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Abstract

Given a connected graph G = (V,E) and an integer k¥ > 1, the connected graph
H = (V, F), where F is a family of elements of F, is a k-edge-connected spanning subgraph
of G if H remains connected after the removal of any k—1 edges. The convex hull of the k-
edge-connected subgraphs of a graph G forms the k-edge-connected subgraph polyhedron
of G. We prove that this polyhedron is box-totally dual integral if and only if G is
series-parallel.

Introduction

Totally dual integral systems—introduced in the late 70’s—are strongly connected to min-
max relations in combinatorial optimization (see [30]). A rational system of linear inequalities
Az > b is totally dual integral (TDI) if the maximization problem in the linear programming
duality:

min{c'z: Az > b} =max{b'y: A’y =c,y > 0}

admits an integer optimal solution for each integer vector ¢ such that the optimum is finite.
Every rational polyhedron can be described by a TDI system (see [24]). For instance, éAx >

%b is TDI for some positive q. However, only integer polyhedra can be described by TDI
systems with integer right-hand side (see [19]). TDI systems with only integer coefficients
yield min-max results that have combinatorial interpretation.

A stronger property is the box-total dual integrality, where a system Ax > b is bozx-totally
dual integral (box-TDI) if Ax > b,¢ < x < w is TDI for all rational vectors ¢ and u (possibly
with infinite components). General properties of such systems can be found in [I0] and
Chapter 22.4 of [30]. Note that, although every rational polyhedron {z : Az > b} can be
described by a TDI system, not every polyhedron can be described by a box-TDI system. A
polyhedron which can be described by a box-TDI system is called a box-TDI polyhedron. As
proved by [10], every TDI system describing such a polyhedron is actually box-TDI.

Recently, several new box-TDI systems were exhibited. [5] characterized box-Mengerian
matroid ports. [16] characterized the graphs for which the TDI system of [14] describing the
matching polytope is actually box-TDI. [I7] introduced new subclasses of box-perfect graphs.
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[11] provided several box-TDI systems in series-parallel graphs. For these graphs, [3] gave
the box-TDI system for the flow cone having integer coefficients and the minimum number
of constraints. [6] provided a box-TDI system describing the 2-edge-connected spanning
subgraph polyhedron for the same class of graphs.

In this paper, we are interested in integrality properties of systems related to k-edge-
connected spanning subgraphs. Given a positive integer k, a k-edge-connected spanning sub-
graph of a connected graph G = (V, E) is a connected graph H = (V, F'), with F' a family of
elements of F, that remains connected after the removal of any k — 1 edges.

These objects model a kind of failure resistance of telecommunication networks. More
precisely, they represent networks which remain connected when k — 1 links fail. The under-
lying network design problem is the k-edge-connected spanning subgraph problem (k-ECSSP):
given a graph G, and positive edge costs, find a k-edge-connected spanning subgraph of G of
minimum cost. Special cases of this problem are related to classic combinatorial optimiza-
tion problems. The 2-ECSSP is a well-studied relaxation of the traveling salesman problem
(see [20]) and the 1-ECSSP is nothing but the well-known minimum spanning tree problem.
While this latter is polynomial-time solvable, the k-ECSSP is NP-hard for every fixed k > 2
(see [23]).

Different algorithms have been devised in order to deal with the k-ECSSP. Notable ex-
amples are branch-and-cut procedures [12], approximation algorithms [22]. Cutting plane
algorithms [26], and heuristics [9]. [32], introduced a linear-time algorithm solving the 2-
ECSSP on series-parallel graphs. Most of these algorithms rely on polyhedral considerations.

The k-edge-connected spanning subgraph polyhedron of G, hereafter denoted by Py(G),
is the convex hull of all the k-edge-connected spanning subgraphs of G. [13] gave a system
describing P»(G) for series-parallel graphs. [3I] characterized in terms of forbidden minors
the graphs for which this system describes P>(G). [§] described Py (G) for outerplanar graphs
when £ is odd. [I5] extended these results to series-parallel graphs for all £ > 2. By a result of
[1], the inequalities in these descriptions can be separated in polynomial time, which implies
that the k-ECSSP is solvable in polynomial time for series-parallel graphs.

