5) is

TDI by Theorem 4.18. Theorem 2.18 concludes. �

The results presented in this section finalize our contribution to the topic: Theo-

rems 4.14, 4.15, and 4.18, show that, when G is series-parallel, Pk(G) is a box-TDI poly-

hedron and provide a TDI system with integer coefficients describing Pk(G).
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4.8 Conclusions and Perspectives

In this chapter we studied the box-TDIness of Pk(G), that is the convex hull of the k-edge-

connected spanning subgraphs of G.

We first used the properties of polymatroids and some classical results on box-TDIness

to prove that P1(G) is box-TDI for all choices of G, and we reported an already known

integer totally dual integral system that describes this polyhedron.

Then, we proved that Pk(G) is a box-TDI polyhedron if and only if G is a series-parallel

graph. This result is an extension of the work of Chen, Ding, and Zang [25], that analyzed

the case k = 2. The box-total dual integrality of Pk(G) immediately stems from their

result, when G is series-parallel and k is even. For the case k odd, we started from scratch

and relied on the recent characterization of box-TDI polyhedra given in [28].

Since no integer box-TDI system describing Pk(G) was previously known, we provided

a TDI system with integer coefficients describing Pk(G) for all k even.

We concluded by showing that the system describing Pk(G) when k = 2h+ 1 for some

integer h ≥ 1 is TDI when G is series-parallel.

It has to be remarked that all the results achieved in this chapter are valid also under

the restrictive assumption that in a k-edge-connected spanning subgraph each edge can

appear at most once.

Even if we consider the topic extensively explored, there are some questions that are

unanswered.

The polyhedron Pk(G) is contained in the first orthant {x ∈ RE : x ≥ 0}. However,

it seems reasonable that the removal of the nonnegativity constraints does not undermine

the box-TDIness of Pk(G) or the TDIness of the systems that describe it. If this intuition

is truthful, we could unify the results of Chapters 3 and 4. Indeed, in this case the flow

cone would correspond to P0(G).

In this chapter, we did not investigate the minimality of the systems we treated. Hence,

a future development could be to find the Schrijver systems describing Pk(G) and Pk(G)∩
{x ≤ 1} when G is series-parallel, as well as the Schrijver system of P1(G) for a generic

graph G.
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Conclusions

In this thesis we explored box-total dual integrality of some systems and polyhedra associ-

ated with multicuts and graph connectivity. We focused on two polyhedra: the flow cone

and the k-edge-connected spanning subgraph polyhedron.

In Chapter 3, we studied the flow cone. For this polyhedron, we provided a system

with integer coefficients that is totally dual integral if and only if the associated graph is

series-parallel. The flow cone being a box-totally dual integral polyhedron for this class of

graphs, the system given is box-totally dual integral.

Then, we characterized the multicuts of series-parallel graphs that are not disjoint union

of other multicuts. This gave us the minimal TDI system with integer coefficients – also

known as Schrijver System – describing the flow cone of series-parallel graphs.

We also provided a TDI system with half-integer coefficients describing the flow cone

of planar graphs, and we proposed some possible direction of research in this field.

In Chapter 4, we studied the k-edge-connected spanning subgraph polyhedron Pk(G).

First, we showed that P1(G) is a box-TDI polyhedron for all graphs G, and we reported

a TDI system with integer coefficients describing it. Then, we proved that for each fixed

k ≥ 2, Pk(G) is a box-TDI polyhedron if and only if G is a series-parallel graph. This result

extends the work of Chen, Ding, and Zang [25]. The description of Pk(G) being dependent

to the parity of k, we studied separately the systems that describe Pk(G) depending whether

k is even or odd.

In the case k even, we reinforced the results of Chen, Ding, and Zang [25] by providing

a TDI system with integer coefficients for series-parallel graphs. This system being TDI

for a larger class of graphs, this leaves open the question on which is the maximal class of

graphs for which the system given is TDI.

In the case k odd, we showed that the integer system describing Pk(G) provided by

Chopra [31] and Didi Biha and Mahjoub [50] is TDI if and only if G is series-parallel.

From a more general point of view, this thesis presents an interesting methodology to

deal with box-totally dual integral systems.
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CONCLUSIONS

Until recent times, the most efficient way to prove that a system is box-TDI was either

to prove that the set of active constraints for each face form a totally unimodular matrix, or

to use Theorem 2.21. The relatively recent introduction of the ESP property gave a boost

to the research of box-TDI systems and polyhedra. Nevertheless, proving the box-TDIness

of a system was substantially equivalent to proving the box-TDIness of a polyhedron.

On the contrary, the recent characterization of box-TDI polyhedra in terms of equimod-

ular face-defining matrices allows us to change perspective: instead of directly proving the

box-TDIness of a system, we can now use a “divide et impera” approach and prove sepa-

rately the TDIness of the system and the box-TDIness of the polyhedron described. This

potentially simplify the whole process, especially when a TDI system is already known.

We followed this approach in Chapter 4: we first proved the box-TDIness of the k-

edge-connected spanning subgraph polyhedron, and then showed a TDI system describing

it. The systems obtained this way are box-TDI.

Perspectives

In Chapters 3 and 4, we suggested some open problems related with our results. We discuss

here more general extensions of the work done in this thesis.

The results we achieved are on polyhedra defined by multicuts. Indeed, the polyhedra

we proved to be box-TDI are of the kind

Pb = {x ∈ RE
+ : x(M) ≥ bM for all multicuts M of G = (V,E)},

for some b ∈ ZMG and G series-parallel graph. It could be interesting explore which

properties must have b to imply the box-TDIness of Pb. The problem is not trivial, indeed

we can easily find some examples of b such that Pb is not box-TDI.

Furthermore, we could consider if similar problems on series-parallel graphs are defined

on box-TDI polyhedra.

In a more general way, we aim to use the “divide et impera” approach we followed in

Chapter 4, to prove the box-TDIness of systems and polyhedra that resulted hard to treat

otherwise.
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