When studying the k-edge-connected spanning subgraphs of a graph G, we can add the
constraint that each edge of G can be taken at most once. We denote the corresponding
polyhedron by Qr(G). [2] described Q2(G) for Halin graphs. Further polyhedral results for
the case k = 2 have been obtained by [4], [28], and [29]. [25] described several basic facets
of Qr(G). Moreover, [21] extensively studied the extremal points of Qx(G) and characterized
the class of graphs for which this polytope is described by cut inequalities and 0 < z < 1.

The polyhedron P;(G) is known to be box-TDI for all graphs (see [27]). For series-parallel
graphs, the system given in [I3] describing P»(G) is not TDI. [6] showed that dividing each
inequality by 2 yields a TDI system for such graphs. Actually, they proved that this system
is box-TDI if and only if the graph is series-parallel.

Contribution. Our starting point is the result of [6]. First, their result implies that P(G)
is a box-TDI polyhedron for series-parallel graphs. However, this leaves open the question of
the box-TDIness of P(G) for non series-parallel graphs. More generally, for which integers
k and graphs G is Py(G) a box-TDI polyhedron? In this paper, we answer this question and
prove that, for k > 2, P,(G) is a box-TDI polyhedron if and only if G is series-parallel.



1 Definitions and Preliminary Results

This section is devoted to the definitions, notation, and preliminary results used throughout
the paper.

1.1 Graphs

Let G = (V, E) be a loopless undirected graph. The graph G is 2-connected if it remains
connected whenever a vertex is removed. A 2-connected graph is called trivial if it is composed
of a single edge. The graph obtained from two disjoint graphs by identifying two vertices,
one of each graph, is called a 1-sum. A subset of edges of G is called a circuit if it induces a
connected graph in which every vertex has degree 2. Given a subset U of V', the cut §(U) is
the set of edges having exactly one endpoint in U. A bond is a minimal nonempty cut. Given
a partition {Vi,...,V,} of V| the set of edges having endpoints in two distinct V;’s is called
multicut and is denoted by §(Vi,...,V,). We denote respectively by Mg and Bg the set of
multicuts and the set of bonds of G. For every multicut M, there exists a unique partition
{V1,...,Vq,,} of vertices of V such that M =46(V1,...,Vy,,), and G[V;] — the graph induced
by the vertices of V; — is connected for all i = 1,...,dys; we say that dps is the order of M.

We denote the symmetric difference of two sets S and T by SAT. It is well-known that
the symmetric difference of two cuts is a cut.

We denote by K, the complete graph on n vertices, that is the simple graph with n
vertices and one edge between each pair of distinct vertices.

A graph is series-parallel if its 2-connected components can be constructed from an edge by
repeatedly adding edges parallel to an existing one, and subdividing edges, that is, replacing
an edge by a path of length two. [I8] showed that series-parallel graphs are those having no
Ky-minor. By construction, simple nontrivial 2-connected series-parallel graphs have least
one vertex of degree 2.

Proposition 1.1. For a simple nontrivial 2-connected series-parallel graph, at least one of
the following holds:

(a) two vertices of degree 2 are adjacent,
(b) a vertex of degree 2 belongs to a circuit of length 3,
(¢) two vertices of degree 2 belong to a same circuit of length 4.

Proof. We proceed by induction on the number of edges. The base case is K3 for which @
holds.

Let G be a simple 2-connected series-parallel graph such that for every simple, 2-connected
series-parallel graph with fewer edges at least one among @, (]ED, and holds. Since G is
simple, it can be built from a graph H by subdividing an edge e into a path f,g. Let v be
the vertex of degree 2 added with this operation. By the induction hypothesis, either H is
not simple, or one among @, @, and holds for H.

Let fist suppose that H is not simple, then, by G being simple, e is parallel to exactly one
edge eg. Hence, e, f, g is a circuit of G length 3 containing v, hence (]ED holds for G.

From now on, suppose that H is simple. If @ holds for H, then it holds for G.

Suppose that (]ED holds for H, that is, in H there exists a circuit C of length 3 containing
a vertex w of degree 2. Without loss of generality, we suppose that e € C', as otherwise (]E[)



holds for G. By subdividing e, we obtain a circuit of length 4 containing v and w, and hence
holds for G.

At last, suppose that holds for H, that is, H has a circuit C of length 4 containing
two vertices of degree 2. Without loss of generality, we suppose that e € C, as otherwise
holds for G. By subdividing e, we obtain a circuit of length 5 containing three vertices of
degree 2. Then, at least two of them are adjacent, and so (@] holds for G. |

1.2 Box-Total Dual Integrality

Let A € R™*™ be a full row rank matrix. This matrix is equimodular if all its m x m non-zero
determinants have the same absolute value. The matrix A is face-defining for a face F of a
polyhedron P C R"™ if aff(F') = {x € R" : Az = b} for some b € R™. Such matrices are the
face-defining matrices of P.

Theorem 1.2 ([7]). Let P be a polyhedron, then the following statements are equivalent:
(i) P is box-TDI.
(i) Every face-defining matriz of P is equimodular.
(iii) Every face of P has an equimodular face-defining matriz.
The equivalence of conditions (i) and (7i7) stems from the following observation.

Observation 1.3 ([7]). Let F be a face of a polyhedron. If a face-defining matriz of F is
equimodular, then so are all face-defining matrices of F'.

Observation 1.4. Let A € RI*Y be a full row rank matriz, j € J, ¢ be a column of A, and
v € R, If A is equimodular, then so are:

. . A o A v . A 0

i) [ A <], (i) [ i ] if it is full row rank, (iii) [ o7 41 ], and (iv) [ i 41 ]
Observation 1.5 ([7]). Let P C R™ be a polyhedron and let F = {x € P : Bx = b} be a face
of P. If B has full row rank and n — dim(F') rows, then B is face-defining for F.

1.3 k-edge-connected Spanning Subgraph Polyhedron

The dominant of a polyhedron P is dom(P) = {z : 2 =y + z, for y € P and z > 0}. Note
that Py(G) is the dominant of the convex hull of all k-edge-connected spanning subgraphs
of G that have each edge taken at most k times. Since the dominant of a polyhedron is a
polyhedron, Py (G) is a polyhedron even though it is the convex hull of an infinite number of
points.

From now on, k£ > 2. [I5] gave a complete description of Py(G) for all k, when G is
series-parallel.

Theorem 1.6. Let G be a series-parallel graph and k be a positive integer. Then, when k is
even, Pi(G) is described by:

{a:(D) >k for all cuts D of G, (1a)
x>0, (1b)

(1)



and, when k is odd, Py(G) is described by:

k—+1
x(M) > %dM — 1 for all multicuts M of G, (2a)

(2)
x> 0. (2b)

The incidence vector of a family F of E is the vector x" of Z¥ such that e’s coordinate
is the multiplicity of e in F' for all e in E. Since there is a bijection between families and
their incidence vectors, we will often use the same terminology for both. Since the incidence
vector of a multicut §(V,...,Vy,,) is the half-sum of the incidence vectors of the bonds
0(V1),...,6(Va,,), we can deduce an alternative description of P, (G).

Corollary 1.7. Let G be a series-parallel graph and k be a positive even integer. Then Py(QG)
is described by:

k
x(M) > §dM for all multicuts M of G, (3a)

(3)
x> 0. (3b)

We call constraints and partition constraints. A multicut M is tight for a point of
Py(QG) if this point satisfies with equality the partition constraint (resp. ) associated
with M when k is odd (resp. even). Moreover, M is tight for a face F of Py(G) if it is tight
for all the points of F'.

The following results give some insight on the structure of tight multicuts.

Theorem 1.8 ([15]). Let k > 1 be odd, let x be a point of Pi(G), and let M = 6(Vi, ..., Vq,,)
be a tight multicut for x. Then, the following hold:

(i) if dar > 3, then x (5(Vi) N6(V;)) < BEL foralli # 5 € {1,...,dum}-
(i) G\ 'V; is connected for alli=1,...,dps.

Observation 1.9. Let M be a multicut of G strictly containing §(v) = {f,g}. If M is tight
for a point of Py(G), then both M \ f and M \ g are multicuts of G of order dy; — 1.

[8] gave sufficient conditions for an inequality to be facet defining. The following propo-
sition is a direct consequence of [8, Theorem 2.4].
Proposition 1.10. Let G be a graph having K4 as a minor and let k > 1 be an odd integer.
Then, there exist two disjoint nonempty subsets of edges of G, E' and E”, and a rational b
such that
X o >, (4)

is a facet-defining inequality of Px(G).

[6] provided a box-TDI system for P5(G) for series-parallel graphs.
Theorem 1.11 ([6]). The system:

{ lz(D)>1 for all cuts D of G, (5)

x>0
s box-TDI if and only if G is a series-parallel graph.

This result proves that P»(G) is box-TDI for all series-parallel graphs, and gives a TDI
system describing this polyhedron in this case. At the same time, Theorem [I.11] is not
sufficient to state that P»(G) is a box-TDI polyhedron if and only if G is series-parallel.



2 Box-TDlIness of P.(G)

In this section we show that, for k& > 2, P;(G) is a box-TDI polyhedron if and only if G is
series-parallel.
When k > 2, Pi(G) is not box-TDI for all graphs as stated by the following lemma.

Lemma 2.1. For k > 2, if G = (V, E) contains a Ky-minor, then Py(G) is not box-TDI.

Proof. When k is odd, Proposition [I.10] shows that there exists a facet-defining inequality
that is described by a non equimodular matrix. Thus, Px(G) is not box-TDI by Statement

of Theorem

We now prove the case when k is even. Since GG is connected and has a K4-minor, there
exists a partition {Vi,...,V4} of V such that G[Vi] is connected and §(V;, V;) # 0 for all
i <je{l,...,4}. We prove that the matrix 7" whose three rows are x*("?) for i = 1,2,3
is a face-defining matrix for Py(G) which is not equimodular. This will end the proof by

Statement of Theorem [1.2]
Let ej; be an edge in §(V;,V;) for all i < j € {1,...,4}. The submatrix of T' formed by

the columns associated with edges e;; is the following:

€12 €13 €23 €14 €24 €34

(V1) 1 1 0 1 0 O
x3(V2) 1 0 1 0 1 0
yO(V3) 0 1 1 0 0 1

The matrix T is not equimodular as the first three columns form a matrix of determinant —2
whereas the last three ones have determinant 1.

To show that 7' is face-defining, we exhibit |E| — 2 affinely independent points of Py (G)
satisfying the partition constraint associated with the multicut 6(V;), that is (6(V;)) = k,
for i =1,2,3.

Let D1 = {e12,e14,€23,€34}, Do = {e12,€13, €2, €31}, D3 = {e13, €14, €23,€24} and Dy =
{e14, €24, €34}. First, we define the points S; = Z?Zl kxEVil 4 gXDJ', for j = 1,2,3, and
Sy = Z?:l ExEVil 4 kxP4. Note that they are affinely independent.

Now, for each edge e ¢ {ei2,e13, €14, €23, €24, €34}, we construct the point S, as follows.
When e € E[V;] for some i = 1,...,4, we define S = Sy + x¢. Adding the point S, maintains
affine independence as S, is the only point not satisfying z. = k. When e € 6(V;, V;) for some
i,7, we define S, = Sy — x4 + x¢, where Sy is S; if e € §(V1, Vi) Ud(Va, V3) and Sy otherwise.
Affine independence comes because S, is the only point involving e. |

Theorem 2.2. For k > 2, Pi(G) is a boz-TDI polyhedron if and only if G is series-parallel.

Proof. Necessity stems from Lemma Let us now prove sufficiency. When k = 2, the
box-TDIness of System has been shown by [6]. This implies box-TDIness for all even k:
multiplying the right-hand side of a box-TDI system by a positive rational preserves its box-
TDlIness (see [30, Section 22.5]). The system obtained by multiplying the right-hand side of
System by % describes Py (G) when k is even. Hence, the latter is a box-TDI polyhedron.

The rest of the proof is dedicated to the case where £k = 2h + 1 for some h > 1. For
this purpose, we prove that every face of Pa;41(G) admits an equimodular face-defining



matrix. The characterization of box-TDIness given in Theorem concludes. We proceed
by induction on the number of edges of G.

As a base-case of the induction we consider the series-parallel graph G consisting of two
vertices connected by a single edge. Then, Py, 11(G) = {z € Ry : x > 2h + 1} is box-TDI.

(1-sum) Let G be the 1-sum of two series-parallel graphs G' = (W' E') and G? =
(W2, E?). By induction, there exist two box-TDI systems Aly > b and A%z > b? describing
respectively Poj,y1(G') and Py, 1(G?). If v is the vertex of G obtained by the identification,
G \ v is not connected, hence, by Statement of Theorem a multicut M of G is tight
for a face of Pop41(G) only if M C E* for some i = 1,2. It follows that for every face F
of Popy1(G) there exist two faces F! and F? of Poy,y1(G) and P, y1(G?) respectively, such
that F = F' x F2. Then Popy1(G) = {(y,2) € RE" x RE": Aly > b', A%z > b%} and so it is
box-TDI.

(Parallelization) Let now G be obtained from a series-parallel graph H by adding an edge
g parallel to an edge f of H and suppose that Py, 11(H) is box-TDI. Note that Popy1(QG)
is obtained from Pyjy1(H) by duplicating f’s column and adding x4, > 0. Hence, by [6,
Lemma 3.1], Py, 41(G) is a box-TDI polyhedron.

(Subdivision) Let G = (V, E) be obtained by subdividing an edge uw of a series-parallel
graph G’ = (V/, E’) into a path of length two uv,vw. By contradiction, suppose there exists
a non-empty face F' = {x € Pop+1(G) : Apx = bp} such that Ap is a face-defining matrix
of ' which is not equimodular. Take such a face with maximum dimension. Then, every
face-defining submatrix of Ag is equimodular. We may assume that Ag is given by the left-
hand side of a subset of constraints of System . We denote by Mg the set of multicuts
associated with the left-hand sides of constraints appearing in Ap, and by Er the set of
edges associated with the nonnegativity constraints appearing in Ap.

Claim 2.2.1. & = 0.

Proof. Suppose there exists an edge e € Ep. Let H = G \ e and let Ap,x = bp,, be the
system obtained from Apx = bp by removing the column and the nonnegativity constraint
associated with e. The matrix Ap being of full row rank, so is Ap,,. Since M \ e is a multicut
of H for all M in Mg, the set Fy = {x € Pop1(H) : Ap,x = bp, } is a face of Pop11(H).
Moreover, deleting e’s coordinate of aff (F') gives aff (Fr) so Ap, is face-defining for Fy. By
the induction hypothesis, Ar, is equimodular, and hence so is Ar by Observation (iii).

|

Claim 2.2.2. For alle € {uv,vw}, at least one multicut of Mg different from §(v) contains e.

Proof. Suppose that uv belongs to no multicut of Mp different from §(v).

First, suppose that §(v) does not belong to Mp. Then, the column of Ap associated with
wv is zero. Let A’ be the matrix obtained from Ap by removing this column. Every multicut
of G not containing wv is a multicut of G’ (relabelling vw by uw), so the rows of A% are
associated with multicuts of G'. Thus, F' = {x € P;(G’) : A%z = br} is a face of Pay41(G’).
Removing uv’s coordinate from the points of F' gives a set of points of F of affine dimension
at least dim(F') — 1. Since A’ has the same rank of Ar and one column less than Ap, then
Az is face-defining for F” by Observation By induction hypothesis, A% is equimodular,
hence so is Ap.



Suppose now that §(v) belongs to Mp. Then, the column of Ap associated with uwv has
zeros in each row but x°(*). Let A%nx = b} be the system obtained from Apz = br by
removing the row associated with 6(v). Then F* = {x € P, (G) : ALz = bj} is a face of
Pi(G) of dimension dim(F') + 1. Indeed, it contains F' and z + ax*’ for every point z of F'
and a > 0. Hence, A% is face-defining for F*. This matrix is equimodular by the maximality
assumption on F, and so is Ap by Observation [L.4}(iv). n

Claim 2.2.3. |[M Né§(v)| # 1 for every multicut M € Mp.

Proof. Suppose there exists a multicut M tight for F' such that |[M N d(v)| = 1. Without
loss of generality, suppose that M contains uv and not vw. Then, F C {x € Py,11(G) :
Tyw > Ty} because of the partition inequality associated with the multicut MAJ(v).
Moreover, the partition inequality associated with §(v) and the integrality of Paj11(G) imply
F C{x € Pop41(G) : &y > h+ 1}. The proof is divided into two cases.

Case 1. F C{z € Pyp1(G) : yy = h+1}. We prove this case by exhibiting an equimodu-
lar face-defining matrix for . By Observation this implies that Ap equimodular, which
contradicts the assumption on F'.

Equality ., = h + 1 can be expressed as a linear combination of rows of Apx = bp. Let
Alzx =V, denote the system obtained by replacing a row of Apxz = bp by xy, = h+1 in such
a way that the underlying affine space remains unchanged. Denote by A the set of multicuts
of M containing vw but not wv. If N # ), then let N be in /. We now modify the system

"=z = b by performing the following operations.

1. Every row associated with a multicut M strictly containing d(v) is replaced by the
partition constraint associated with M \ vw set to equality.

2. Whenever §(v) € Mp, replace the row associated with §(v) by the box constraint
Tuw = h.

3. Replace every row associated with M € N\ N by the partition constraint associated
with M Aéd(v) set to equality.

4. Whenever N # (), replace the row associated with N by the box constraint x,, = h+ 1.

These operations do not modify the underlying affine space. Indeed, in Operation 1, M \ vw
is tight for F' because of Observation and F C {x € Pop41(G) : yy = h + 1}. Operation
2 is applied only if F' C {z € Py,1+1(G) : x4y = h}. Operations 3 and 4 are applied only if
N # ), which implies that F C {x € Py, 11(G) : Zyp = h + 1} because of the constraint
associated with NAd(v) and F C {z € Pop11(G) : Tyw > Typ}. Note that Operations 2 and
4 cannot be applied both, hence the rank of the matrix remains unchanged.

Let ALz = b7, be the system obtained by removing the row y,, = h + 1 from Az = V.
By construction, A%z = b7, is composed of constraints set to equality and possibly
Tyy = h or xyy = h + 1. Moreover, the column of A% associated with vw is zero. Let
F" ={x € Pop11(G) : Albx = b.}. For every point z of F and a > 0, z + ax"" belongs to
F" because the column of A’ associated with vw is zero, and z + ax"" € Pop41(G). This
implies that dim(F") > dim(F) + 1.

If I is a face of Pyp41(G), then A7 is face-defining for F” by Observation and by
A’ being face-defining for F. By the maximality assumption on F, A7 is equimodular, and
hence so is A}, by Observation [L.4}(ii).



Otherwise, by construction, F” = F*N{x € R : 2, = t} where F'* is a face of Py, 11(G)
strictly containing F' and t € {h,h + 1}. Therefore, there exists a face-defining matrix of
F" given by a face-defining matrix of F* and the row x“’. Such a matrix is equimodular
by the maximality assumption of F' and Observation (ii). Hence, A7, is equimodular by
Observation and so is A%, by Observation [L.4}(ii).

Case 2. F Z {z € Pop11(G) : xypy = h+1}. Thus, there exists z € F such that z,, > h+1.
By Claim there exists a multicut N # 6(v) containing vw which is tight for F. By
Statement of Theorem the existence of z implies that N is a bond. Thus, wv ¢ N
and F C {z € Pop11(G) : Tyw = Tuw}. Consequently, L = NAJ(v) is also a bond tight
for F. Moreover, N is the unique multicut tight for F' containing vw. Suppose indeed that
there exists a multicut B containing vw tight for F. Then, B is a bond by Statement (i) of
Theorem and the existence of z. Moreover, BAN is a multicut not containing vw. This
implies that no point x of F' satisfies the partition constraint associated with BAN because
x(BAN) = z(B) + z(N) —2z(BNN) = 2(2h+ 1) —22(BNN) < 4h + 2 — 2z, < 2h, a
contradiction.

Consider the matrix A%, obtained from Ar by removing the row associated with N. Matrix
A%, is a face-defining matrix for a face F* O F of Pa,41(G) because F™* contains F' and
z + ax"’ for every point z of F' and o > 0. By the maximality assumption, the matrix A% is
equimodular. Let Br be the matrix obtained from Ap by replacing the row x by the row
XN = xL. Then, Br is face-defining for F. Moreover, By is equimodular by Observation
(iv) — a contradiction. [

Let A%z = U, be the system obtained from Apz = bp by removing uv’s column from Ap
and subtracting h+1 times this column to by. We now show that {z € Pop41(G’) : Apzr = b}
is a face of Py 41(G") if §(v) ¢ Mp, and Pop11(G")N{x : 24w = h} otherwise. Indeed, consider
a multicut M in Mp. If M = §(v), then the row of Ax = b’ induced by M is nothing
but z,, = h. Otherwise, by Observation and Claim the set M \ wv is a multicut
of G’ (relabelling vw by uw) of order ds if uv ¢ M and dp; — 1 otherwise. Thus, the row
of Az = V), induced by M is the partition constraint associated with M \ uv set to
equality.

By construction, A% has full row rank and one column less than Ap. We prove that
A’ is face-defining by exhibiting dim(F') affinely independent points of Psp41(G’) satisfying
Alzx = V. Because of the integrality of Popi1(G), there exist n = dim(F) + 1 affinely
independent integer points z!,..., 2" of F. By Claim every multicut in Mg contains
either both uv and vw or none of them. Then, Claim and Statement (fi)) of Theorem
imply that I C {z € R¥ : 2, < h+1,24, < h+1}. Combined with the partition inequality
Tyuy + Tow > 2h + 1 associated with §(v), this implies that at least one of 2, and z¢, is
equal to h+ 1 for ¢ = 1,...,n. Since exchanging the uv and vw coordinates of any point of
F gives a point of F' by Claim the hypotheses on z',...,2" are preserved under the
assumption that 2/, = h+1fori=1,...,n—1. Let y!,...,y" ! be the points obtained from
2!, ..., 2" ! by removing uv’s coordinate. Since every multicut of G’ is a multicut of G with
the same order, y',...,y""! belong to Paj41(G’). By construction, they satisfy A%z = b so
they belong to a face of Py +1(G’) or Popy1(G') N {z : 2y = h}. This implies that A% is a
face-defining matrix of Py, 11(G’) if §(v) ¢ Mp, and P y1(G') N{x : zyy = h} otherwise.



By induction, Py 41(G’) is a box-TDI polyhedron and hence 50 is Pop11(G') N{x : Ty =
h}. Hence, A is equimodular by Theorem Since the columns of Ap associated with uw
and vw are equal, Observation [1.4}(i) implies that Ap is equimodular — a contradiction to
its assumption of non-equimodularity. [

3 Conclusions

In this paper, we studied strong integrality properties of the k-edge-connected spanning sub-
graph polyhedron, P, (G). We first showed that, for every k > 2, P(G) is a box-TDI polyhe-
dron if and only if G is a series-parallel graph. This result extends and strengthens the work
of [6], who provided a box-TDI system when k = 2. When G is series-parallel and & is even,
the box-total dual integrality of Py(G) stems from their result. For k odd, we used a different
approach, which relies on the recent characterization of box-TDI polyhedra given in [7].

Further, we mention that, for series-parallel graphs, Theorem implies that Qx(G) is a
box-TDI polytope.

Acknowledgments. The authors wish to express their appreciation to the anonymous
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